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Abstract. Optimum multiuser detection (OMD) for CDMA systems is an NP-
complete problem. Fitness landscape has been proven to be very useful for 
understanding the behavior of combinatorial optimization algorithms and can 
help in predicting their performance. This paper analyzes the statistic properties 
of the fitness landscape of the OMD problem by performing autocorrelation 
analysis, fitness distance correlation test and epistasis measure. The analysis 
results, including epistasis variance, correlation length and fitness distance 
correlation coefficient in different instances, explain why some random search 
algorithms are effective methods for the OMD problem and give hints how to 
design more efficient randomized search heuristic algorithms for it. Based on 
these results, a multi-start greedy algorithm is proposed for multiuser detection 
and simulation results show it can provide rather good performance for cases 
where other suboptimum algorithms perform poorly. 

1   Introduction 

Multiple access interference (MAI) is the main factor limiting performance in CDMA 
systems. While optimum multiuser detection (OMD) [1], which is based on the 
maximum likelihood sequence estimation rule, is the most promising technique for 
mitigating MAI, its computational complexity increases exponentially with the 
number of active users, which leads to its implementation impractical. 

From a combinatorial optimization viewpoint, the OMD is an NP-complete 
problem [2]. Randomized search heuristics (RSH) are effective methods for such 
kinds of problems, so many RSH based multiuser detectors have been studied and 
exhibit better performance than that of the other linear or nonlinear detectors. Earlier 
works on applying RSH to OMD problem can be found in [3][4][5][6][7].The essence 
of optimum multiuser detection is to search for possible combinations of the users’ 
entire transmitted bit sequence that maximizes the logarithm likelihood function 
(LLF) derived from the maximum likelihood sequence estimation rule [1], which is 
called fitness function or objective function in the RSH multiuser detectors. 
Comparing with so much emphasis on the implementation details and the 
performance analysis of these algorithms, little attention has been paid on the analysis 
of statistic characteristics of the OMD problem in terms of combinatorial 
optimization. 
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Fitness landscape has been proven to be a power concept in combinatorial 
optimization theory [8][9][10]. Moreover, the concept can be used to understand the 
behavior of heuristic algorithms for combinatorial optimization problems and to 
predict their performance. In this paper, we formulate the fitness landscapes of OMD 
problem by taking the LLF as the objective function and analyze their local and 
global characteristics as well as gene interaction properties [11][12]. With the analysis 
results, we propose a multi-start greedy (MSG) multiuser detector and compare its 
performance with other detectors. 

The remainder of this paper is organized as follows. In Sect.2, we state the OMD 
problem and construct its fitness landscape. Statistic properties of the fitness landscape, 
including autocorrelation function, fitness distance correlation and epistasis variance, 
are described in Sect.3 with analysis results. In Sect.4, we propose the MSG algorithm 
and compare its performance with others. A short conclusion is given in Sect.5. 

2   Optimum Multiuser Detection Problem and Fitness Landscape 

2.1   Optimum Multiuser Detection Problem 

Assume a binary phase shift keying (BPSK) transmission through an additive-white-
Gaussian-noise (AWGN) channel shared by K active users with packet size M in an 
asynchronous DS-CDMA system (synchronous system is the special case of the 
asynchronous one ). The sufficient statistics for demodulation of the transmitted bits 
b  are given by MK  matched filter outputs y [13] 

y = RAb + n  (1) 

here A is the MK MK× diagonal matrix whose k iK+ diagonal element is the 

thk user’s signal amplitude kA  and 1,2,..., Mi = . MK MK×∈R  is the signature 

correlation matrix and can be written as 
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jkρ  denotes the partial crosscorrelation coefficient between the thj  user and the 

thk  user. 
The optimum multiuser detection problem is to generate an estimation sequence 

1 2 1 2[ (1), (1),..., (1),..., ( ), ( ),..., ( )]T
K Kb b b b M b M b M

∧ ∧ ∧ ∧ ∧ ∧ ∧
=b   to maximum the 

objective function 

( ) 2 T Tf =b y Ab - b ARAb  (5) 

which means to search 2MK  possible bit sequence exhaustively. It is a combinatorial 
optimization problem and is proven to be NP-complete [2]. 

2.2   Fitness Landscape of OMD Problem 

The notion of fitness landscape comes from biology, where it is used as a framework 
for thinking about evolution. Landscape theory has emerged as an attempt to devise 
suitable mathematical structures for describing the static properties of landscape as 
well as their influence on the dynamics of adaptation [10]. 

In formal terms, a fitness landscape consists of three ingredients: A set S  of 

possible solutions, the notion of element distance d  in S and a fitness 
function f : →S . So the fitness landscape of OMD problem can be defined as 

follows. 

1. The solution space S :{ }1,1
MK− , where K  is the number of active users and M  

is the packet size. 

2. If ib  and jb  are two elements in S , ,i j ∈ , the distance between them is the 

Hamming distance of the two binary vetors: 
1
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3. The fitness function is the LLF defined in equation (5). 

3   Statistic Properties Analysis of Fitness Landscape 

3.1   Random Walk Correlation, Fitness Distance Correlation and Epistasis 
Correlation 

3.1.1   The Random Walk Correlation Function 
To measure the ruggedness of a fitness landscape, Weinberger [8] suggests the use of 
random walk correlation function 
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where ⋅ is expectation and f  is fitness. tx  is a time series and ( )tf x  defines the 

correlation of two points s steps away along random walk through the fitness 

landscape, 1 1( )r s− ≤ ≤ . Then the normalized correlation length l  is defined as 

ln( (1) )Nl r= − ×  (7) 

for (1) 0r ≠ , N  is the dimension of S . 

3.1.2   The Fitness Distance Correlation 
Fitness distance correlation (FDC) coefficient is another measure for problem 
difficulty for heuristic algorithms such as evolutionary algorithms [9]. Denote the 
shortest distance between a possible solution and the global optimum solution as d , 
the FDC coefficient ρ  is defined as 

2 22 2( )( )

fd f d

f f d d
ρ

−
=

− −
 (8) 

where 1 1ρ− ≤ ≤ . 

3.1.3   The Epistasis Correlation 

Denote f
∧

 as the estimation fitness value based on gene decomposition [11], epistasis 

variance EpiN and epistasis correlation EpiC  are defined as [12] 
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where f f= , f f
∧ ∧

= . 0 1EpiN≤ ≤ , 0 1EpiC≤ ≤ .Generally, the lower the value of 

EpiN , the higher the value of EpiC , and the weaker the epistasis of the fitness function. 
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3.2   Numerical Results and Discussions 

Experiments have been conducted to estimate the coefficients discussed above. 
b

E  is 

the bit energy, 
0

N  is the two-sided power spectrum density of Gaussian noise, and K  

is the number of active users. All results are obtained by performing 610  Monte Carlo 
runs. Table 1 shows the numerical result of 9 different cases. 

Table 1. Numerical results of different cases 

Case K  
0b

E N  l  ρ  EpiN  EpiC  

1 10 3 2.313 -0.911 0.109 0.982 
2 10 6 2.317 -0.910 0.110 0.980 
3 10 9 2.314 -0.930 0.111 0.979 
4 20 3 2.351 -0.870 0.123 0.962 
5 20 6 2.225 -0.869 0.124 0.962 
6 20 9 2.327 -0.869 0.124 0.958 
7 30 3 2.249 -0.846 0.128 0.951 
8 30 6 2.310 -0.849 0.128 0.945 
9 30 9 2.355 -0.834 0.128 0.944 

Though the fitness landscape of OMD problem is dynamic because of the changes 

of 
0b

E N and K , from Table 1, we can see the statistics of the fitness landscape 

( l , ρ , EpiN and EpiC ) vary within a narrow range.  The FDC coefficient ρ  keeps 

negative value close to 1− , which means the LLF is appropriate as the cost function 
for heuristics based multiuser detector. The normalized correlation length l  is almost 
the same in all cases, which gives hints how to select the neighborhood size in 
heuristics. For example, 2k =   is appropriate for the k opt− multiuser detector [6]and 
may give the best tradeoff between performance and computational complexity, 
because l  is close to 2. 

Table 1 also shows that EpiN and EpiC  change very little when 
0b

E N and K  vary 

within a wide range and the value of EpiN  is relatively small, which means the 
epistasis of the LLF is very weaker and the fitness value of a possible solution is almost 
determined independently by each bit of the solution vector. Therefore greedy heuristic 
method may be very efficient local search algorithm for OMD problem [3][5]. 

4   Multi-Start Greedy Algorithm for Multiuser Detection 

4.1   Multi-Start Greedy Algorithm 

The MSG algorithm consists of three phases. Phase 1, generate n  initial solutions 
distributed in the whole solution space randomly. This phase is consider as multi-start 
process which imitates the population of evolutionary algorithms (EAs). Phase 2, 
perform greedy local search algorithm on each solution and produce n  local optima. 
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This phase is a local search process. Phase 3, choose the best one (based on their 
fitness) from these local optima as the global optimum solution. 

The greedy local search algorithm in phase 2 can be described as follows. Without 

loss the generality, for a current solution vector 1 1 1 1

1 2
[ , , ..., ]t t t t T

N
b b b− − − −=b , where N is 

the length of the solution vector, denote the vector with only the thj bit different from 

1t −b  by 
1 1 1 1

dif 1[ , ..., , ..., ]
t t t t T

j j Nb b b
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j
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t t t

j
g f f− − −= −b b  (11) 

for 1, 2, ...,j N= , here f  is defined in equation (5). Then each bit of the next solution 

vector tb  can be updated as 
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This process is repeated until a local optimal is obtained (there are no better solutions 
that are in its neighborhood).  

4.2   Simulation Results 

The BER performance of the conventional detector (CD), evolutionary programming 
detector (EP) [4], gradient guided detector (GGD) [5], parallel interference 
cancellation (PIC) detector [14] and the proposed MSG is illustrated in Fig.1 by the 

curves of BER versus
0b

E N . The number of users is 10 and 20 ( 10, 20K = ) in 

Fig.1(a) and (b) respectively and the packet size is 3 ( 3M = ). It is obvious that MSG 
detector outperforms other detectors. 

 

Fig. 1. BER against 
0b

E N  performance of MSG, GGD, EP, PIC and CD for 3M =  
(a) 10K =  and (b) 20K =  
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The computational complexity of MSG can be determined easily. The initialization 

is to generate n random vector and requires computations of ( )nO . Each local 

optimal requires ( 1) 2n n× −  fitness value computations. So the computational 

complexity of a local optimal is 2( )nO  and the computational complexity of MSG 

is 3( )nO . A fast greedy heuristic is proposed in [15]. With this method, a local 

optimal can be obtained in ( )nO . Then the computational complexity of MSG can be 

reduced to 2( )nO . 

5   Conclusions 

This paper studies the important statistic properties of the fitness landscape of the 
OMD problem and proposes a multi-start greedy algorithm based multiuser detector. 
The analysis results about the fitness landscape explain why some heuristics multiuser 
detector are effective and give hints how to design more efficient randomized search 
heuristics for the OMD problem. The multi-start greedy algorithm which is founded 
on these analysis results can provide good performance for cases where other 
suboptimum algorithms perform poorly. 
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