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Abstract. The maximum subarray problem is to find the array por-
tion that maximizes the sum of array elements in it. For K disjoint
maximum subarrays, Ruzzo and Tompa gave an O(n) time solution
for one-dimension. This solution is, however, difficult to extend to two-
dimensions. While a trivial solution of O(Kn?) time is easily obtainable
for two-dimensions, little study has been undertaken to better this. We
first propose an O(n + K log K) time solution for one-dimension. This
is equivalent to Ruzzo and Tompa’s when order is considered. Based on
this, we achieve O(n® + Kn?logn) time for two-dimensions. This is cubic
time when K < n/logn.

1 Introduction

The maximum subarray problem determines an contiguous array elements that
sum to the maximum value with respect to all possible array portions within
the input array. When the input array is two-dimensional, we find a rectangular
subarray with the largest possible sum.

In the sales database, the maximum subarray problem may be applied to
identify certain group of consumers most interested in a particular product.
This is also used in the analysis of long genomic DNA sequences to identify a
biologically significant portion. In graphics, we can find the brightest area within
the image after subtracting the average pixel value from each pixel.

For the one-dimensional case, we have an optimal O(n) time sequential solu-
tion, known as Kadane’s algorithm [5]. A simple extension of this solution can
solve the two-dimensional problem in O(m?n) time for an m x n array (m < n),
which is cubic when m = n [6]. The subcubic time algorithm is given by Tamaki
and Tokuyama [I0], which is further simplified by Takaoka [9].

Finding K maximum sums is a natural extension. We can define two categories
depending on whether physical overlapping of solutions is allowed or not.

For K overlapping maximum subarrays, significant improvements have been
made since the problem was first discussed in [I] and [3]. Recent development
by Cheng et al. [7] and Bengtsson and Chen [4] established an optimal solution
of O(n + K log K) time. For two-dimensions, O(n?) time is possible [2,[7].

The goal of the K-disjoint maximum subarray problem is to find X maximum
subarrays, which are disjoint from one another. Ruzzo and Tompa’s algorithm
[8] finds all disjoint maximum subarrays in O(n) time for one-dimension.
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To the best of Authors’ knowledge, little study has been undertaken on
this problem for higher dimensions. Particularly, an algorithm for the two-
dimensional case may be used to select brightest spots in graphics, and such
a technique may be also applied to motion detection and video compression.

In this paper, we discuss the difficulty involved in extending Ruzzo and
Tompa’s algorithm [§] to two-dimensions and design an alternative algorithm
for one-dimension that is more flexible to extend to higher dimensions. Based
on the new framework, we present an O(m?n + Km?logn) time solution for
two-dimensions where (m,n) is the size of the input array. This is cubic time
when m =n and K < n/logn.

2 Problem Definition and Difficulty in Two-Dimensions

2.1 Problem Definition

For a given array a[l..n] containing mixture of positive and negative real num-
bers, the maximum subarray is the consecutive array elements of the greatest
sum. The definition of K disjoint maximum subarrays is given as follows.

Definition 1 (Ruzzo and Tompa [8]). The k-th maximum subarray is the
consecutive subarray that mazimizes the sum of array elements disjoint from the
(k — 1) mazimum subarrays

In addition, we impose sorted order on K maximum subarrays.

Definition 2. The k-th maximum subarray is not greater than the (k — 1)-th
maximum subarray.

It is possible for a subarray of zero sum adjacent to a subarray of positive sum to
create an overlapping subarray with tied sums. To resolve this, we select the one
with smaller area if there are subarrays of tied sums. Another subtle problem
arises with the value of K. For k < K, it is possible that the k-th maximum
subarray becomes non-positive. We may stop the process at this point even if
the K-th maximum is yet to be found. A non-positive maximum subarray is
essentially a single negative array element, which is trivial to find. Let K be
the maximum number of positive disjoint maximum subarrays. Theoretically
1 < K < n/2 and is data dependent. Throughout this paper, we assume that
K, the number of maximum subarrays we wish to find, is not greater than K.

Ezample 1. a ={3,51,-41,-57,52,59,-11,93,-55,-71,21,21}. From the array a, the
maximum subarray is 193, a[5] + a[6] + a[7] + a[8] if the index of first element
is 1. We denote this by 192(5,8). The second and third maximum subarrays are
54(1,2) and 42(11,12). The fourth is —41(3,3), so K = 3.

A trivial solution may be repeated application of Kadane’s algorithm [5,[6]. When
the first maximum subarray is found in O(n) time, we replace the element values
within the solution with —oco. The second and subsequent maximum subarrays
are found by repeating this process. This is O(Kn) time. Ruzzo and Tompa’s
algorithm [§] takes O(n) time for K disjoint maximum subarrays, but requires
sorting if Definition 2l needs to be met.
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Algorithm 1. Maximum subarray for one-dimension
If the array becomes one element, return its value.
Let Mjcs: be the solution for the left half.

Let Mi;ign:t be the solution for the right half.

Let Mcenter be the solution for the center problem.
M — max {Mieft, Mright, Mcenter }-

2.2 Problems in Two-Dimensions

For an (m,n) array, a[l..m][1..n], we wish to find K disjoint maximum subarrays
which are in rectangular shape. We denote a subarray of sum x with coordinates
of top-left corner (r1,¢1) and bottom-right corner (rq, c2) by x(r1, c1)|(r2, c2). In
the following example, we compute K = 4 disjoint maximum subarrays.

Ezample 2.
3 s 1203 For K = 4, K disjoint maximum subarrays are
e STl D 21(3,2)((4,3), 13(1,4)](2,4), 7(1,1)(2,1) and 1(4,1)[(4,1).
P I e In this example, K = 4. When K > 4, the subsequent
NG subarrays will be comprised of a single negative array ele-
2 ment such as —1(3,4)|(3,4), —2(1, 3)(1, 3) etc.

As is in one-dimension, a trivial solution for finding K disjoint maximum
subarrays is repeated application of Kadane’s algorithm. This is O(Km?n) time
or O(Kn?) time for m = n. In the worst case, where K = n?/2, we have O(n®)
time for K = K.

For more efficient solution, it is natural to consider extending Ruzzo and
Tompa’s algorithm [8]. While we omit the details of this algorithm, it seems
difficult to extend to two-dimensions as we have to organize the scanning in two
directions such that the rectangular subarray may be found.

In the following section, we present another algorithm for one-dimension. This
algorithm provides solid framework to extend to the two-dimensional case.

3 One-Dimensional Case

For a one-dimensional array a[l..n], we compute the prefix sum s such that
slz] = 377, ali]. We assume s[0] = 0.

Algorithm [Tshows the outer framework. In this algorithm, the center problem
is to obtain an array portion that crosses over the central point with maximum
sum, and can be solved in the following way. Note that the prefix sums once
computed are used throughout recursion. We assume that n is power of 2 without
loss of generality.

Meenter = max {s[i] —slil} = max {s{il}— min {01} (1)
0<j<n/2
The recursive computation of this algorithm can be conceived as a tournament-
like selection process, which we describe in the following.
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Algorithm 2. Build tournament for a[f..t]
procedure buildtree(node, f,t) begin

1: (from,to) — (f,t)

2: if from =to then

3 (L,M,G) — (s[f —1],a[f],s[f]) // node is a leaf
4: else // node is an internal node

5:  create two children left and right

6: buildtree(left,f,f;t — 1) //build left subtree

7:  buildtree(right, 7}*,t)) //build right subtree

8 L — min{Lleft; Lright}q R« maX{Gleft7 Gright}
9 M — maX{Mleft7 Mcenter7 Mright} where Mcenter — Gright - Lleft
end

3.1 Tournament

We construct a binary tree bottom-up where each node contains the following
attributes.

— (from,to): the coverage, i.e., the range of array elements covered by this
node.

— L: the minimum prefix sum within (from — 1,to — 1). Abbreviates “least”.

— G: the maximum prefix sum within the coverage. Abbreviates “greatest”.

— M: the maximum sum found within the coverage. Refer to Lemma [Tl

— (noL,noG): boolean values initially both false. Discussed in Section

We denote the left child of an internal node x by x;.r; and the right child
by Z,ignt. Variables of the child node are given with subscript such as Ly,
meaning that L of x;.r¢. Throughout this paper, we call this tree the tournament,
or simply T'. The root of T' will be referred to as root(T).

Based on Algorithm [T we design Algorithm 2lthat recursively builds 7. Note
that the computation of Mcepter at line 9 is due to Eq.[Il After buildtree(root,1,n)
is processed, the value of M at root(T) is the maximum sum in the array a[l..n].

We let each L,G and M carry two indices such as M.from and M.to to
indicate that M is the sum of array elements a[M.from]..a[M.to]. If M epter is
chosen for M, M.from = Licyi.to+ 1 and M.to = Gpigne.to. The following two
facts are easily observed. Proofs are omitted.

Lemma 1. When a node = has coverage (from,to), its M is the maximum
subarray inside this coverage. i.e., from < M.from < M.to < to.

Lemma 2. The mazimum subarray of a[l..n] is M at root(T).

When there is a tie during computation, such as Ljeft = Lyignt, we select
the one that will result in M with smaller physical size. For example, when
Licft = Lyight, we select Lyignt as Meenter Will have smaller physical size by
subtracting Lyign:. Similarly, when Giefi = Grigne, we select Giepi. For the
same reason, we choose the one with smaller physical size in computing M =
max {MleftaMrightaMcenter}~
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s 3 54 13 -44 8 67 56 149 94 23 44 65 ! nm v v

a 3 51 —41-57| 52 59 -11 93 |55 -71 21 21 :H
i1 2 3 4 5 6 7 8 9 10 11 1 Y holeBegin holeEnd v v
Fig. 1. Tournament T’ Fig. 2. Subarray deletion

Fig. [l shows the example in Section [Z.I] computed by the tournament. Each
node shows a 3-tuple of (L, M, G). The value of M at root, 193 represents the
maximum sum. The figure omits the location (M.from,M.to) which is (5, 8).

3.2 Delete a Subarray

We discuss how we delete a subarray from the tournament, so that the tree will
produce a maximum subarray that is disjoint from the deleted portion. In the
following description, we use a term hole to refer to the portion to be deleted or
has been deleted.

With the index hole Begin and hole End, the location of the hole, we trace the
tree from the root to find subtrees whose coverage is inside the hole. In Fig. 2
dark subtrees are those to be deleted. These subtrees can be deleted by removing
the link a,b and c. Since we only delete the link, deleting each subtree takes O(1)
time. Actual memory deallocation will be done during the post-processing.

After deletion is done, there are nodes that no longer have two children. Such
nodes include 2,4,6. When a node has one child missing, we assume that this
node receives a 3-tuple (0o, —00, —00) from the missing child.

The maximum subarray in the range of (u,v) is determined by node 1. We
want it to be disjoint from the hole. If M ¢pter becomes M at node 1, we have
(M.from, M.to) = (Licft-to + 1, Grigne-to). This M is a “superarray” of the
hole as it covers the hole. In general, a node with coverage that encompasses
the whole range of the hole can “potentially” produce M enter Overlapping the
hole as M epnter becomes a superarray of the hole. Node 0 is another node that
has such potential, however, if Ljc¢; comes from region ILIII or IV, M cpter at
node 0 can be disjoint from the hole. So we can not simply disable computing
M enter at such nodes. We resolve this issue by Algorithm Bl The objective of
the following algorithm is to ensure that M e,ter iS a subarray disjoint from the
hole. If no subarray disjoint from the hole can be obtained for M cnter, We set
M enter = —00 to represent no value.
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Algorithm 3. Update tournament 7'

Recursively trace from root(T) downwards the hole, and update each node
T.
1: if holeEnd is in left subtree then noG «true
2: if holeBegin is in right subtree then nolL «true
//Recursively update (L, M, G)
if xje5: was deleted then (Llefz, Mieyt, Glefz) — (OO, —00, —OO)
if z,ignt was deleted then (Lyight, Mright, Gright) < (00, —00, —00)
if noL then L « L,ign: else L «— min{Licst, Lyight}
if noG then G — Gyt else G — max {Gieft, Gright }
M «— max {Mleft7 Mright; Mcenter}; where Mcenter — Gright - Lleft

When a node has the flag noL set, it means that this node will not use
Licse for updating L. Similarly, noG means Gyign: is not used for updating G.
However, Licy; and Grign: are still used to compute Meenier regardless of the
flags. Basically these flags block propagating Lie; and Gign: to the parent node.

If we delete the hole (5,8) from Fig.[Il and update T as described above, the
second maximum subarray 54(1,2) will be obtained from the root.

We propose the following lemma holds. If we use the minimum hole inclusive
tree (MHIT), the smallest subtree that contains the hole (as shown in Fig. [2)), as
the basis, it can be inductively proved. We omit the proof due to limited space.

Lemma 3. After deleting the hole and applying Algorithm [3, root(T) produces
mazximum subarray M that is disjoint from the hole.

3.3 Analysis

We find the first maximum subarray by building T in O(n) time. To compute the
next maximum subarray, we regard the previous solution as a hole and perform
the deletion and flag updates as described in Section 3.2l Deleting nodes involves
traversing two paths from the root to holeBegin and hole End. Since the height
of the tree is O(logn), the time for the next maximum subarray is bounded by
O(logn). To obtain K disjoint maximum subarrays in sorted order, the total
time is therefore O(n+ K logn). Note that O(n+ Klogn) = O(n+ K log K) for
any integer K according to [4L[7]. For ranking K disjoint maximum subarrays,
this is equivalent to Ruzzo and Tompa’s algorithm [8] which requires extra time
for sorting.

4 Two-Dimensional Case
In this section, we extend algorithm for one-dimension to two-dimensions.

4.1 Strip Separation

An easy way to extend an algorithm for the one-dimensional case to two-dimen-
sions is strip separation technique, such that the two-dimensional array a[l..m]
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a r
Upper
J J Level
alk] I 1K] |
alke+1] ikl I
{ L N N [ S A N N S S
alil \ 1] I L N A 2 A Bottom
Level
\r/ evel
Pk.lﬁ] l —strip —smp m-=strip
Fig. 3. Separating strips from a two- Fig. 4. Two-level tournament
dimensions

[1..n] is separated into m(m + 1)/2 strips. As shown in Fig. Bl a strip s ; is the
prefix sum array of a portion Py ;[1..n]. We call a strip consisting of = rows a
x—strip.

We pre-process the row-wise prefix sum r[l..m][l..n], such that r[i][j] =
ali][1] + ali][2] + .. + a[i][j] in O(mn) time. Then sy, ;[j] is computed by r[k][j] +

..r[i][4]. The time for strip separation is O(m?n).

4.2 Two-Level Tournament

We organize a two-level tournament as shown in Fig. @l The bottom-level is
composed of O(m?) tournaments of each strip. A tournament of Sk, has My ;,
the maximum sum of the strip, at the root. Since each strip is regarded as a one
dimensional problem, My, ; is given as (I, j), from which we obtain the original
rectangular subarray z(k,l)|(i,7). The upper-level is a tournament where all
My, ; of bottom-level tournaments participate. There are O(m?) participants.
The winner of the upper-level is the maximum subarray for two-dimensions. As
building a tournament is linear time, we spend O(m?n) time for the bottom-level
tournaments, and O(m?) time for the upper-level.

4.3 Next Maximum

Suppose x*(k*,1*)|(i*, j*) is selected for the first maximum by the upper-level.
Let us consider a strip s ;. If its row-wise coverage (k, ¢) is disjoint from (k*,:*),
this strip definitely produces M}, ; disjoint from the first maximum. Otherwise,
it is possible that this strip produces an overlapping My, ;. There are O(m?) such
strips. By creating a hole (I*, 7*) in tournaments of such a strip and updating the
tree as per Section B2] we ensure that all My, ; are disjoint from (k*,1*)|(i*, 5*).

Now that all winners of each bottom-level tournament have become disjoint
from the first maximum, we are safe to re-build the upper-level to select the sec-
ond maximum. Subsequent disjoint maximum subarrays are found by repeating
these steps. Each maximum subarray is computed by O(m?logn) time overlap
removal and O(m?) time upper-level re-build. The latter time is absorbed into
the former. For K maxima, it is O(Km?logn) time.

Including the time for initial setting, the total time is O(m?n + Km?logn).
For K < | v, we have a cubic time O(m?n).
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5 Concluding Remarks

In this paper, we established O(n 4+ K log K) time for ranking K disjoint max-
imum subarrays in a one-dimensional array and extend this to two-dimensions
to achieve O(m?n) time for small K. To Authors’ knowledge, this is the first im-
provement to the trivial O(Km?n) time solution. Since K, the maximum possible
K, can be as large as mn/2 depending on the data, reduction of the factor K is
significant. It will be an interesting question to determine K in advance.

In the current form of our algorithm, in fact, the upper-level does not require
a tournament. Linear time maximum selection algorithm can be used instead
without increasing the complexity. It is, however, expected that the two-level
tournament may provide a solid structural platform for further improvement.

The second term of the complexity, O(Km? logn), seems possible to improve.
Currently, we update O(m?) bottom-level tournament trees on computation of
each maximum subarray. If M}, ; of a bottom-level tournament is no longer posi-
tive, we may discard such a tree to reduce the size of the bottom-level. By doing
so, if K = mn/2, only O(m) bottom-level tournaments of 1-strip will remain.
Also if a hole (I*,5*) has been already created in a bottom-level tournament
in the previous computation, we may skip creating it again. As no more than
O(n) holes can be made in each strip, this will result in the second term not ex-
ceeding O(m?nlogn) even if K > n. If such an idea is incorporated, the overall
complexity may be reduced to O(m?n + min(K,n) - m?logn).
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