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Abstract. This paper presents an improved particle swarm optimization algo-
rithm (IPSO) for global numerical optimization. The IPSO uses more particles' 
information to control the mutation operation. A new adaptive strategy for 
choosing parameters is also proposed to assure convergence of the IPSO. 
Meanwhile, we execute the IPSO to solve eight benchmark problems. The re-
sults show that the IPSO is superior to some existing methods for finding the 
best solution, in terms of both solution quality and algorithm robustness. 

1   Introduction 

Particle swarm optimization (PSO) is one of the evolutionary computation techniques 
based on the social behavior metaphor [1]. It is initialized with a population of ran-
dom solutions, conceptualized as particles. Each particle in PSO flies through the 
search space with a velocity according to its own and the whole population’s histori-
cal behaviors. The particles have a tendency to fly toward better search areas over the 
course of a search process. In recent years, PSO has been widely used for numerical 
optimization and many other engineering problems. Global optimization problems 
arise in almost every field of science, engineering, and business. Now, the PSO is 
becoming one of the popular methods to address them due to its simplicity of imple-
mentation and ability to quickly converge to a reasonably good solution. But, in 
global optimization problems, the major challenge is that the POS may be trapped in 
the local optima of the objective function. The issue is particularly challenging when 
the dimension is high and there are numerous local optima. Therefore, some improved 
methods have been proposed, such as the fully informed particle swarm [2], a hybrid 
of GA and PSO [3], a cooperative approach to PSO [4], a hierarchical particle swarm 
optimizer [5], a multiagent-based PSO [6], and so on.  

In the standard PSO algorithm, the neighborhood of a particle consist of all parti-
cles, so that the global best position, i.e., the best solution found so far, directly influ-
ences its behavior. Hence, for social science context, a PSO system combines a  
social-only component model and a cognition-only model. The social-only model 
component suggests that individuals ignore their own experience and adjust their 
behavior according to the successful beliefs of individuals in the neighborhood. On 
the other hand, the cognition-only model component treats individuals as isolated 
beings. The real strength of the particle swarm derives from the social interactions 
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among  
particles as they search the space collaboratively. So, in this paper, an improved adap-
tation strategy with enhanced social influence is proposed for PSO algorithm. This  
adaptation strategy is similar to the social society in that a group of leaders, i.e. sev-
eral fittest individuals in a population, play a major role in reproduction process. This 
is different from the standard PSO with only one leader, the fittest individual in a 
generation, is selected to the reproduction process. The improved particle swarm 
optimization (IPSO) has been tested with some benchmark functions. The experimen-
tal results show that the IPSO achieves a good performance for test functions, which 
illustrate that the IPSO overcomes the problem of premature convergence of the stan-
dard PSO method in some degree. 

2   Improved Particle Swarm Optimization (IPSO)  

2.1   Standard Particle Swarm Optimization Approach (PSO) 

PSO is developed through simulation of bird flocking in two-dimension space. Ac-
cording to the research results for a flock of birds, birds find food by flocking. The 
observation leads the assumption that information is shared inside flocking. More-
over, according to observation of behavior of human groups, behavior of each indi-
vidual (agent) is also based on behavior patterns authorized by the groups such as 
customs and other behavior patterns according to the experiences by each individual. 
The position of each agent is represented by XY-axis position and the velocity is 
expressed by vx (the velocity of X-axis) and vy (the velocity of Y-axis). Modification 
of the agent position is realized by using the position and the velocity information [7]. 

Searching procedures by PSO based on the above concept can be described as fol-
lows: a flock of agents optimizes a certain objective function. Each agent knows its 
best value so far (pbest) and its position. The information is corresponding to personal 
experiences of each agent. Moreover, each agent knows the best value so far in the 
group (gbest) among pbests. The information is corresponding to knowledge of how 
the other agents around them have performed. Namely, each agent tries to modify its 
position using the following information:  

• The distance between the current position and pbest,  pt. 
• The distance between the current position and gbest, ˆ tp . 

The modification can be represented by the concept of velocity. Velocity of each 
agent can be modified by the following equation: 

( ) ( ) ( ) ( )1 0 1 1 2 2 ˆt t t t t tv c v c r t p x c r t p x+ = + × − + × − , (1) 

where c0, c1 and c2 are positive constant coefficients, r1 and r2 are uniformly distributed 
random numbers in [0,1], vt is the current velocity of the particle at iteration t, xt is cur-
rent position of the particle at iteration t, vt+1 is the modified velocity at iteration t+1. 

Using the above equation (1), a certain velocity that gradually gets close to pbests 
and gbest can be calculated. The current position (searching point in the solution 
space) can be modified by the following equation: 
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1 1t t tx x v+ += + , (2) 

where xt+1 is the modified position at iteration t+1. 

2.2   Improved Particle Swarm Optimization Approach (IPSO) 

Due to the shortage of the social interactions among particles in the standard PSO 
algorithm, an improved adaptation strategy with enhanced social interactions is pro-
posed for particle swarm optimization (PSO) algorithm in this section. This adapta-
tion strategy uses more particles' information to control the mutation operation and 
extends the original formulas of the PSO method, which can search the global optimal 
solution more effectively. 

The third term added to the right-hand-side of the velocity equation (1) is derived 
from the successes of the others; it is considered a "social influence" term. It is found 
that when this effect is removed from the algorithm, performance is abysmal. So the 
social interaction is an important factor to improve the PSO performance. To enhance 
the social interactions in the algorithm, this paper proposes a new method of im-
proved PSO using some fittest particles' information to modify particle's position and 
velocity. Namely, at ith iteration, we rearrange the particles in descending order ac-
cording to their fitness and select the last n particles to modify particle's position and 
velocity. Let ,ˆ i tp  denote current position of the particle i in these particles at iteration 

t. The updating equations of IPSO method can be described in the following: 

( ) ( ) ( ) ( )1 0 1 1 2 , 2 , ,
1

ˆ
n

t t t t i i i t t
i

v c v c r t p x c r t p x+
=

= + × − + × −∑ , (3) 

1 1t t tx x v+ += + , (4) 

Each particle of IPSO method modifies its position and velocity using the best solu-
tion particle achieved and several gbest of neighborhood particles. It is similar to the 
social society in that the group of leaders could make better decisions. However, in 
standard PSO, only one gbest of neighborhood particles is employed. This process 
using some neighborhood particles can be called 'intensifying' and 'enhancing' the 
social influence. Based on this understanding, we should intensify these particles that 
could lead individuals to better fitness. This reinforces the exploitation and explora-
tion of PSO. As a particle swarm population searches over time, individuals are drawn 
toward one another's successes, with the usual result being clustering of individuals in 
optimal regions of the space. 

2.3   IPSO Algorithm’s Convergence 

The form of the recurrence relation of particle's position can be derived as follows: 
substituting equation (3) into (4) and from equation vt=xt-xt-1, we have the following 
equation: 

( ) ( ) ( ) ( )1 0 1 1 2. 2. 0 1 1 1 2. 2. ,
1 1

ˆ1
n n

t i i t t t i i i t
i i

x c c r t c r t x c x c r t p c r t p+ −
= =

⎛ ⎞= + − − − + +⎜ ⎟
⎝ ⎠

∑ ∑ , (5) 
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which is a non-homogeneous recurrence relation that can be solved using standard 
recursive techniques. This recurrence relation can be written as a matrix-vector  
product, 

1 0 0 1 0 0 1

1

1

1 0 0

1 0 0 1 1

t t t

t t

x c c p p x

x x

η η η η+

−

+ − − − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, (6) 

where ( )0 1 1c r tη = ∗ , ( )1 2. 2.
1

n

i i
i

c r tη
=

= ∗∑ , ( )1 2. 2. ,
1

ˆ
n

i i i t
i

p c r t pη
=

= ∗ ∗∑ . The characteristic 

polynomial of the equation (6) is, 

( ) ( )( )2
0 0 1 01 1 c cλ λ η η λ− − + − − + ,  

which has a trivial root of λ1=1.0, and two other solutions (7) and (8), 

0 0 1
2

(1 )

2

c η η γλ + − − +
= , (7) 

0 0 1
3

(1 )

2

c η η γλ + − − −
= , (8) 

where  

( )2

0 0 1 01 4c cγ η η= + − − − , 
(9) 

Note that λ1, λ2 and λ3 are both eigenvalues of the equation (6). The explicit form of 
the recurrence relation (5) is then given by equation, 

1 1 2 2 3 3 1 2 2 3 3
t t t t t

tx k k k k k kλ λ λ λ λ= + + = + + , (10) 

where k1, k2 and k3 are constants determined by the initial conditions of the system at 
each iteration. 

An important aspect of the behavior of a particle concerns whether its trajectory 
(specified by xt) converges or diverges. The conditions under which the sequence 

{ } 0t t
x

+∞

=
 will converge are determined by the magnitude of the values λ2 and λ3 as com-

puted using equations (7) and (8). From equation (9), it is clear that there are two cases: 

1) Case A: ( )2

0 0 1 01 4c cη η+ − − <  

In this case, r will be a complex number with a non-zero imaginary component. A 
complex r results in λ2 and λ3, being complex numbers with non-zero imaginary 
components as well. Consider the value of xt in the limit, thus equation (10)  
becomes, 

1 2 2 3 3

t tj t j t
tx k k e k eθ σλ λ= + ⋅ ⋅ + ⋅ ⋅ , (11) 
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where 2

t j te θλ ⋅  and 3

t j te σλ ⋅  are the exponent expression of the trivial roots. 

Clearly, equation (11) explains the sequence { } 0t t
x

+∞

=
 will converge when 

( )2 3max , 1λ λ < , so, 1 2 2 3 3 1lim t t
t

t
x k k k kλ λ

→∞
= + ⋅ + ⋅ = . 

2) Case B: ( )2

0 0 1 01 4c cη η+ − − ≥  

In this case, r, λ2 and λ3, will be real numbers, from equation (10), if 

( )2 3max , 1λ λ < , then the sequence{ } 0t t
x

+∞

=
 converges. 

From the analysis of above two cases, we obtain the convergence condition of the 

sequence { } 0t t
x

+∞

=
 is ( )2 3max , 1λ λ < . 

One popular choice of updating parameters is 0 0.7298c = , 1 1.49618c = and 

2.
1

1.49618
n

i
i

c
=

=∑  [8]. On account of ( )0 1 1c r tη = ∗ and ( )1 2. 2.
1

n

i i
i

c r tη
=

= ∗∑ , so 

0 (0,1.49618)η ∈ , 1 (0,1.49618)η ∈ and 0 1 (0,2.9924)η η+ ∈ .When 

0 1 (0,0.0212]η η+ ∈ , from equation (9), it will imply a real-valued γ , which corre-

sponds to case B, then 0γ ≥  and 2 3max( , )λ λ = 0 11.7298
1

2

η η γ− − +
< . Similarly, 

0 1 (0.0212,2.9924)η η+ ∈  will result in a complex r value, which corresponds to case 

A and from equations (7) and (8) we can assure 2 3 1λ λ= < . The above analysis 

shows that the choices of parameters satisfy the convergence conditions and will 

assure convergence of the sequence{ }
0t t

x
+∞

=
.  

IPSO method differs from PSO method is that 1η is the sum of the coefficients of n 

gbest particles. The degree of importance of each particle is weighed through particle’s 
fitness value. The better the particle’s fitness value is, the more important the particle’s 
influence is. So the paper proposed the rule of updating parameters chosen as follows: 

2,

1

1

1.49618
1

i
i n

i
i

f
c

f

∧

∧
=

= ⋅
∑

, 

(12) 

where if
∧

 is the gbest particle’s value. This adaptive strategy of updating parameters 

in IPSO can assure convergence of IPSO method and enhance the global convergence 
capability of IPSO method. 

3   Numerical Experiments and Results 

In order to verify the effectiveness and efficiency of the proposed IPSO method, eight 
benchmark functions have been used in Table 1. 



662 B. Zhao 

Table 1. Comparisons of generalization capability with published results 

Function 
Name 

Function Expression 
Dimensions 

(N) 
Initial 
Range 

Schwefel ( ) ( )1
1

sin
N

i i
i

F x x x
=

= −∑  30 (-500,500) 

Rastrigin ( ) ( )2
2

1

10cos 2 10
N

i i
i

F x x xπ
=

⎡ ⎤= − +⎣ ⎦∑  30 
(-

5.12,5.12) 

Ackley 
( )2

3
1 1

1 1
( ) 20exp 0.2 exp cos 2

            20 exp(1)

N N

i i
i i

F x x x
n n

π
= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − − −

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
+ +

∑ ∑  30 (-32,32) 

Griewank ( ) 2
4

1 1

1
cos 1

4000

NN
i

i
i i

x
F x x

i= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∏  30 (-600,600) 

Rosenbrock ( ) ( ) ( )
1

2 2

5 1
1

100 1
N

i i i
i

F x x x x
−

+
=

⎡ ⎤= − + −⎣ ⎦∑  30 (-30,30) 

Sphere ( ) 2
6

1

N

i
i

F x x
=

=∑  30 (-100,100) 

Schwefel ( )7
1 1

NN

i i
i i

F x x x
= =

= +∑ ∏  30 (-10,10) 

Schwefel 

2

8
1 1

( )
N i

j
i j

F x x
= =

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑ ∑  30 (-100,100) 

Some parameters must be assigned to before the IPSO method is used to solve 
problems in following experiments. Since the test problem dimensions are high, a 
moderate population size is set to 70 and the maximal generation is set to 1000. To 
evaluate uncertain value combinations of n of the IPSO method, we have been exe-
cuted 50 times to solve the above test function problem under various value combina-
tions. The results show that the best solution can be obtained by the IPSO method 
when n=4. Hence, in the following study, we always choose n=4. 

Owing to the randomness in IPSO, the algorithm is executed 50 independent times 
on each test function. Table 2 shows the optimal results of IPSO. From Table 2, we 
see that the mean function values are equal or close to the optimal ones, and the stan-
dard deviations of the function values are relatively small, except for function F2. 
These results indicate that the proposed IPSO method can find optimal or close-to-
optimal solutions, and its solution quality is quite stable. 

Table 3 summarizes the optimal results as obtained by some existing methods. 
These existing algorithms include standard particle swarm optimization algorithm 
(PSO), conventional genetic algorithm (CGA), orthogonal genetic algorithm with 
quantization  (QGA/Q),  fast  evolutionary  programming (FEP),  evolutionary opti-
mization (EO), enhanced simulated annealing (ESA) and conventional evolutionary 
programming with Gaussian mutation operator (CEP/GMO). Since each of these 
existing algorithms was executed to solve some of the above-mentioned functions,  
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Table 3 has included all of the available results for comparison. From Table 3, these 
results show that the optimal solutions determined by the IPSO lead to high quality 
solutions, which confirms that the IPSO is well capable of determining the global or 
close-to-optimal solutions. Firstly, Table 3 compares IPSO with PSO and CGA. For 
all numerical optimization functions, IPSO gives better solutions than PSO and 
CGA. Compared IPSO with PEP and OGA/Q, we see that FEP and OGA/Q obtain 
good performance on numerical optimization problem, even better solutions in some 
optimization functions. But the IPSO method is simple and has not complicated 
operator, not as PEP and OGA/Q. However, in eight benchmark functions, except for 
F2, the optimal solutions obtained by the IPSO are nothing less than these solutions 
obtained by PEP and OGA/Q. It indicates that IPSO can, in general, give good mean 
solution quality. At the same time, compared IPSO with EO and ESA, as can been 
seen, IPSO obtains better solutions in the available results for comparison, and dis-
plays a good performance in solving these global numerical optimization problems.  

Table 2. Optimal results of IPSO 

Test function 
Mean function 

value 
Standard deviation 

of function value 
Globally minimal 
function value 

F1 -12569.487 7.056×10-6 -12569.5 
F2 11.5312 0.1242 0 
F3 8.253×10-16 7.413×10-17 0 
F4 0 0 0 
F5 9.584×10-1 2.761×10-1 0 
F6 4.096×10-96 1.721×10-96 0 
F7 1.654×10-8 7.357×10-9 0 
F8 0 0 0 

Table 3. Comparison between IPSO and some existing algorithms 

Mean function value  
IPSO PSO CGA OGA/Q FEP EO ESA CEP/GMO 

F1 -12569.487 -9903.8 -9094.75 -12569.45 -12554.5 -- -- -- 
F2 11.5312 26.8639 22.967 0 4.6 × 10-2 46.47 -- 120.00 
F3 8.25 × 10-16 7.99 × 10-15 2.697 4.44 × 10-16 1.8 × 10-2 -- -- 9.10 
F4 0 0.022 1.258 0 1.6 × 10-2 0.40 -- 2.52 × 10-7 

F5 9.58 × 10-1 16.770 150.79 7.52 × 10-1 -- 1911.59 17.10 86.70 
F6 0 4.83 × 10-48 4.96 0 5.7 × 10-4 9.88 -- 3.09 × 10-7 

F7 5.40 × 10-22 1.65 × 10-8 7.93 × 10-1 0 8.1 × 10-3 -- -- 1.99 × 10-3 

F8 2.70 × 10-11 0.324 18.82 0 1.6 × 10-2 -- -- 17.60 

Figure 1 shows the evolution process of F1 obtained using IPSO, PSO and CGA re-
spectively. It is clear for the figure that the solution by IPSO is converged to high 
quality solutions at the early iterations. Similar results are obtained for F2 to F8. Ac-
cording to the above analysis, considering together more particles' information to 
control the mutation operation, the IPSO method performs better than the PSO, both 
in the quality of the solution discovered and in the velocity of convergence, and simu-
lation results show that IPSO outperforms CGA and PSO. 
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Fig. 1. Optimization procedure by IPSO, PSO and CGA 

4   Conclusions 

An improved particle swarm optimization algorithm (IPSO) has been developed for 
determination of the optimal or close-to-optimal solutions of global numerical optimi-
zation problem. The IPSO approach uses more particles' information to control the 
mutation operation. The convergence property of IPSO is analyzed using standard 
results from the dynamic system theory and guidelines for proper algorithm parameter 
selection are derived. A new adaptive strategy for choosing parameters is also pro-
posed to assure convergence of IPSO. Meanwhile, it was found from experimental 
results that IPSO could find higher quality solutions reliably with the faster converg-
ing characteristics than some existing methods on the problem studies. 
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