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Abstract. Protocols governing communication among system compo-
nents evolve during design and maintenance and need to be re-tested. For
faster testing turnaround time, it is important that the consistency of the
testing infrastructure with the protocol be preserved across changes. In
this paper, we propose a state exploration based approach to identify the
impacts of protocol changes on a given set of protocol tests. Protocols are
modeled as a network of communicating finite state machines exchanging
messages over bounded queues. Each machine denotes the behavior of an
individual protocol component (controller). A protocol test is modeled
as a sequence of inputs from the environment to the protocol controllers
in an execution starting from a stable protocol state. A notion of con-
sistency of a test relative to a protocol is introduced. Conditions under
which a protocol change requires changing a test to preserve the consis-
tency of the test are identified. Changes consisting of multiple atomic
updates are analyzed to remove redundancies and their impact on tests
is studied. A by-product of the proposed approach is a classification of
tests based on how they are impacted by protocol changes, which can
help users in regression test selection.

Keywords: Changes, evolution, protocol, communicating finite state
machines, test consistency.

1 Introduction

Testing of protocols has been extensively studied [1,2,3,4] due to the central role
played by protocols in both software and hardware. Typically, a protocol may
undergo several changes during the system design and maintenance phases and
may need to be repeatedly re-tested. Generating and running tests in response
to every protocol change is time consuming and may also not lead to good
cumulative coverage of protocol functionality across the changes. To re-test a
changed protocol it is important to analyze effects of changes on existing tests.
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Changes to a protocol may affect existing tests in several ways. Several exist-
ing tests may be re-usable with changed protocol. However, only some of these
tests may exercise changed behaviors (in addition to original ones) whereas the
rest may exercise only original behaviors. Determining whether a re-usable test
exercises a changed behavior may be useful in generating new tests. Some exist-
ing tests may also become unusable for certain changes. It may be possible to
use some of these tests to test the changed protocol after patching while others
may have to be simply discarded. Given that a large number of tests are typ-
ically needed to validate even simple protocols, manually determining impacts
of changes on the existing tests is tedious and error prone. Determining such
impact may not be easy even for a single test since this may require considering
all executions that can happen in the test, which may be numerous.

In this paper, we propose a white-box1 approach to automatically determine
the impact of protocol changes on protocol tests. We model protocols as a net-
work of interacting communicating finite state machines (CFSM s) with bounded
queues [5, 6, 7]. The transition relation of each CFSM describes the behavior of
an individual protocol controller. The CFSM s interact with each other by mes-
sage exchanges over the queues. They also interact with an external environment
by exchanging messages over the queues to/from the environment to the con-
trollers. We consider protocol changes at the transition level. Protocol changes
add/delete/replace one or more transitions from one or more protocol controllers
and are explicitly represented as change specifications [8].

We formalize a protocol test as a protocol stable state along with a set of
environment inputs. The environment inputs are used in the executions starting
from the associated protocol stable state. A simple notion of consistency of a
test relative to a protocol is proposed. Informally, a test is consistent with a
protocol if it exactly specifies the environment inputs needed in each execution
that can happen in the test starting from the protocol stable state. At least one
execution must happen in each consistent test. Further, since a consistent test
exactly specifies the inputs used in their executions each execution can happen
in at most one consistent test.

Changes can potentially produce protocols whose executions cannot happen
in any consistent test. We consider such changes uninteresting. A notion of con-
sistently testable protocol is introduced. In a consistent testable protocol, it is
possible to design a consistent test for each execution such that the execution
happens in the consistent test. Consistent testability ensures that each protocol
execution can happen in exactly one consistent test.

We constrain changes to preserve consistent testability of protocols. We char-
acterize the impact of a change on an existing test in terms of whether the
change preserves the consistency of the test. To check whether a change pre-
serves the consistency of an existing test, it is enough to just find one execution

1 A testing environment consists of a set of protocol tests, along with a set of runtime
monitors derived from protocol specifications and/or correctness properties. The
runtime monitors observe sequences of global states during execution and check if
each protocol execution in each protocol test conforms to the specification.
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of the changed protocol that can happen in the test such that the execution
uses all the inputs specified in the test. Otherwise, the test is inconsistent. This
is because for a consistent testable protocol, if a test is consistent for a single
execution that can happen in the test then the test must be consistent for all
executions that can happen in the test since otherwise, that execution cannot
happen in any consistent test. Consistent testability makes it easier to check
whether consistency of a test is preserved by a change since it is enough to
check this for just one execution of the changed protocol. For certain changes it
may not be necessary to analyze even a single execution. For instance, see the
discussion for changes that add transitions below.

Tests whose consistency is preserved by a change may either be independent
of the change or they may be re-usable. Informally, a test is independent of a
change if none of the executions that can happen in the test are affected by
the change. Independent tests may be discarded to minimize the testing effort
across changes. All other tests whose consistency is preserved by the change are
re-usable tests. Re-usable tests exercise the changed behavior and can be used
without any modifications to test the changed protocol.

State exploration is used to determine whether tests whose consistency is
preserved by a change are independent. This is done by computing an interaction
context for a given protocol transition. Interaction context of a given protocol
transition is the set of all consistent tests such that the transition appears in some
execution of each test. Informally, if a test whose consistency is preserved by a
change does not belong to the interaction context of transitions being changed,
then it is not affected by the change and is independent. If the test belongs to
the interaction contexts of a new transition introduced by a change then it is
re-usable.

If a test is made inconsistent by a change and the protocol stable state of the
test is a stable state of the changed protocol then the test is patched by changing
its inputs to be the external inputs used in the executions starting from that
stable state of the changed protocol. A patched test is generated for each such
execution with distinct environment inputs. Inconsistent tests whose protocol
stable state is not a stable state of the changed protocol are not patchable and
hence discarded. Interaction contexts of protocol transitions are used to patch an
inconsistent test whenever possible to do so. We also describe a state exploration
based procedure based on interaction contexts for checking consistent testability.

We first consider single transition changes and show that a change that adds
a new transition t′i to a controller, preserves the consistency of all existing tests.
This is because such a change preserves all the executions of the original protocol
in addition to preserving consistent testability. An existing consistent test γ is
re-usable with respect to such a change if it belongs to the interaction context
of the newly added transition t′i, which is computed over the changed protocol.
Otherwise, the test γ is independent of the change.

Consider a change replacing a transition ti by another transition t′i in the same
controller. To determine the impact of such a change on an existing consistent
test γ, the interaction context of transition t′i and the interaction contexts of the
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transitions tjs in the original protocol that are distinct from ti are computed.
All the contexts are computed by state over the changed protocol. The test γ is
re-usable if it belongs to the interaction context of t′i and γ is independent if it
does not belong to the context of t′i but belongs to the context of some tj . In
this case, an execution of the original protocol without the replaced transition
ti can happen in the test γ. Otherwise, the test γ is inconsistent. The test is
patched, as described above, if the protocol stable state of γ belongs to any of
the interaction contexts of tj ’s. The test γ is discarded otherwise.

It is in practice inevitable to deal with complex changes consisting of multiple
atomic updates. Our method of analyzing the impact of multiple changes on
tests is based on examining the effect of the comprised individual add / delete
/ replacement changes. However, the approach developed for the single transi-
tion change cases can not be used as it is, some modifications are needed to
handle certain types of independence of the different atomic changes. If all the
atomic updates are only additions then the effect on a test can be determined
by considering the individual interaction contexts independently. However, for
replacements and deletions effects on a test can not be determined indepen-
dently since the inconsistency of a test whose executions contain a group of
replaced protocol transitions may not be detected. To avoid this problem, the
combined interaction contexts of the protocol transitions being replaced is used
to determine the impact on a test.

As multiple changes are usually defined during the development process in
an ad hoc manner, they are often confusing and redundant. The proposed ap-
proach also includes a novel approach to reduce complex changes and create the
shortest – or in an other sense optimal – sequence of update rules inducing the
required modifications.

The paper is organized as follows. After a brief discussion on the related
literature in Section 2, we introduce the background of the current research
including our model of protocols in Section 3. Protocol tests and the notion of
test consistency are introduced in Section 4. Section 5 presents a framework
for analyzing the impact of transition changes on tests and studies the effect of
single changes. Section 6 describes handling and impact of multiple transition
changes. Section 7 concludes the paper.

2 Related Work

Both test generation and software change impact analysis have been active areas
of research in the past. Testing is an indispensable phase of a system develop-
ment lifecycle, yet it has turned out to be a difficult task for the increasingly
complex protocols. Because of their practical importance, significant effort has
been devoted to the development of automatic test generation methods for pro-
tocols to overcome the inefficiency of manual testing [1,2,3,4]. Furthermore, with
the constant increase in complexity, protocol design and implementation has be-
come an increasingly evolutionary and iterative process. Motivated by this trend
there have been some studies investigating changes and their impacts [9,10,11].
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Several researchers have focused earlier on evaluating the effect of system changes
on tests [10,11]. However, surprisingly, not much attention has been paid to evo-
lution of protocols and the impact of protocol changes on tests. To the best of
our knowledge, this is perhaps the first attempt towards analyzing the impact
of CFSM-based protocol changes on protocol tests. Further, most of the earlier
work on change impact analysis has been based on conservative static analysis
and hence does not provide precise answers. In contrast, the proposed approach
is based on formal approach based on state exploration that allows for accurate
analysis of change impacts and also enables us to provide more useful feedback
by synthesizing new tests that are guaranteed to be consistent with the changes.

The approach proposed in this paper builds on our earlier work in [8, 12].
In [8] we have developed a systematic approach to specify and consistently in-
corporate changes to CFSM-based protocols. This approach has been applied to
several protocols including industrial-strength cache coherence protocols. In [12]
we showed how the impact of consistent protocol changes on runtime monitors
can be automatically evaluated and new monitors can be synthesized. Typically,
in white-box testing environments, monitors are used in conjunction with tests
to observe and flag errors in protocol executions. This paper shows how change
impacts can be analyzed for tests and in this sense fills an important gap for
evaluating impact of protocol changes on the testing infrastructure.

3 Preliminaries

A protocol P = (P1, · · · , Pn, ε) is a network of CFSM s [5,6], where each Pi is a
protocol controller and ε is the environment. Communication among Pi’s and ε
is achieved by exchanging messages over a network of bounded queues.

Each protocol controller Pi is a CFSM, a 4-tuple, (Si, Ii, Mi, Ti) where Si

is a finite set of states, Ii ∈ Si is an initial state, Mi are the messages sent and
received by Pi, and Ti ⊆ Mi × Si �→ Si × 2Mi is a deterministic transition
relation. Each set Mi = Mi,j ∪ Mj,i, for {i, j} ∈ {1, · · · , n, ε}, i �= j, where Mi,j

is the set of messages sent by the controller Pi to the controller Pj and Mj,i is
the set of messages received by controller Pi from Pj . Each message in Mi,j is
written as mk(i, j) where mk is the message label and (i, j) denotes the message
queue from controller Pi to controller Pj . The set Mi,i is empty for all i; we
assume that no Pi exchanges messages with itself.

Each protocol transition ti in Ti is of the form m0(j, i), si �→ s′i, {m1(i, k1),
· · · , ml(i, kl)} where m0 is the input message, si and s′i are the input and output
states respectively, and m1, · · · , ml are the output messages to the controllers
k1 · · · kl, 1 ≤ l ≤ n, l �= i. Let S =

⋃
1≤i≤n Si be the set of protocol states.

A global protocol state, g = 〈u, v〉 is a pair where u is an n-tuple of the
individual controller states and v represents the messages, if any, in the protocol
message queues. Let u[j] stand for the state of the controller Pj in u and v[i, j]
stand for the messages in the queue (i, j) in v. For ease of exposition, we will
only show non-empty queues in v in a global protocol state. We write v = 〈〉
when we all queues are empty in the state g.
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The initial global protocol state g0 = 〈u0, v0〉 is a pair where u0[i] ∈ Ii for all
i, and v0[i, j] = 〈〉 if i �= ε and j �= ε. So, the only non-empty queues in an initial
global protocol state are those containing messages from/to the environment ε.

A stable global protocol state is a global protocol state g = 〈u, 〈〉〉 where all
the queues are empty. We call the elements of S in u in a stable global protocol
state as stable controller states. Note that the initial global protocol state is a
stable global protocol state but not vice versa.

A transition ti: m0(j, i), si �→ s′i, {m1(i, k1), · · · , ml(i, kl)} is enabled in global
state g = 〈u, v〉 if u[i] is the input state si and the top of queue v[j, i] is the
input message m0(j, i), and all the output messages m1(i, k1), · · · , ml(i, kl) can
be enqueued (there is space to do so) in the corresponding queues in v.

An execution step, g →ti g′ using the transition ti enabled in the global
protocol state g produces a global protocol state g′ with the controller Pi in the
state s′i; other controller states are unchanged. The input message m0(j, i) is
dequeued from the queue v[j, i] and the output messages m1(i, k1), · · · , ml(i, kl)
are enqueued to the appropriate queues in v to produce g′. If ti is enabled in g
then we say that the global protocol state g′ is enabled by ti. The state g′ = g
if ti is not enabled in g.

An executable path of P , r1 = g0→t0g1 · · · →tk gk+1. We will simply represent
the path r1 by a sequence of transitions [t0,· · · ,tn−1].

A protocol run is an executable path starting and ending in stable global
protocol states. Each protocol run starts from a stable global protocol state by
processing the environment input messages leading to further message exchanges
until a stable global protocol state is reached.

Protocol P is consistent if and only if i) no two protocol transitions ti and
tj have the same input state and same input message, ii) every ti appears in a
protocol run, and iii) every executable path from a stable global state reaching
a state enabling a transition ti is a prefix of a protocol run.

Henceforth, we will assume that protocols are consistent. Note that in our
model, protocol controllers are not input-enabled since they communicate with
each other by exchanging messages over bounded queues. Our model thus more
closely relates to the process algebraic than the I/O model of concurrency.

Changes to protocols are specified as a finite set of rules, update rules (ur),
that may add, delete, or replace one or more transitions in one or more con-
trollers. urj : ti ⇒ t′i replaces a transition ti by a new transition t′i, urj : ti deletes
a transition ti, and urj : t′i adds a transition t′i in controller Pj . We consider
changes with both single as well multiple rules.

It is assumed that all changes preserve the consistency of a protocol.

4 Tests and Consistently Testable Protocols

We primarily focus on white-box testing in this paper [13]. In our testing model,
a protocol implementation under test is stimulated by the environment ε by
inputting messages. The implementation processes the messages one at a time,
starting from a stable global protocol state resulting in a protocol test run.
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To ensure conformance of the implementation, a runtime monitor [14, 15]
is added to the implementation. The monitor observes certain global protocol
states in each run in a test. Starting from a conforming monitor state, the mon-
itor transitions with each observed global protocol state ending in a conforming
monitor state if the test run is behaviorally conforming to the protocol specifica-
tion; the monitor ends in an error state for non-conforming test runs. The global
protocol states observed by the monitor in a test run depend on the conformance
properties being checked.

A protocol test γ = 〈u, v〉 is a pair where u is an n-tuple of controller stable
states and v is an n-tuple of queues containing input messages from environment
ε to the n individual protocol controllers. For ease of exposition, we will only
show non-empty queues in v while describing a test γ.

A test run of the test γ is a protocol run starting from the stable global proto-
col state 〈u,〈〉〉 that processes all the environment input messages appearing in v.
In general, test γ may have several test runs based on the different interleavings
of the protocol transitions.

A test γ exercises a transition ti if ti appears in a test run of γ.
A test γ is consistent relative to a protocol if there is at least one test run for

γ and every executable path starting from γ is extensible to a test run of γ.
Note that if the test γ is consistent then v �= 〈〉 since protocol runs always start

with an environment input message. Further, the consistency of a test ensures
that every execution path starting from the stable state corresponding to that
test can be extended to a run that uses all the environment input messages
specified in test γ. More importantly, consistency of a test ensures that consistent
tests that share a test run must be identical.

Proposition 1. Consistent test γ1 = γ2 if test run of γ1 is a test run of γ2.

Proof Sketch. Let r1 be the common test run that starts from the stable global
stable state u. Let v be the external environment input messages used in run
r1. Let γ1 = 〈u1, v1〉 and γ2 = 〈u2, v2〉. Since r1 is a test run of both γ1 and
γ2, u1 =u2 =u and since both γ1 and γ2 are both consistent test, v1 =v2 =v. �

From Proposition 1, it follows that a protocol run is a test run of at most one
consistent test. An example of a consistent and an inconsistent test can be found
in Section 5.2 and Section 4.1, respectively.

In our testing model, the possible outcomes of a test are all the observable
sequences of global protocol states that can happen in all the test runs. Since
the global protocol states are directly accessible to the runtime monitor they are
not a part of a test. Our notion of consistency of a test is closely related to the
notion of valid tests that has been extensively studied earlier in the testing of
protocols and FSMs. An overview of FSM and protocol testing may be found
in [13]. A valid test is a consistent test whose outcome conforms to the protocol
specification. However, a consistent test need not be a valid test since consistency
does not require a conforming test outcome. A consistent test however, precludes
invalid or inconclusive tests [13] with inputs that cannot be processed in any run.
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Further, in our model, the verdict associated with a test is determined by the
runtime monitor, based on the global states observed by the monitor. Hence on
changing an implementation, it may be necessary to change both the monitor as
well as the tests. In this paper, we assume that any change to the protocol imple-
mentation is preceded by a change to a specification and leads to an appropriate
change to the monitor2. We only focus on impact of implementation changes
on the test itself. Henceforth, in this paper, we do not explicitly distinguish a
protocol implementation under test from its specification and simply refer to the
former as the protocol.

Our choice of the above white-box testing model is largely motivated by the
experience of first author in designing real cache coherence, network, and I/O
protocol products. In practice, many protocols work over bounded resources
and hence are not input-enabled. For protocols with input-enabled components,
every test is trivially consistent. In such cases, the approach in [12] may be used
to determine how the change affects the test purpose.

4.1 Consistently Testable Protocols

As mentioned above, consistency of protocol tests ensures that any protocol
run is a test run of at most one consistent test. To test the conformance of a
protocol, we must also make sure that every protocol run is a test run of some
consistent test, i.e., it must be possible to devise a consistent test to check each
protocol run. A protocol is consistently testable if each protocol run is a test run
of a consistent test. Consequently, each protocol run of a consistently testable
protocol is a test run of exactly one consistent test.

A protocol may be consistent but it may not be consistently testable.

Example 1: Consider the following protocol with the controllers P1 and P2 with
respective controller stable states {s0} and {t0} with transitions,

P1 : 1. m0(ε, 1), s0 �→ s1, m1(1, 2), 2. m2(2, 1), s1 �→ s0, m3(1, 2),
3. m9(2, 1), s1 �→ s0, m4(1, ε).

P2 : 4. m1(ε, 2), t0 �→ t2, m9(2, 1), 5. m1(1, 2), t0, �→ t1, m2(2, 1),
6. m3(1, 2), t1 �→ t0, m4(2, ε), 7. m1(1, 2), t2 �→ t0, m5(2, ε),
8. m5(ε, 2), t1 �→ t1, m6(2, ε).

It can be verified that the above protocol is consistent. However, the protocol
is not consistently testable since the protocol run r1 = [1, 4, 3, 7] is not a test
run of any consistent test. This is because for r1 to be a test run, the test must
contain the environment input messages m0(ε, 1) and m1(ε, 2). Such a test is
not consistent since it can lead to the run r2 = [1, 5, 2, 6], which does not use
the input message m1(ε, 2) and cannot be further extended to a run ending in
a stable global protocol state while doing so.
2 In an earlier paper [12], we have shown how impact of protocol changes on runtime

monitors can be automatically evaluated. The procedure described there uses selec-
tive state exploration guided by protocol states observed by the monitor to identify
and automatically synthesize monitors for protocol changes. For more details the
reader may please refer to that paper.
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In general, consistent testability imposes additional constraints on the runs
of a consistent protocol, which can be used to check whether a given protocol is
consistently testable.

In a consistent testable protocol, for any two protocol runs r1 and r2 that
start by processing the same environment input message in the same stable
state, the set of environment inputs processed by r1 (r2) should be a subset
of those processed by r2 (r1). If the environment messages used in r1 (r2) is a
proper subset of r2 (r1) then the extra messages in r2 (r1) should only transition
the protocol from one stable controller state to another.

In principle, to verify consistent testability of a given protocol, it suffices to
find two runs r1 and r2 that violate the above condition. For instance in the
above protocol, the runs r1 and r2 start from the same global stable state 〈〈s0,
t0〉, 〈〉〉, and process the same environment input message m0(ε, 1) in that stable
state. However, the environment messages processed by r2 is a proper subset
of those processed by r1; run r1 additionally processes the environment input
message m1(ε, 2), which does not transition the protocol from one stable state
to another. Hence the protocol is not consistently testable as shown above.

A more feasible approach for verifying consistent testability of a given protocol
is to compute the interaction contexts of the transitions of the protocol by state
exploration and analyze these contexts for the above described condition by
considering messages of context elements with the same stable state. This is
described in the next section.

5 Impact of Single Transition Changes on a Test

In this section, we describe how to determine the impact of addition, replace-
ment, and deletion of single protocol transitions on an existing protocol test.
Conditions under which the consistency of a test is preserved by a change are
identified. If such a test exercises the change then it may be re-used without any
additional modifications. Otherwise, the test is independent of the change and
may not be included to test the changed protocol3.

In this paper, we assume the changes are incorporated into protocols only
if they preserve the consistent testability. In principle, this can be checked by
considering the runs of the changed protocol starting from the same controller
stable state and checking whether their environment inputs are a subset of each
other as described above.

5.1 Interaction Context of Transitions

To determine the effect of changes on tests an interaction context is associated
with each protocol transition.

The interaction context of a transition ti, IC(ti) = {〈uj, vj〉} is the set of all
tests 〈uj, vj〉 exercising the transition ti.

3 Of course, such tests may be included in regression testing of the changed protocol
based on several coverage criteria and these are not considered here.
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The interaction context IC(ti) is computed by doing repeated backward and
forward image computations over the global protocol state space starting re-
spectively from the global state enabling and the state enabled by the transition
ti. The computations stop once all reachable global states with controller stable
states and only environment inputs are obtained. The set of global stable pro-
tocol states produced by the forward and the backward computations are then
matched to produce global stable states and the environment inputs and form
one pair of the interaction context. The context IC(ti) is the set contains all
such pairs produced by the matching stable global protocol states.

For instance, consider computing the interaction context IC(5) of the transi-
tion 5 in the protocol example described in the previous section. The backward
image computation starts from the global state enabling transition 5, gp = 〈〈xs1,
t0〉, 〈m1(1, 2)〉〉 where xs1 is a symbolic state variable denoting the controller
P ′

1s state. One step image computation of state gp with transition 1 gives the
global state g1 = 〈〈s0, t0〉, 〈m0(ε, 1)〉〉 and this step also instantiates the variable
xs1 to value s1 to give the instantiated state gp = 〈〈s1, t0〉, 〈m1(1, 2)〉〉. Since
g1 is a stable global protocol state with only environment inputs and there are
no other predecessors of gp, the backward image computation stops.

Similarly, the forward image computation starts with the state gs = 〈〈xs2,
t1〉, 〈m2(2, 1)〉〉, and after two image computation steps using the transitions
2 followed by transition 6 stops with the global state g2 = 〈〈s0, t0〉, 〈〉〉. The
variable xs2 is instantiated with value s1 to produce the instantiated gs = 〈〈s1,
t1〉, 〈m2(2, 1)〉〉. The states g1 and g2 match since gp →5 gs is an execution step
for the instantiated states gp and gs. Hence the initial state g1 is included in the
context to produce IC(5) = {g1 = 〈〈s0, t0〉, 〈m1(ε, 1)〉〉}.

Interaction contexts may be used to check whether a protocol is consistently
testable. To do so, we union the interaction contexts of the protocol transitions.
Then, for each pair 〈u1, v1〉 and 〈u2,v2〉 such that u1 = u2 if v1 and v2 have the
same prefix of environment inputs then we check that v1 (v2) is a subset of v2(v1).
If one is proper subset of the other then it is ensured that each extra message mi

is processed by a transition whose input and output states are controller stable
states. This guarantees that the extra messages only transition the protocol
among global stable protocol states.

For each change, we consider the transitions appearing in the change and com-
pute their interaction contexts. The interaction context may be computed either
based on the original or computed based on the changed protocol depending on
whether we are adding, deleting or replacing a protocol transition. As explained
below, for replacement changes the interaction context of the transition being re-
placed is computed based on the original protocol whereas that of the transition
being added is computed using the changed protocol.

5.2 Adding a Transition

Consider an update rule ur: t′i, that adds transition t′i: m(j, i), si �→ s′i, m′(i,
k) to controller Pi of a protocol P . The update ur allows the controller Pi to
process the input message m(j, i) in state si, which is not possible in the original
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protocol, and produces a consistent and consistent testable changed protocol. It
should be clear that every protocol run of the original protocol is a run of the
changed protocol since all transitions of P are also present in P ′. Further, since
the changed protocol must be consistent it also follows that the transition t′i
appears in at least one changed protocol run.

Let γ = 〈u, v〉 be any consistent protocol test of the original protocol. Since γ is
consistent, a run of the original protocol and therefore, a run of the changed pro-
tocol is a test run of γ. Now, since the changed protocol is consistently testable,
there is exactly one consistent test for each changed protocol run. Hence it follows
that γ is a consistent test of the changed protocol.

The effect of such a change on the test γ is determined by computing the
interaction context IC(t′i) of the newly added transition t′i, by performing state
exploration over the changed protocol as described above. If the test γ belongs
to IC(t′i) then the test γ exercises the newly added transition t′i. In this case γ
is re-usable. If the test does not appear in IC(ti) then none of the executions of
γ contain the transition t′i and hence γ is independent of the change.

Example 2: Consider the following protocol with controllers P1 and P2 with
stable states {s0, s′0} and {t0} respectively, with the transitions,

P1 : 1. m1(2, 1), s0 �→ s1, m2(1, 2), 2. m3(2, 1), s1 �→ s2, m4(1, 2),
3. m5(2, 1), s2 �→ s′

0, m6(1, ε), 4. m0(ε, 1), s′
0 �→ s0, m0(1, e).

P2 : 5. m0(ε, 2), t0 �→ t0, m1(2, 1), 6. m2(1, 2), t0, �→ t0, m3(2, 1),
7. m4(1, 2), t0 �→ t0, m5(2, 1).

A consistent protocol test is γ = 〈〈s′0, t0〉, { m0(ε, 2), m0(ε, 1)} 〉; a test run
for γ is r1 = [4, 5, 1, 6, 2, 7, 3]. Suppose we add transition 8: m1(2, 1), s′0 �→
s1, m2(1, 2) to controller P1. It can be verified that this change preserves both
the consistency and the consistent testability of the protocol. The interaction
context of this new transition, IC(8) = {〈〈s′0, t0〉, { m0(ε, 2), m0(ε, 1)}, 〈〈s′0,
t0〉, {m0(ε, 1)}}, includes the test γ and hence the test γ is re-usable for the
changed protocol. A test run of γ with the new transition is [5, 8, 6, 2, 7, 3, 4].

Alternatively, we can add transition, 9 : m7(ε, 2), t0 �→ t0, m8(2, ε) to the
controller P2 of the above protocol while preserving its consistency and consistent
testability. Then, the interaction context IC(9) = {〈〈s0, t0〉, 〈m7(ε, 2)〉, 〈s′0, t0〉,
〈m7(ε, 2)〉}, does not include the test γ and it can be verified that test γ does
not exercise transition 9 and hence is independent of this change.

Note that each pair in the interaction context IC(t′i) corresponds to a con-
sistent test that exercises the newly added transition t′i. For changes that add a
single transition, we simply determine, which of these tests already exist for the
original protocol. The remaining pairs may be used as new tests.

5.3 Replacement and Deletion of Transition

Consider an update rule ur: ti ⇒ t′i that replaces a transition ti in controller
Pi with a new transition t′i in the same controller. The update ur produces a
consistent changed protocol in which there are runs containing the newly added
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transition t′i. It also ensures that every transition tj that appears in an original
protocol run with the replaced transition ti appears in some other runs not
containing ti. The changed protocol is also consistently testable.

To determine the effect of the update ur on a consistent test γ of the original
protocol, we first determine whether γ exercises the new transition t′i in the
changed protocol. To do so, the interaction context IC(t′i) is computed over the
changed protocol. If γ belongs to IC(t′i) then a test run of γ containing t′i is a
protocol run of the changed protocol. In this case, the update ur must preserve
the consistency of γ since there is a run with t′i in the changed protocol that can
be tested only by using the test γ. Hence γ is re-usable.

However, if γ does not belong to IC(t′i) then it may no longer be a consistent
test of the changed protocol. As an example, consider changing the protocol
described in the previous subsection, using the rule ur: 4. m0(e, 1), s′0 �→ s0,
m0(1, e), ⇒ 8: m1(2, 1), s′0 �→ s1, m2(1, 2) that replaces transition 4 by transition
8. The changed protocol is consistent and consistently testable. However, the
existing test γ = 〈〈s′0, t0〉, 〈m0(ε, 2), m0(ε, 1)〉〉 is no longer consistent since no
transition in the changed protocol can process the input message m0(ε, 1). Note
that a consistent test that exercises the new transition 8 is 〈〈s′0, t0〉, 〈m0(ε, 2)〉〉.

In general, the replacement change ur makes a test γ inconsistent only if every
test run of γ in the original protocol contains the replaced transition ti. We can
determine this by extending the interaction context computation to include the
executable paths. Then, it can be checked that every executable path in the
context IC(ti) computed over the original protocol contains the transition ti.

Alternatively, we can consider each transition tj distinct from ti in the original
protocol and compute the contexts IC(tj) and check that the test γ belongs to
one of these contexts. This ensures that γ exercises a transition tj different than
ti. To ensure that γ does not exercise ti we simply compute these contexts over
the changed protocol, where transition ti has been replaced.

If the test γ does not belong to any IC(tj) then it is inconsistent for the
changed protocol. In this case, we consider each pair 〈uj , vj〉 in each context
IC(tj). If u = uj for some pair then we patch γ to generate a new test γj = 〈u,
vj〉. If no such pair is found then γ cannot be patched and is discarded.

Obviously, if γ belongs to neither IC(ti) nor IC(t′i) then no runs in the original
protocol containing transition ti are test runs of γ and no runs in the changed
protocol containing t′i are test runs of γ. As these are the only runs affected by
the change, the test γ is consistent with respect to the changed protocol. In this
case, the test γ is independent of the replacement change and may be discarded
from the tests used for the changed protocol.

As an example, consider the protocol obtained from the protocol previous
subsection after addition of the transition 8. This protocol can be changed using
the replacement rule ur: 8 ⇒ 9, that replaces transition 8 by the transition
9 described there. The change produces a consistent and consistently testable
protocol. It can be verified that this replacement change preserves the consistency
of the existing test γ = 〈〈s′0, t0〉, 〈m0(ε, 2), m0(ε, 1)〉〉, since [4, 5, 1, 6, 2, 7, 3] is
a run of the original protocol from γ not containing the replaced transition 8.
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The impact of changes that perform deletion of a transition ti is also deter-
mined by computing the interaction contexts of transitions tj distinct from ti
as described above. The test γ is re-usable across such a change if it belongs
to some context IC(tj); otherwise, γ is inconsistent. An inconsistent test γ is
patched in the same way as described above.

6 Impact of Multiple Transition Changes on a Test

It is in practice inevitable to deal with multiple updates simultaneously. Some of
the more general changes – for example the introduction of new states – are too
complex to be specified by a single update rule, thus multiple rules – sequences
of atomic rules – have to be used to define these changes. Furthermore, in any
development process it is not practical to modify and/or analyze the test suite
for the given protocol at each atomic update. Instead, test suites are revised at
certain stages of the development, typically after some substantial changes have
been introduced to the system.

Let ur: {t′1, t′2, · · · , t′i, ti+1 ⇒ t′i+1, · · · tm ⇒ t′m} be any protocol update,
denoting the set of transition changes to a given protocol P , where (primed)
transitions t′j’s are added and (unprimed) transitions tk’s are deleted.

The effect of change ur on a protocol test γ is determined by considering
the interaction contexts of the transitions in ur. The contexts of the (primed)
transitions t′j ’s are computed over the changed protocol and that of (unprimed)
transitions tk’s are computed over the original protocol.

The protocol transitions t′j ’s being added may be considered individually and
the effect on the test γ may be determined as described in the previous subsection
on addition of single transitions. However, determining the effect of deletion
of transitions by considering transitions tk’s individually does not work since
inconsistencies arising due to test runs containing multiple deleted transitions
may be missed. For instance, let t1 and t2 be any two transitions in ur that
are being deleted. Assume that every test run of γ contains either t1 or t2 but
not both. Hence in this case, removal of both t1 and t2 must make the test γ
inconsistent.

However, this will not be the case if we individually consider deletions since
while considering deletion of t1, the test γ will be consistent since there is a run
with t2. Similarly, individually considering t2 will also lead to γ being consistent
since there is a test run with t1.

To handle this problem the procedure for handling individual replacements is
modified to consider all the interaction contexts of the protocol transitions being
replaced. Let ICr =

⋃
tl �∈ur IC(tl) be the union of all the interaction contexts

of the transitions tl’s in the original protocol that are not being replaced. The
multi-controller ur preserves the consistency of a test γ only if it belongs to ICr.

6.1 Handling Redundancies in Multiple Updates

According to the discussion above, we sometimes have to consider significant
changes to a controller involving large sequences of individual update rules. As
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the changes are defined in an ad hoc development process, they are often unnec-
essarily complex and contain redundancies. In such cases the impact of the given
update on tests can not be analyzed efficiently based on the original change spec-
ification. Instead, an equivalent multiple update is constructed, which is optimal
in the sense that it is the best suitable for the analysis.

The essence of our approach is as follows: Let us consider that we are given
a redundant update specification with multiple update rules, and we have to
analyze its impact on a given test. We apply the specified update to compute
a changed protocol and ensure that this protocol is consistent and consistently
testable. But then we do not immediately move on to analyze the impact of
the change based on the original update specification. Instead we first apply a
method to reduce the update, i.e., to determine equivalent set of atomic changes
that are producing the same changed protocol and that are more appropriate for
evaluating the impacts. The reduction in the most straightforward case brings on
the removal of redundancies, but in a more sophisticated approach it creates an
update that is optimal with respect to the cost of evaluating the impacts. Finally,
we apply the method described in the first part of this section to determine the
impact of the change on the test considering each atomic change of the optimized
multiple update.

We consider the previously discussed three types of atomic update rules: Ad-
dition, deletion and replacement of transitions. The problem of determining the
best equivalent update can be stated as follows: Let us consider an update δ with
multiple rules turning CFSM Pi to CFSM P ′

i . Identify the shortest equivalent
sequence of update rules changing CFSM Pi to P ′

i .
In a more sophisticated approach – if some update rules are preferred over

others – a cost function may be assigned to update rules. Let ρ be a cost function
that assigns a nonnegative real number ρ(ur) to each update rule. We constrain
ρ to be a distance metric. That is, it satisfies the following three properties:
ρ(ur) ≥ 0 and ρ(ur0) = 0 (nonnegative definiteness); ρ(ur) = ρ(ur−1) (sym-
metry); ρ(ur13) ≤ ρ(ur12) + ρ(ur23) for any three operations with the following
property: Pi ⇁ P ′

i via ur12, P ′
i ⇁ P ′′

i via ur23 and Pi ⇁ P ′′
i via ur13 (tri-

angle inequality). Furthermore, let the cost of an update with multiple rules
δ = {ur1, ur2, ..., urk} be ρ(δ) =

∑k
i=1 ρ(uri).

The cost of an update rule – in general – may represent any practical prop-
erty of the given atomic change. In our case costs reflect the impact of the given
atomic update rule on the test set; updates that are likely to induce inconsistent
tests are assigned a higher cost than others. For instance, consider a multiple
controller change that includes – among others – the addition of two interdepen-
dent transitions t′1 and t′2, such that t′2 occurs in a run in the changed protocol
iff t′1 also occurs. Obviously, the two update rules have the same interaction con-
texts, thus we only have to consider one of them to analyze the impacts. This
interdependency can be taken into account for example by setting the cost of
one of the update rules to 0.

As our costs are defined as distance metrics, the problem of optimizing mul-
tiple updates can be restated as finding the (edit) distance between two CFSMs
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Pi and P ′
i , where the distance between Pi and P ′

i is defined to be the minimum
cost of all sequences of edit operations that change Pi to P ′

i :
4

Definition 1. dist(Pi, P
′
i ) = min{ρ(δ) |δ is an update changing Pi to P ′

i}.

With this approach we have turned the problem of reducing multiple updates to
an approximate graph matching problem [16]. Thus the tools and algorithms of
the graph matching theory can be used to generate an update with the following
properties:5 It is equivalent to the original update specification, i.e., it induces
the required modifications; it is the lowest-cost update, i.e., the impact of the
given change on tests can be most effectively calculated based on it.

7 Conclusion

An automatic approach for determining impact of protocol changes on existing
protocol tests in a white-box testing model is proposed. Protocols are modeled
as a network of CFSMs that interact by message passing over bounded queues.
Protocol changes add/replace/delete one or more protocol transitions in one or
more controllers. Protocol tests are formalized as a protocol stable state along
with a set of external environment inputs. Notions of consistent tests and con-
sistently testable protocols are introduced. Changes must preserve consistently
testability of protocols so that it is still possible to test all the runs of the changed
protocol by using consistent tests. It is shown how symbolic state exploration
over the changed protocol can be used to ensure that the protocol is consis-
tently testable. The impact of a change on a test is characterized in terms of
whether the consistency of the test is preserved by the change. For tests, whose
consistency is preserved, we further show how state exploration can be used to
determine whether the test exercises the changed behavior in which case it is
re-usable; otherwise, the test is independent of change. We showed that single
transition additions always preserve consistency of existing tests. Single tran-
sition replacements may make tests inconsistent if every test run exercises the
deleted transition. We have shown how the approach can be extended to deal
with more complex changes where protocol transitions in multiple controllers are
simultaneously changed. We also describe a novel approach to reduce complex
changes and create the shortest – or in an other sense optimal – sequence of
changes inducing the required modifications. To the best of our knowledge, this
is perhaps the first paper to formally address the effect of changes to CFSM-
based protocols on protocol tests. We plan to extend this approach to use static
analysis to analyze the protocol transition dependencies [19] to make it more
useful in practice. We also plan to investigate augmenting existing tests with
addition information such as states where inputs are issued to further facilitate
the change impact analysis in practice.
4 The original problem identifying the shortest sequence of update rules is a special

case of the latter with all update rules having equal costs.
5 For the algorithms and their application considering CFSMs see [17] and our earlier

paper [18].
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