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Abstract. The recently-raised Gaussian particle filtering (GPF) introduced the 
idea of Bayesian sampling into Gaussian filters. This note proposes to generalize 
the GPF by further relaxing the Gaussian restriction on the prior probability. 
Allowing the non-Gaussianity of the prior probability, the generalized GPF is 
provably superior to the original one. Numerical results show that better 
performance is obtained with considerably reduced computational burden. 

1   Introduction 

The Bayesian probabilistic inference provides an optimal solution framework for 
dynamic state estimation problems [1, 2]. The Bayesian solution requires propagating 
the full probability density function, so in general the optimal nonlinear filtering is 
analytically intractable. Approximations are therefore necessary, e.g., Gaussian 
approximation to the probability [3-9]. This class of filters is commonly called as the 
Gaussian filters, in which the probability of interest, e.g. the prior and posterior 
probabilities, are approximated by Gaussian distribution. An exception is the so-called 
augmented unscented Kalman filter [10] where the prior probability is encoded by the 
nonlinearly transformed deterministic sigma points instead of by the calculated mean 
and covariance from them. By so doing, the odd-order moment information is captured 
and propagated throughout the filtering recursion, which helps improve the estimation 
accuracy. This note will show that similar idea can be applied to the recently-raised 
Gaussian particle filtering (GPF) [7].  

The GPF was developed using the idea of Bayesian sampling under the Gaussian 
assumption [7]. It actually extends the conventionally analytical Gaussian filters via 
Monte Carlo integration and the Bayesian update rule [11]. The Gaussian assumption 
being valid, the GPF is asymptotically optimal in the number of random samples, 
which means that equipped with the computational ability to handle a large number of 
samples the GPF is supposed to outperform any analytical Gaussian filter. The GPF 
also have a lower numerical complexity than particle filters [7]. 

This work generalizes the GPF by relaxing the assumption of the prior probability 
being Gaussian. Since the prior probability is allowed to be non-Gaussian, the resulting 
filter is named as the quasi-Gaussian particle filtering (qGPF) in the sequel. It turns out 
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that the qGPF outperforms the GPF in both accuracy and computational burden. The 
contents are organized as follows. Beginning with the general Bayesian inference, 
Section II derives and outlines the qGPF algorithm. Section III examines two 
representative examples and the conclusions are drawn in Section IV. 

2   Quasi-Gaussian Particle Filtering 

Consider a discrete-time nonlinear system written in the form of dynamic state space 
model as 

 
( )

( )
1 1 1,

,
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where the process function : n r n
kf × →  and observation function 

: n s m
kh × →  are some known functions. The process noise r

kw ∈  is 

uncorrelated with the past and current system states; the measurement noise s
kv ∈  is 

uncorrelated with the system state and the process noise at all time instants. The 
probabilities of the process and measurement noises are both assumed to be known. 

Denote by { }1: 1, ,k ky y y…  the observations up to time instant k . The purpose of 

filtering is to recursively estimate the posterior probability ( )1:|k kp x y  conditioned on 

all currently available but noisy observations. The initial probability of the state is 
assumed to be ( ) ( )0 1:0 0|p x y p x≡ . The prior probability is obtained via the 

Chapman-Kolmogorov equation 

 ( ) ( ) ( )1: 1 1 1 1: 1 1| | | .
nk k k k k k kp x y p x x p x y dx− − − − −= ∫  (2) 

The transition probability density ( )1|k kp x x −  is uniquely determined by the known 

process function and the process noise probability. Using the Bayesian rule, the posterior 
probability is given by 
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where the normalizing constant 

 ( ) ( ) ( )1: 1 1: 1| | | .
nk k k k k k kp y y p y x p x y dx− −= ∫  (4) 

The likelihood probability density ( )|k kp y x  is uniquely determined by the known 

observation function and the measurement noise probability. Equations (2)-(4) constitute 
the foundation of the optimal Bayesian probabilistic inference. Unfortunately, the exact 
analytic form only exists for a couple of special cases, e.g., when the system (1) is linear 
and Gaussian. In order to make the filtering problem tractable, approximation must be 
made.  
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Next, we start to derive the qGPF by assuming the posterior probability at time instant 
1k −  to be well approximated by a Gaussian distribution, i.e., 

 ( ) ( )1 1: 1 1 1 1| ; ,k k k k kp x y x m P− − − − −≈ N  (5) 

Substituting (5) and using the Monte-Carlo integration [12], the prior probability in (2) is  
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where 1
i
kx −  are random samples from the assumed posterior probability at time instant 

1k − , i.e., ( )1 1 1; ,i
k k kx m P− − −N , 11, ,i M= … . The idea of the importance sampling [13, 

14] is crucial to numerically implement the Bayesian rule, through which the prior 
probability is updated to yield the posterior probability using the information provided by 
the newcome observation. In view of the difficulty of drawing samples directly from the 

posterior probability ( )1:|k kp x y , the importance sampling proposes to sample from a 

choice importance density ( )1:|k kq x y  instead, from which random samples can be 

readily generated. With (6), the posterior probability in (3) is rewritten as 
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where j
kx  are random samples from the importance density ( )1:|k kq x y  and 
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Considering the normalization condition, the posterior probability at time instant k  is 
approximated by  
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Table 1. Quasi-Gaussian Particle Filtering 

 
1. Draw samples from the posterior probability at time instant 1k − , i.e., 

( ) ( )1 1 1: 1 1 1 1| ; ,i
k k k k k kx p x y x m P− − − − − −≈∼ N , 11, ,i M= … ; 

2. Draw samples from the important density, that is, ( )1:|j
k k kx q x y∼ , 

21, ,j M= … ; 

3. Assign each sample j
kx  a weight j

kw  according to (8) and (10); 

4. Calculate the mean and covariance according to (11), then 

( ) ( )1:| ; ,k k k k kp x y x m P≈ N . 

 
 

Then approximate the posterior probability at time instant k  by ( ); ,k k kx m PN  in which 

 ( )( )
2 2

1 1

, .
M M

Tj j j j j
k k k k k k k k k

j j

m w x P w x m x m
= =

= = − −∑ ∑  (11) 

This ends the derivation and the resulting algorithm is summarized and outlined in  
Table I. It is clear from above that we only assume the posterior probability to be 
Gaussian while do not impose any restriction on the prior probability, which is the major 
difference from the GPF. Recall that the GPF approximates both the prior and posterior 
probabilities by Gaussian densities. To be more specific, the GPF approximates the 

discrete representation of the prior probability ( )1: 1|k kp x y −  by a Gaussian density, from 

which random samples are regenerated to be weighted by the likelihood ( )|k kp y x , 

while the qGPF directly employs the discrete representation of the prior probability. This 
resembles the difference between the non-augmented UKF and augmented UKF [10]. By 
a peer-to-peer comparison between the qGPF and the GPF ([7], Table I), we see that the 
qGPF needs not to calculate the sample mean and covariance for the assumed Gaussian 
prior probability and thus has lower numerical complexity. 

The following theorem says that the mean and covariance in (11) converge almost 
surely to the true values under the condition that the posterior probability at time instant 

1k −  is well approximated by a Gaussian distribution. 

Theorem: If the posterior probability ( )1 1: 1|k kp x y− −  is a Gaussian distribution, then the 

posterior probability expressed in (9) converges almost surely to the true posterior 

probability ( )1:|k kp x y . 

Proof: it is a very straightforward extension of Theorem 1 in [7] and thus omitted here. 

It follows as a natural corollary that the mean and covariance in (11) converge almost 
surely to the true value. Therefore the qGPF is provably better than the GPF in accuracy 
because the former takes the non-Gaussianity of the prior probability into consideration. 
Note that the non-Gaussianity of the prior probability is not uncommon for 
nonlinear/non-Gaussian systems. 
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In theory, we could assume the posterior probability to be any other distribution, as 
long as the samples from the distribution were easily obtained, e.g. mixed Gaussian 
[15-17]. The derivation procedure and theoretical proof would be analogical to the 
above. 

3   Numerical Results 

This section examines the qGPF via the univariate nonstationary growth model and 
bearing only tracking, which have been extensively investigated in the literature [2, 7, 18, 
19]. We also carried out the GPF for comparison. The prior probability was selected as 

the importance density for both filters, i.e., ( ) ( )1: 1: 1| |k k k kq x y p x y −= . 

Univariate Nonstationary Growth Model 
The model is formulated as 
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, ( ) 2 20k k kh x x= . The 

process noise 1kw −  and measurement noise kv  are zero-mean Gaussian with variances 

1kQ −  and kR , respectively. In our simulation, 1 10kQ − =  and 1kR = . This model has 

significant nonlinearity and is bimodal in nature depending on the sign of observations. 
The reference data were generated using 0 0.1x =  and 100N = . The initial probability 

( ) ( )0 0,1p x ∼ N .  

The mean square error (MSE) averaged across all time instants defined as 

( )2

|
1

MSE
N

k k k
k

x x N
=

= −∑  is used to quantitatively evaluate each filter. We carried out 

50 Monte Carlo runs for 1 2 20,50,100,200,400M M= = , respectively. Figure 1 shows 

MSEs as a function of the number of samples. The qGPF remarkably outperforms the 
GPF. With the same number of samples, MSE of the qGPF is less than half of that of the 
GPF; on the other hand, to achieve comparable performance the GPF needs at least as 
twice samples as the qGPF does. The average running time of the qGPF is about 20 
percent less than that of the GPF. 

Bearing Only Tracking 
The target moves within the s t−  plane according to the standard second-order model 

 1 1, 1, ,k k kx x w k N− −= Φ + Γ = …  (13) 

where [ ], , ,
T

k k
x s s t t= , [ ],

T

k s t k
w w w= , 
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Here s  and t  denote Cartesian coordinates of the moving target. The system noise 

( )20,kw QI∼ N . A fixed observer at the origin of the plane takes noisy measurements of 

the target bearing 
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Fig. 1. MSE as a function of the number of samples for both filters 
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Fig. 2. Averaged MSE of all four coordinates (logarithmic in y axis) 
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 ( )arctank k k ky t s v= +  (14) 

where the measurement noise ( )0,kv R∼ N . The reference data were generated using 
20.001Q = , 20.005R =  and 24N = . The initial true state of the system was 

0 [ 0.05, 0.001, 0.7, 0.055]Tx = − −  and the initial estimate was 0|0 0x x=  with covariance 

( )2 2 2 2
0|0 diag 0.1 , 0.005 , 0.1 , 0.01

T
P ⎡ ⎤= ⎣ ⎦ .  

We carried out 100 random runs for 1 2 1000M M= =  and the averaged MSEs of all 

four coordinates are given in Fig. 2. We see that the qGPF is smaller in MSE, though 
marginally, than the GPF. Similar observations were obtained for various number of 
samples and is omitted here for brevity. In the simulation, eighteen percent of 
computational time was spared by using the qGPF. 

4   Conclusions 

This note proposes the qGPF filter that generalizes the GPF by allowing the prior 
probability to be non-Gaussian. It has provable superiority over the GPF. The 
numerical results show that the qGPF achieves (sometimes remarkably) better 
improvement in estimation accuracy with lower numerical complexity than the GPF. 
Theoretically, the posterior probability could be assumed to be any other distribution as 
long as it was readily sampled, e.g., mixed Gaussian. In such a case, it is promising for 
the qGPF to be used to construct more superior filter than the GPF-based Gaussian sum 
particle filter in [17]. 
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