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Abstract. The purpose of this paper is to discuss parallel precondi-
tioning techniques to solve the elliptic portion (since it dominates com-
putation) of the bidomain model, a non-linear system of partial differ-
ential equations that is widely used for describing electrical activity in
the heart. Specifically, we assessed the performance of parallel multigrid
preconditioners for a conjugate gradient solver. We compared two differ-
ent approaches: the Geometric and Algebraic Multigrid Methods. The
implementation is based on the PETSc library and we reported results
for a 6-node Athlon 64 cluster. The results suggest that the algebraic
multigrid preconditioner performs better than the geometric multigrid
method for the cardiac bidomain equations.

1 Introduction

The bidomain formulation [1] is currently the model that best reflects the electri-
cal activity in the heart. The non-linear system of partial differential equations
(PDEs) models both the intracellular and extracellular domains of cardiac tissue
from an electrostatic point of view. The coupling of the two domains is done via
non-linear models describing the current flow through the cell membrane.

Unfortunately, the bidomain equations are computationally very expensive.
Efficient ways of solving the large linear algebraic system that arises from the
discretization of the bidomain model have been a topic of research since 1994
[2]. Many different approaches among direct and iterative methods have been
employed considering the problem’s size and the computing resources available.
However, iterative methods such as conjugate gradient (CG) are generally more
scalable.

In previous works we have compared different parallel preconditioner methods
for the Conjugate Gradient iterative algorithm. In [3] we have shown that pre-
conditioners based on the Geometric Multigrid Method (GMG) performed better
than the classical incomplete LU (ILU) preconditioners for 2D and 3D cardiac
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electric propagation problems. In [4] the GMG preconditioners were compared
to different Additive Schwarz (ASM) preconditioners. The results taken from
a 16-node HP-Unix cluster indicated that the multigrid preconditioner was at
least 13 times faster than the single-level Schwarz based techniques and requires
at least 11% less memory.

In this paper we compare our previous parallel implementation of the GMG
preconditioner [3], [4] to an Algebraic Multigrid (AMG) based parallel precondi-
tioner [5]. We focus on the solution of the linear algebraic system associated with
the elliptic part of the bidomain model, since this part dominates computation.
We employ the CG method preconditioned with both, Geometric (GMG) and
Algebraic (AMG) parallel multigrid (MG) techniques. The implementation is
based on the PETSc C library [6] (which uses MPI) and is tested on problems
involving thousands of unknowns. The results taken from a 6-node Athlon 64
Linux cluster indicate that the AMG preconditioner is at least 3 times faster
than GMG and 117 times faster than the traditional ILU preconditioner.

2 Mathematical Formulation

The set of Bidomain equations[1] is currently one of the most complete mathe-
matical models to simulate the electrical activity in cardiac tissue:

χ

(
Cm

∂φ

∂t
+ f(φ, t)

)
= ∇.(σi∇φ) + (σe∇φe), (1)

∇.((σe + σi)∇φe) = −∇.(σi∇φ), (2)
∂v

∂t
= g(φ, η), φ = φi − φe. (3)

Where φe is the extracellular potential, φi the intracellular potential and φ is
the transmembrane potential. Eq. (3) is a system of non-linear equations that
accounts for the dynamics of several ionic species and channels (proteins that
cross cell membrane) and their relation to the transmembrane potential. The
system of (3) typically accounts for over 20 variables, such as ionic concentra-
tions, protein channel resistivities and other cellular features. σi and σe are the
intracellular and extracellular conductivity tensors, i.e. 3×3 symmetric matrices
that vary in space and describe the anisotropy of the cardiac tissue. Cm and χ
are the cell membrane capacitance and the surface-to-volume ratio, respectively.

Unfortunately, a solution of this large nonlinear system of partial differen-
tial equations (PDEs) is computationally expensive. One way to solve (1)-(3) at
every time step is via the operator splitting technique [4]. The numerical solu-
tion reduces to a three step scheme which involves the solutions of a parabolic
PDE, an elliptic PDE and a nonlinear system of ordinary differential equations
(ODEs) at each time step. Rewriting equations (1)-(3) using the operator split-
ting technique (see [4] for more details) we get the following numerical scheme:

ϕk+1/2 = (1 + ΔtAi)ϕk + ΔtAi(ϕe)k; (4)
ϕk+1 = ϕk+1/2 − Δtf(ϕk+1/2, ζk)/(Cm), (5)



78 F.O. Campos, R.S. Oliveira, and R. Weber dos Santos

ζk+1 = ζk + Δtg(ϕk+1/2, ζk);
(Ai + Ae)(ϕe)k+1 = −Aiϕ

k+1. (6)

Where ϕk, ϕk
e and ζk discretizes φ, φe and η at time k Δt; Ai and Ae are the

discretizations for ∇.((σi∇)/(χCm) and ∇.((σe∇)/(χCm), respectively. Spatial
discretization was done via the Finite Element Method using a uniform mesh of
squares and bilinear polynomials as previously described in [4].

Steps (4), (5) and (6) are solved as independent systems. Nevertheless, (4),
(5) and (6) are still computationally expensive. One way of reducing the time
spent on solving these equations is via parallel computing.

3 Parallel Multigrid Preconditioners

In the previous Section we presented a mathematical model for the electrical
potential in the cardiac tissue. Many direct and iterative approaches have been
employed in the solution of the linear systems that appear after the spatial
discretization of the Bidomain equations. Direct factorization methods such as
Cholesky or LU performed better than iterative methods for small simulation
setups [7], i.e., when memory limitations were not a concern. However, for larger
problems, for instance, the simulation of a whole three-dimensional (3D) heart
in which the discretization leads to millions of nodes, an iterative method is
mandatory. The preconditioned CG method has become the standard choice for
an iterative solver of the bidomain formulation.

We used CG to solve the linear system and intended to compare both GMG
and AMG as preconditioners. The solution of (4)-(6) was implemented in par-
allel using the PETSc C library, which uses MPI. CG is parallelized via linear
domain decomposition. The spatial domain is decomposed into proc domains
with equal sizes, where proc is the number of processors involved in the simu-
lation. In addition, we compared the traditional block incomplete LU parallel
preconditioner (ILU) against the multigrid ones.

The basic idea behind multigrid methods relies on the fact that simple iter-
ative methods are very efficient at reducing high-frequency components of the
residual, but are very inefficient with respect to the lower frequency components.
In the classical MG theory [8], such iterative methods are called smoothers, since
they smooth the error better than reduce its average. The multilevel solution to
this problem is to project the residual onto a smaller space, a coarser grid of the
problem, where the lower spatial frequency components can be handled more ef-
ficiently. The problem is now solved on the coarser grid and the residual is then
projected back to the original space, the finer grid. This way, the residual on the
finer grid has an approximation of the lower frequency components removed,
and the convergence of the iterative method is faster.

In our GMG preconditioner implementation we successively generated coarser
regular grids based on the finest regular grid G0, i.e. the uniform element mesh.
This procedure was repeated until the coarsest level, Glevels−1 . For each grid
pair, Gl and Gl+1, a prolongation rectangular matrix, Pl, was generated using
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Fig. 1. Simulated electrical wave propagation overlapped to the Resonance Image

a bilinear interpolation scheme. For every grid level (l = 0 to l = levels − 1), a
matrix Al was generated by applying the finite element method to the particular
grid. Further details of our GMG implementation can be found in [3].

The mainly difference between GMG and AMG preconditioners is the coarse
grid selection. In the GMG scheme, just simple slices are made to the fine grid
creating a coarse grid with half of the nodes in each direction. To select the
coarse grid points in the AMG, we seek those unknowns ui which can be used
to represent the values of nearby unknowns uj . It is done via the concepts of
dependence and influence. We say that the point i depends on the point j or j
influences i, if the value of the unknown uj is important in determining the value
of ui from the ith equation. Based on measures of dependence and influence taken
from the matrix coefficients, special heuristics generate the maximal subset of
points of the coarse grid. Thus, the process of coarse matrices generation depends
solely on the original finest-grid matrix. Different from the GMG, the finite
element method is only used once in the AMG method, i.e. during the creation
of the finest-grid matrix. All the other matrices are obtained algebraically.

In this work we adopted the parallel AMG code BoomerAMG [5] with its
Falgout-coarsening strategy.

In both GMG and AMG preconditioners the smoother used for all but the
coarsest level was an iterative method. For the coarsest level, we used a direct
solver. This was not done in parallel, i.e., it was repeated on every processor,
avoiding any communication.

4 Results

We performed several tests in order to compare the different preconditioners
on a 6 node Linux Cluster, each node equipped with a AMD Athlon 64 3 GHz
processor, 2 GB of RAM and connected by 1 Gbit/s Ethernet switch. In all tests,
we simulated the cardiac electric propagation on a two-dimensional cut of the left
ventricle obtained during the cardiac diastole phase by the resonance magnetic
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technique of a healthful person. After segmenting the resonance image, a two-
dimensional mesh of 769 × 769 points was generated, that models the cardiac
tissue, blood and torso.

All bidomain parameters were taken from [9]. The capacitance per unit area
and the surface area - to- volume ratio are set to 1 mF/cm2 and 2000/cm,
respectively. The interface between cardiac tissue and bath is modeled as de-
scribed in [10]. All the other boundaries are assumed to be electrically isolated.
The spatial and temporal discretization steps of the numerical model were set
to 0.0148 cm and 0.05 ms, respectively. The simulation was carried out for 5 ms,
or 100 time steps, after a single current stimulus was introduced at a selected
endocardial site. For simulating the action potential of cardiac cells we used the
human ventricular model of ten Tusscher et al. [11].

The stop criterion adopted for all the preconditioned CG algorithms was based
on the unpreconditioned and absolute L2 residual norm, ‖Axi −b‖2 ≤ tol, where
xi was the solution at iteration i and tol was a tolerance which was set to 10−6.
Although this is not the most efficient stop criteria for the CG, it is the fairest
one when comparing different preconditioning methods.

The performance measurements reported in this section, such as the execu-
tion time, CG number of iterations, average time per iteration, setup time and
number of nonzeros in an particular grid are related to the solution of the elliptic
part (2), since this part is responsible for around 80% of the whole simulation
time. The memory usage is related to the whole model.

4.1 Parameter Tuning

We tuned the following parameters: fill for ILU; levels for GMG; levels and
strongthreshold for AMG. Table 1 shows, for different numbers of processors, the
optimal parameter values that yielded the fastest execution time. The parameter
fill was varied from 0 to 4; GMG levels varied from 2 to 6; AMG levels from
6 to 16 and strongthreshold was set to 0.25, 0.50 and 0.75. In addition, all
parameters were tuned for best execution time on 1, 2, 4 and 6 processors. A
total of 160 simulations were performed during about one week of computation
time.

Due to the long execution time demanded for the ILU preconditioner, just
simulations on 6 processors were performed for this case. With this number of
processors the optimal value of fill was 4.

For GMG, the optimal value of levels depended on proc. On a single processor,
levels = 2 corresponded to the fastest execution. In parallel, however, since the
coarsest grid is solved sequentially, the cost of fewer grid levels rivaled the gains
of parallelism. Therefore, as proc increased, the optimal levels also increased to 3.

The AMG preconditioner performed better with the strongthreshold set to
0.25, i.e. the smallest experimented value. The choice of the strongthreshold
value directly influences the number of grid points in each level, i.e. the number
of non-zero elements of each matrix Al. High strongthresholds generated rich
coarse matrices in terms of the information that is kept from the finest level. This
contributed towards faster convergence in terms of iteration count. However,
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Table 1. Number of nonzeros on 1 and 6 processors

proc levels GMG AMG
1 2 1329409 1722609

8 - 8138
6 3 332929 683411

8 - 8707

Table 2. Comparison between GMG and AMG on 1 and 6 processors

Type proc Time (s) CG Iters. Time / Iter
ILU - - -

GMG 1 1867.05 1050 1.78
AMG 626.27 916 0.68
ILU 17502.88 175481 0.10

GMG 6 578.41 1290 0.45
AMG 141.12 900 0.16

this improvement did not result in faster execution times, since every level was
considerably more computationally expensive.

AMG performed better with more levels (levels = 8 was the fastest) than
GMG. Many factors may have contributed to this. It was shown before that
AMG coarsening algorithms tend to coarsen in the direction of the dependence
and perform better than the traditional geometric algorithms when the problem
has anisotropic or discontinuous coefficients. Cardiac tissue is highly anisotropic
and the conduction coefficients of the bidomain model reflect the cardiac tissue
properties. Therefore, fewer levels in the GMG may be necessary in order to
avoid loss of anisotropic information. In addition, the implementation of the
AMG and GMG preconditioners differs in some aspects. The smoothers (the
iterative methods used) are different. GMG uses a more robust and expensive
method, a preconditioned CG, to smooth the residuals in all but the coarsest
level. AMG uses a simple relaxation method. Thus, every GMG level is more
computationally expensive than an AMG one. The direct methods used to solve
the coarsest level are also different. GMG uses a more efficient and fast direct
LU solver with nested dissection reordering. The AMG direct solver was very
inefficient in handling large problems, i.e. coarsest matrices with less than 5
levels.

In summary, compare to GMG, AMG performed better with more levels and
fewer non-zero elements in the coarsest matrix. Table 1 shows the number of
non-zeros of the coarsest matrix of the simulations with 1 and 6 processors, for
the AMG and GMG cases.

4.2 Performance Comparison and Parallel Speedup

Table 2 presents the execution time, total number of CG iterations and average
time per iteration for all time steps (100 time steps) per processor for all pre-
conditioners with the optimal parameters. Both GMG and AMG preconditioners
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Fig. 2. Computational requirements for 2D anisotropic systole phase. (a) parallel
speedup relative to single processor execution time for GMG and AMG precondi-
tioners for different number of processors. (b) execution time, (c) total number of CG
Iterations for 100 time steps and (d) memory usage.

achieved better performance results than ILU on 6 processors. GMG was 30.26
times faster than ILU. In the same conditions, AMG was 124.03 times faster than
ILU. In addition, ILU took more than 17 thousands CG iterations to solve the
problem, i.e. for the total 100 time steps. Although ILU presented a better aver-
age time/iteration than the multigrid methods, it needed much more CG itera-
tions to solve the system. GMG and AMG converged with around one thousand
iterations, i.e. 10 iterations per time step.

AMG was 2.98 (4.10) times faster than GMG on 1 (6) processors, and required
50% (54%) less on setup phase. When using the GMG preconditioner, the num-
ber of CG iterations increased as the number of processors scaled up from 1 to
6. The AMG method was more stable and the number of iterations did not in-
crease when increasing the number of processors. Figure 2 shows the comparison
between GMG and AMG preconditioners with 1, 2, 4 and 6 processors. Both
multigrid preconditioners achieved reasonable parallel speedup (execution time
on 1 processor/execution time) results, 3.23 for GMG and 4.44 for AMG on 6
processors. AMG performed better for all tests, it converged faster (took less
CG iterations), required around 22% less memory with proc ≤ 2 and 9% when
proc ≥ 4. Finally, according to the speedup results, AMG achieved a better scal-
ability on 6 processors, which resulted from the smaller coarsest grid matrices.
The direct method used in the coarsest grid is not parallelized. Thus, the larger
matrices used by GMG in this level (see table 1) severely degrade the parallel
speedup.
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4.3 Conclusions

In this work, we employed the conjugate gradient algorithm for the solution of
the linear system associated with the elliptic part of the bidomain equations
and compared two different parallel multigrid preconditioners: the GMG and
AMG. The results taken from a 6-node Athlon 64 Linux cluster indicate that the
algebraic multigrid preconditioner is at least 3 times faster than GMG, requires
at least 9% less memory and achieved a better scalability on 6 processors.
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