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Abstract. A parallel algorithm for solving complex hermitian Toeplitz
linear systems is presented. The parallel algorithm exploits the special
structure of Toeplitz matrices to obtain the solution in a quadratic as-
ymptotical cost. Our parallel algorithm transfors the Toeplitz matrix
into a Cauchy–like matrix. Working on a Cauchy–like system lets to
work with real arithmetic. The parallel algorithm for the solution of a
Cauchy–like matrix has a low amount of communication cost regarding
other parallel algorithms that work directly on the Toeplitz system. We
use a message–passing programming model. The experimental tests are
obtained in a cluster of personal computers.

1 Introduction

In this work we propose a parallel algorithm for the solution of

Tx = b , (1)

with T = (tij) = (t|i−j|)0≤i,j<n ∈ Cn×n hermitian and being b, x ∈ Cn the
independent and the solution vectors, respectively.

There exist the so called fast algorithms to obtain the solution to this problem
with an order of magnitude lower than the classical algorithms. These algorithms
are based on the displacement rank property of the structured matrices. Nev-
ertheless, there are two main drawbacks. Firstly, if the Toeplitz matrix is not
strongly regular, fast algorithms can break down or can produce poor results
regarding the accuracy of the solution. The other one deals with its paralleliza-
tion because due to the dependency between operations causes a large number
of point–to–point and broadcast–type communications when a message passing
model programming is used [1].

The parallel algorithm presented in this paper transforms the Toeplitz ma-
trix into a another type of structured matrix called Cauchy–like. This reduces
significantly the execution time with the number of processors thanks to the
use of just only one broadcast–type communication per iteration. In addition,
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working on Cauchy–like matrices avoids the algorithm to break down although
it can still produce inaccuracy results. However, a refinement technique can be
incorporated to improve the precision of the solution like it is done in [2] for
the real non–symmetric case. Furthermore, we have used a blocking factor that
minimizes the execution time overlapping computational and communication
operations.

The parallel algorithm constitutes a particular improvement for hermitian
matrices. The more general non–hermitian case can be found in [3]. Other related
works based on the same idea applied to the real symmetric case was presented
in [4].

Standard libraries like LAPACK [5] and ScaLAPACK [6] are used to achieve
a more easy and portable implementation. The fftpack library [7, 8] is also used
together with our own implementation by using the Chirp-z factorization [9].

The next two sections includes a brief revision of the mathematical back-
ground and the sequential algorithm. Afterward, Sect. 4 and Sect. 5 shows the
parallel algorithm and the experimental results, respectively.

2 Rank Displacement and Cauchy–Like Matrices

The concept of rank displacement [10] describes the special structure of struc-
tured matrices. The definition uses the displacement equation of a given n × n
matrix. If the rank r of the displacement equation is considerably lower than n
(r � n), it is said that the matrix is structured.

Given the Toeplitz matrix of (1) its displacement equation can be defined in
several ways. A useful form for our purposes is

F T − T F = G H G∗ , (2)

where F = Z + ZT , being Z the one position down shift matrix, and being
G ∈ Cn×4 and H ∈ C4×4 the so called generator pair.

It is said that matrix C = (cij)1≤i,j≤n is a hermitian Cauchy matrix, if for a
complex vector λ = (λi)n

1 , the matrix

∇λC = ((λi − λj)cij)n
1 , (λi − λj)cij = 1 , (3)

has a very low rank with respect to n. If (λi − λj)cij �= 1, matrix ∇λC is said
to be a Cauchy–like matrix.

Both Toeplitz and Cauchy–like matrices as defined in (1) and (3), respectively,
are structured matrices. Furthermore, there exists a direct relation between both
classes of matrices by means of linear transformations. However, it is possible to
avoid working in the complex plane in the hermitian case as follows.

Let S be the normalized Discrete Sine Transform (DST-I) [11, 12] matrix

S =

√
2

n + 1

(
sin

ijπ

n + 1

)
, i, j = 1, . . . , n , (4)



350 P. Alonso, M.O. Bernabeu, and A.M. Vidal

where S = ST and SST = ST S = I, being I the identity matrix, and let P be
a odd–even permutation matrix so P

(
x1 x2 x3 x4 . . .

)
=

(
x1 x3 . . . x2 x4 . . .

)
.

Let �(T ) and �(T ) be the real and imaginary part of T , then

PS�(T )SPT =
(

M1 0
0 M2

)
, and PS�(T )SPT =

(
0 −MT

3
M3 0

)
,

where M1, M2 and M3 are all real symmetric Cauchy–like matrices of size �n/2	×
�n/2	, 
n/2� × 
n/2� and �n/2	 × 
n/2�, respectively.

Being matrix D defined as

D =
(

I�n/2�
iI�n/2�

)
,

where i =
√

−1, the following transformation allows to convert a hermitian
Toeplitz matrix into a real symmetric Cauchy–like matrix

C = DPSTSP T D∗ =
(

M1 −MT
3

M3 M2

)
. (5)

Applying the previous transformation to the displacement equation (2) the dis-
placement equation of the real Cauchy–like matrix in (5) is obtained

Λ C − C Λ = Ĝ H ĜT , (6)

where

Ĝ =
(
�(G) �(G)

)
and G =

1√
n + 1

DPSG:,1:2 . (7)

Thus, the solution of a hermitian Toeplitz linear system (1) is approached by
solving the real symmetric Cauchy–like system

Cx̂ = b̂ , (8)

where b̂ = DPSb and x̂ = DPSx so the solution of (1) is x = D∗PT Sx̂.
The Cauchy–like linear system (8) is solved performing the factorization C =

LDLT with L lower triangular and D diagonal. This factorization can be done
in a “fast” way due to the displacement rank property of structured matrices.

3 Triangular Factorization of Cauchy–Like Matrices

Gohberg, Kailath and Olshevsky [13] proposed an algorithm (GKO) to factorize
non–hermitian Cauchy–like matrices. Following the same idea is not hard to
derive a fast algorithm for the triangular factorization of real symmetric Cauchy–
like matrices that exploits its displacement rank property.
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Given the following partitions of matrices C and Λ (6),

C =
(

d lT

l C1

)
, Λ =

(
λ1 0
0 Λ1

)
,

where
(
d lT

)T is a one dimensional array, and being X =
(

1 0
l/d In−1

)
, if the

transformation X−1(.)X−T is applied to (6), we have

(X−1ΛX)(X−1CX−T ) − (X−1CX−T )(XT ΛX−T ) =

(
λ1 0

Λ1l−λ1l
d Λ1

) (
d 0
0 Csc

)
−

(
d 0
0 Csc

) (
λ1

lT Λ1−λ1lT

d
0 Λ1

)
= (X−1Ĝ)H(X−1Ĝ)T .

Equating element (2, 2) of the previous expression it is obtained

Λ1 Csc − Csc Λ1 = Ĝ1 H ĜT
1 ,

that is, the displacement equation of the Schur complement Csc of C with respect
to its first element d. Matrix Ĝ1 = X−1Ĝ is the generator of Csc. This property
about that the Schur complements of a structured matrix are also structured is
used to derive a triangular factorization fast algorithm.

The computation of the first column of C and the computation of Ĝ1 defines
the first step of the algorithm. The LDLT factorization of C is obtained repeating
this process n iterations on the successive arising Schur complements (Alg. 1).

Algorithm 1 (LDLT factorization of a real symmetric Cauchy–like ma-
trix): Given Ĝ, H, Λ (6) and diagonal entries of C, this algorithm returns the
unit lower triangular factor L and the diagonal matrix D such that C = LDLT .

for j = 1, . . . , n
Dj,j = Cj,j

for i = j + 1, . . . , n

1. Li,j = (Ĝi,: H ĜT
j,:)/(Dj,j (λi − λj))

2. Ci,i ← Ci,i − Dj,jL
2
i,j

3. Ĝi,: ← Ĝi,: − Li,jĜj,:
end for

end for

All elements of each Schur complement of C can be computed by solving the
Lyapunov equation shown in step 1 of Alg. 1 except diagonal entries. That
is why these elements must be computed a priori before calling Alg. 1. There
exist several fast algorithms to do that like the one in [14]. However, we have
developed a new one that lets to obtain diagonal entries of the Cauchy–like
matrix arising from C = STLS where TL is lower triangular Toeplitz. This is
useful to obtain diagonal entries of different symmetric Cauchy–like matrices of
the form C = SMS where M can be either symmetric or non–symmetric or even
the product of two Toeplitz matrices. Furthermore, the algorithm uses a minimal
amount of memory avoiding to use of some vectors arising in the description of
the algorithm by other authors.
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P0 Ĝ0 L0,0

P1 Ĝ1 L1,0 L1,1

P2 Ĝ2 L2,0 L2,1 L2,2

P0 Ĝ3 L3,0 L3,1 L3,2 L3,3

P1 Ĝ4 L4,0 L4,1 L4,2 L4,3 L4,4

...
...

...
...

...
...

...
. . .

Fig. 1. Example of data distribution with 3 processors

4 The Parallel Algorithm

The central part of the parallel algorithm falls in the factorization of C. The
generator Ĝ is partitioned in n/η blocks of size η × 4 and distributed using
the BLACS model. Under this model a logical unidimensional mesh with p × 1
processors is built. Blocks of Ĝ are cyclically distributed among the p processors
such that block Ĝk, k = 0, . . . , n/η − 1, belongs to processor Pj mod p. The
ith row of Ĝ belongs to block Ĝi/η. Matrix Λ and the diagonal of C are both
partitioned and distributed in the same way. Alg. 2 is the parallel version of
Alg. 1. An example of distribution of Ĝ and L with 3 processors can be seen in
Fig. 1.

Algorithm 2 (Parallel LDLT factorization of a symmetric Cauchy–like
matrix): Given Ĝ, H, Λ (6) and the diagonal of C cyclically distributed for a
given block size η ≥ 1, this algorithm returns the unit lower triangular factor L
and the diagonal matrix D such that C = LDLT both partitioned in blocks of η
rows cyclically distributed as the argument matrices.

Each processor Pj, j = 0, . . . , p − 1, performs:

for k = 0, . . . , n/η − 1

Let Ck
sc =

(
C1 CT

3
C3 C2

)
, C1 ∈ IRη×η, be the Schur complement of C

with respect to the leading submatrix of order kη.
if (Ĝk ∈ Pj)

Compute C1 = LkkDkLT
kk by using Alg. 1 and broadcast Ĝk and Λk.

else Receive Ĝk and Λk.
end if
for i = k + 1, . . . , n/η − 1

if (Ĝi ∈ Pj)
Compute Lik and update Ĝi and the diagonal entries of Cii.

end if
end for

end for
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Updating blocks Ĝi and diagonal entries of Cii, k < i < n/η, can be easily derive
from the operations described in Alg. 1 if only η iterations are applied. In each
step of Alg. 2 the following factorization is obtained

Ck
sc =

(
Lk,k

Lk+1:n/η−1,k

) (
Dk,k 0

0 0

) (
LT

k,k LT
k+1:n/η−1,k

)
+

(
0 0
0 Ck+1

sc

)
,

being Ck+1
sc implicitly known throughout the generator.

The main advantage of Alg. 2 is that it performs only one broadcast per it-
eration on the contrary that other parallel algorithms for the solution of the
same problem. The size and the number of messages are both a function of η.
Different values of η changes the overlapping between communications and com-
putations and also the weight of both factors in the total cost of the algorithm.
The optimum value of η depends on the machine and is experimentally tuned.

The complete parallel algorithm is summarized in Alg. 3.

Algorithm 3 (Parallel solution of a hermitian Toeplitz linear system):
Given a hermitian Toeplitz matrix T ∈ Cn×n and a right hand side vector b ∈ Cn,
this algorithm returns the solution vector x of the linear system Tx = b.
On each processor Pj, for j = 0, . . . , p − 1:

1. Every processor computes matrices Ĝ (7), Λ (6) and vector b̂ (8), and
distribute them cyclically by blocks of size η × 4.

2. Apply Alg. 2 to obtain C = LDLT .
3. Solve LDLT x̂ = b̂ in parallel by using PBLAS routines.

P0 gathers x̂ from the rest of processors and computes x = D∗PT Sx̂.

Another improvement used is the efficient computation of the DST (4). The time
used by the fftpack routine to apply a DST to a vector highly depends on the
value of the prime numbers in which n+ 1 is factorised. This routine is faster as
these prime numbers are small. We have implement a DST routine based on the
Chirp–z factorization used in the computation of DFT’s whose computational
cost is independent of the size of these prime numbers (Table 1).

5 Experimental Results

The experimental results have been obtained in a cluster of 10 two–processor
boards with two Intel Xeon at 2 GHz. and with 1 Gb. of RAM. The

Table 1. Excution time of Ĝ with and without using the Chirp–z factorization

n 6998 7498 7998 8498 8998 9998 10498 10998
p. d. 3 · 2333 7499 19 · 421 3 · 2833 8999 32 · 11 · 101 10499 17 · 647

fftpack 0.64 2.93 0.33 0.96 4.25 0.45 5.76 0.64
Chirp–z 0.36 0.38 0.41 0.60 0.64 0.72 0.77 0.81
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p = 8

p = 7

p = 6

p = 5

p = 4

p = 3

p = 2
se

c.

24

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6

Fig. 2. Time versus different values of η and number of processors for n = 12000

n = 11000
n = 10000
n = 9000
n = 8000

procs.

se
c.

10987654321

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

Fig. 3. Time for different size problems and different number of processors.

interconnection network is a SCI with a 2D torus topology. In the experiments,
each MPI process is mapped onto only one processor of each node.

The first test consists of tuning the block size η used in the partition of Ĝ.
Fig. 2 shows the execution time of Alg. 2, that is the second step of Alg. 3, so
it can be concluded that there exists a range of values for η that can be used to
get the best performance. We have chosen a size of η = 24 independently of the
number of processors in our target machine. A more detailed study with other
problem sizes shows that this is always the best choice despite of some a very
slight variation of time in the different values of η.
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Once the optimal value of η is fixed, the next experiment deal with the total
cost of the parallel algorithm with different problem sizes. Figure 3 shows a large
reduction in time achieved with the increment in the number of processors. This
is specially significant because this result means the parallel algorithm can be
useful in applications with real time constraints.

6 Conclusions

We have presented a parallel algorithm that exploits the displacement struc-
ture of Toeplitz and Cauchy–like matrices as the sequential algorithms do. The
algorithm does not break down if the Toeplitz matrix is not strongly regular,
uses real arithmetic and reduces the execution time with the use of up to 10
processors. This is a challenge taking into account how difficult it is to improve
the performance of this type of fast algorithms due to the operation dependency
and the large cost of a message communication regarding the time of a flop.
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