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Abstract. We propose an approach to test whether a system conforms
to its specification given in terms of an Input/Output Symbolic Transi-
tion System (IOSTS). IOSTSs use data types to enrich transitions with
data-based messages and guards depending on state variables. We use
symbolic execution techniques both to extract IOSTS behaviours to be
tested in the role of test purposes and to ground an algorithm of test
case generation. Thus, contrarily to some already existing approaches,
our test purposes are directly expressed as symbolic execution paths of
the specification. They are finite symbolic subtrees of its symbolic exe-
cution. Finally, we give coverage criteria and demonstrate our approach
on a running example.

Keywords: Conformance testing, Input/Output Symbolic Transition
Systems, Test Purposes, Symbolic Execution, Coverage Criteria.

1 Introduction

Symbolic Transition Systems (STS) are composed of a data part and of a state-
transition graph part. They specify behaviours of reactive systems with some
benefits compared to the use of classical labelled transition systems. Models are
often smaller and it is even possible to finitely denote systems having an infinite
number of states. In this paper, following the works of [5, 11, 3], we are inter-
ested in studying conformance testing in the context of Input/Output Symbolic
Transition Systems (IOSTS).

Approaches based on symbolic transformations make possible to exploit a
particular analysis technique, the so-called symbolic execution [2, 6], to define a
test selection strategy. This technique has been first defined to compute program
executions according to some constraints expressed on input values. The main
idea is to use symbols instead of concrete data as input values and to derive
a symbolic execution tree in order to describe all possible computations in a
symbolic way. In our contribution, test purposes are defined as some particular
� This work was partially supported by the RNRT French project STACS.
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subtrees of this symbolic execution tree. They may be chosen by the user but we
also propose criteria to automatically compute tests purposes. This is a response
to industrial needs where engineers are not always able to define which behav-
iours they want to test. We introduce two criteria. The first one is called all
symbolic behaviours of length n criterion. The second one is called the restriction
by inclusion criterion: the extracted subtree satisfies a coverage criterion which
is based on a procedure of redundancy detection. According to these test pur-
poses, test cases are generated. Our algorithm for test case generation is given
by a set of inference rules. Each rule is dedicated to handle an observation from
the system under test (SUT) or a stimulation sent by the test case to the SUT.
This testing process leads to a verdict being either PASS, FAIL, INCONC or
WeakPASS. PASS means that the SUT succeeded in passing a test. FAIL means
that a non-conformance has been detected. INCONC means that conformance
is observed but the test purpose is not achieved while WeakPASS means that
we are not sure to have achieved the test purpose. This last case is essentially
due to the fact that the specifications may be non-deterministic.

Our work on symbolic conformance testing is close to the ones of [3, 5]. Our
contribution on generation of test cases is inspired by the one of [3]. But as
the data part in [3] was only given according to a pure and abstract theoretical
description, the implementation counterpart and examples are clearly missing.
Associating a verdict to a test case execution requires to perform reachability
analysis. Indeed, one must be able to compute as soon as possible whether or
not a conformance may still be observed. In [5] over-approximation mechanisms
based on abstract interpretation are used to perform reachability analysis. In our
approach, we do not use such abstract interpretation techniques which have the
drawbacks of both being difficult to use and of sometimes giving only approx-
imated verdicts. We prefer to use symbolic execution based mechanisms which
have been already successfully advocated in [10] to validate IOSTS models by
exhibiting pertinent scenarios or deadlock situations.

The paper is structured as follow. In Section 2 we present the IOSTS formal-
ism. Symbolic execution and restriction by inclusion are defined in Section 3. In
Section 4, we present on-the-fly rules for generating test cases. In Section 5, we
discuss the usage of coverage criterion for test purposes definition.

2 Input Output Symbolic Transition Systems

Input/Output Symbolic Transition Systems (IOSTS) extend Input Output La-
belled Transition Systems (IOLTS) [10] by including data types. IOSTS are
used to specify dynamic aspects. This is done by describing modifications of
values associated to some variables, called attribute variables, in order to de-
note system state modifications. These modifications may be due to internal
operations denoted by attribute variable substitutions or to interactions with
the environment under the form of exchanges through communication chan-
nels of input/output messages. Those modifications may be conditioned by
guards.
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2.1 Data Types

Data types are specified with a typed equational specification framework.

Syntax. A data type signature is a couple Ω = (S, Op) where S is a set of
type names, Op is a set of operation names, each one provided with a profile
s1 · · · sn−1 → sn (for i ≤ n, si ∈ S). Let V =

⋃

s∈S

Vs be a set of typed variable

names. The set of Ω-terms with variables in V is denoted TΩ(V ) =
⋃

s∈S

TΩ(V )s

and is inductively defined as usual over Op and V . TΩ(∅) is simply denoted TΩ.
A Ω-substitution is a function σ : V → TΩ(V ) preserving types. In the fol-

lowing, one notes TΩ(V )V the set of all the Ω-substitutions of the variables V .
Any substitution σ may be canonically extended to terms.

The set SenΩ(V ) of all typed equational Ω-formulae contains the truth values
true, false and all formulae built using the equality predicates t = t′ for t, t′ ∈
TΩ(V )s, and the usual connectives ¬, ∨, ∧, ⇒.

Semantics. A Ω-model is a family M = {Ms}s∈S with, for each f : s1 · · · sn →
s ∈ Op, a function fM : Ms1 × · · · × Msn → Ms. We define Ω-interpretations
as applications ν from V to M preserving types, extended to terms in TΩ(V ).
A model M satisfies a formula ϕ, denoted by M |= ϕ, if and only if, for all
interpretations ν, M |=ν ϕ, where M |=ν t = t′ is defined by ν(t) = ν(t′), and
where the truth values and the connectives are handled as usual. MV is the set
of all Ω-interpretations of V in M . Given a model M and a formula ϕ, ϕ is said
satisfiable in M , if there exists an interpretation ν such that M |=ν ϕ.

In the sequel, we suppose that data types of our IOSTS correspond to the
generic signature Ω = (S, Op) and are interpreted in a fixed model M . In the
following, elements of M are called concrete data and denoted by terms of TΩ.

2.2 Input/Output Symbolic Transition Systems

Definition 1 (IOSTS-signature). An IOSTS-signature Σ is a triple
(Ω, A, C) where Ω is a data type signature, A =

⋃

s∈S

As is a set of variable names

called attribute variables and C is a set of communication channel names.

An IOSTS communicates with its environment through communication actions:

Definition 2 (Actions). The set of communication actions, denoted Act(Σ) =
Input(Σ) ∪ Output(Σ), is defined as follows, with c ∈ C, y ∈ A and t ∈ TΩ(A):

Input(Σ) = c?y | c? and Output(Σ) = c!t | c!

Elements of Input(Σ) are stimulations of the system from the environment: c?x
(resp. c?) means that the system waits on the channel c for a value that will be
assigned to the attribute variable x (resp. for a signal, for example, a pressed
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button). Output(Σ) are responses of the system to the environment: c!t (resp. c!)
is the emission of the value t (resp. of a message without any sensible argument)
through the channel c.

Definition 3 (IOSTS). An IOSTS over Σ is a triple G = (Q, q0, T rans)
where Q is a set of state names, q0 ∈ Q is the initial state and Trans ⊆
Q × ActΣ(A) × SenΩ(A) × TΩ(A)A × Q. A transition (q, act, φ, ρ, q′) of Trans
is composed of a source state q, an action act, a guard ϕ, a substitution of vari-
ables ρ and a target state q′. For each state q ∈ Q, there is a finite number of
transitions of source state q.

Observations for a communicating system are made of output actions. However,
a system cannot always emit an output message from a given state q. It is then
said to be quiescent [13]. In particular, quiescence from q depends on the current
values of the attribute variables and on the guards of all transitions outgoing
from q. As in [13], we can complete an IOSTS to explicit quiescent situations. For
that, we add a special output communication action δ!, expressing the absence of
output, whose guard is complementary to all other guards of output transitions
from q. This enrichment by quiescence is given by:

Definition 4 (Enrichment by quiescence). Let G = (Q, q0, T rans) be an
IOSTS over Σ = (Ω, A, C). The enrichment of G by quiescence is the IOSTS
over Σδ = (Ω, A, C ∪{δ}), defined by Gδ = (Q∪{qδ}, q0, T rans∪Transδ) where
(q, act, ϕ, ρ, q′) ∈ Transδ iff:

– act = δ!, ρ is the identity substitution and q′ = qδ.
– Let us note tr1, · · · , trn all transitions of the form tri = (q, acti, ϕi, ρi, qi)

with acti ∈ Output(Σ). Then ϕ is ∧i≤n¬ϕi if n > 0 and is true otherwise1.

Example 1. Let us consider an ATM system built over the communicating au-
tomaton depicted in Figure 1. This IOSTS specifies a system of cash withdrawal,
with the initial state q0. The user asks for some amount (amount?x). The ATM
system checks if there is enough money in the account user (represented by the
variable m) and if this is the first or the second time that the user withdraws
money after a deposit. Then the user receives the asked amount by the channel
cash. If the user account is less than 1000 then the withdrawal operation is not
free and costs 1. Else, if there is not enough money in the account, the user
receives an error message by the channel screen. The user can also deposit some
money (t) in his bank account by the channel deposit. This is added to the bank
account (m := m + t). Moreover, the user can ask for the amount of its account
by the channel check, and receives the answer by the channel sum. There is only
one transition labelled by δ! starting from the state q0. Indeed, the state q1 and
q2 are such that whatever the values of the attribute variables are, it is always
possible to emit at least a message.

1 If ∧i≤n¬ϕi is not a satisfiable formula, the (q, act,∧i≤n¬ϕi, ρ, q′) transition may
clearly be omitted.
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q1

screen!”no money”

deposit?t

q0
sum!m

q2

cash!x
m := m − x − 1

amount?x
cp := cp + 1

cp ≤ 2 ∧ x ≤ m ∧ m < 1000

cp > 2 ∨ x > mm := m + t
cp := 0

x ≤ m ∧ m >= 1000
cp ≤ 2∧

cash!x
m := m − x

qδ
δ!

check?

Fig. 1. Example of ATM system with withdrawal according to some conditions

2.3 Semantics

Definition 5 (Runs of a transition). Let tr = (q, act, ϕ, ρ, q′) ∈ Trans. Let
us note Act(M) = (C × {?, !} × M) ∪ (C × {?, !}). The set Run(tr) ⊆ MA ×
Act(M) × MA of execution runs of tr is such that (νi, actM , νf ) ∈ Run(tr) iff:

– if act is of the form c!t (resp. c!) then M |=νi ϕ, νf = νi ◦ ρ and actM =
(c, !, νi(t)) (resp. actM = (c, !)),

– if act is of the form c?y then M |=νi ϕ, there exists νa such that νa(z) = νi(z)
for all z �= y, νf = νa ◦ ρ and actM = (c, ?, νa(y)).

– if act is of the form c? then M |=νi ϕ, νf = νi ◦ ρ and actM = (c, ?).

We denote source(tr) (resp. target(tr)) the source (resp. target) state q (resp.
q′) and act(tr) stands for act. For a run r = (νi, actM , νf ), we denote source(r),
act(r) and target(r) respectively νi, actM and νf .

Definition 6 (Finite Paths of an IOSTS). The set of finite paths in G,
denoted FP (G) contains all finite sequence tr1 . . . trn of transitions in Trans
such that source(tr1) = q0 and for all i < n, target(tri) = source(tri+1).

The runs of a finite path tr1 . . . trn in FP (G) are sequences r1 . . . rn such that
for all i ≤ n, ri is a run of tri and for all i < n, target(ri) = source(ri+1).

The set of concrete traces of a finite path p = tr1 . . . trn, denoted Trace(p) is
the set of finite action sequences act(r1) . . . act(rn) for any run r1 · · · rn of p.

In the following, and as usual, for any p ∈ FP (G), length(p) denotes the number
of occurrences of the transitions in the definition of p. We also note Extout(p)
the set of finite paths of G extending p by a transition introducing an output
action. Formally, Extout(p) = {p′ ∈ FP (G) | p′ = p.tr ∧ act(tr) ∈ Output(Σ)}.

Definition 7. The semantics of an IOSTS G is Trace(G) =
⋃

p∈FP (G)

Trace(p).
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3 Symbolic Execution

3.1 Definition

In our context, we call a symbolic behaviour of an IOSTS any finite path p of
this IOSTS for which Trace(p) �= ∅. In order to characterize the set of traces
of a symbolic behaviour we propose to use a symbolic execution mechanism.
Symbolic execution has been first defined for programs [6, 2, 9]. This technique
can naturally be adapted to the framework of IOSTS. The main idea is to replace
concrete input values and initialization values of attribute variables by symbolic
ones with fresh variables and to compute the constraints on these variables: those
constraints are called path conditions. In the sequel we assume that those fresh
variables are chosen in a set F =

⋃

s∈S

Fs disjoint from the set of attribute variables

A. We now give the intermediate definition of symbolic extended state which is a
structure allowing to store information about a symbolic behaviour: the IOSTS
current state (target state of the last transition of the symbolic behaviour), the
path condition and the symbolic values associated to attribute variables.

Definition 8 (Symbolic extended state). A symbolic extended state over
F for an IOSTS G = (Q, q0, T rans) is a triple η = (q, π, σ) where q ∈ Q,
π ∈ SenΩ(F ) is called a path condition and σ ∈ TΩ(F )A. η = (q, π, σ) is said
to be satisfiable if π is satisfiable2. One notes S (resp. Ssat) the set of all the
(resp. satisfiable) symbolic extended states over F .

We now define the symbolic execution of an IOSTS. Intuitively, the symbolic
execution of an IOSTS can be seen as a tree whose edges are symbolic extended
states and vertexes are labelled by symbolic communication actions. The root is a
symbolic extended state made of the IOSTS initial state, the path condition true
(there is no constraint to begin the execution) and of an arbitrary initialization σ0
of variables of A in F . Vertexes are computed by choosing a source symbolic state
η already computed and by symbolically executing a transition of the IOSTS
whose source is the state introduced in η. The symbolic communication action
is computed from the transition communication action and from the symbolic
values associated to attribute variables in η. A target symbolic extended state is
then computed. It stores the target state of the transition, a new path condition
derived from the path condition of η and from the transition guard, and finally
the new symbolic values associated to attribute variables.

Definition 9 (Symbolic execution of an IOSTS). Let G = (Q, q0, T rans)
be an IOSTS over Σ = (Ω, A, C). Let us note ΣF = (Ω, F, C). A full symbolic
execution of G over F is a triple (S, init, R) with init = (q0, true, σ0) where σ0
is an injective substitution in FA and R ⊆ S × Act(ΣF ) × S such that for any
two transitions in R respectively of the form (ηi, c?x, ηf ) and (η′i, d?y, η′f ), the
variables x and y are distinct and ∀a ∈ A, σ0(a) �= x. For any η ∈ S of the form
2 Let us recall that here, π is satisfiable if and only if there exists ν ∈ MF such that

M |=ν π since variables of π are by construction in F .
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(q, π, σ), for all tr ∈ Trans of the form (q, act, ϕ, ρ, q′), there exists an unique
symbolic transition st = (η, sa, η′) in R such that

– if act = c!t (resp. c!), then sa = c!σ(t) (resp. c!) and η′ = (q′, π∧σ(ϕ), σ◦ρ),
– if act = c?x with x in A then sa = c?z with z in F , and η′ = (q′, π∧σ(ϕ), σ◦

(x �→ z) ◦ ρ),
– if act = c? then sa = c?, and η′ = (q′, π ∧ σ(ϕ), σ ◦ ρ).

The symbolic execution of G over F is the triple SE(G) = (Ssat, init, Rsat)
where Rsat is the restriction of R to Ssat × Act(ΣF ) × Ssat.

The trace semantics for a symbolic execution tree is defined in a natural way.
If one solves the path condition of a given path (i.e. the path condition of its
last state) one can then evaluate all symbolic actions labelling this path and
extract the corresponding trace. Since SE(G) is obtained from the symbolic
execution tree of G by removing only un-solvable paths, one can easily prove that
Trace(G) = Trace(SE(G)). Finally, since an IOSTS and its symbolic execution
share the same trace semantics, it is equivalent to study an IOSTS or its symbolic
execution in the context of conformance testing.

sum!m0cash!x1

deposit?t1

screen!
”no money”

δ!

amount?x1

cash!x1

init : (q0, true, σ0)

check?

σ0 = x → x0, m → m0, t → t0, cp → cp0

σ1 = x → x1, m → m0, t → t0, cp → cp0 + 1

σ2 = x → x0, m → m0 + t1, t → t1, cp → cp1

π0 = cp0 ≤ 2 ∧ x1 ≤ m0 ∧ m0 ≤ 1000

π1 = cp0 ≤ 2 ∧ x1 ≤ m0 ∧ m0 < 1000

π2 = cp0 > 2 ∨ x1 > m0

σ3 = x → x1, m → m0 − x1, t → t0, cp → cp0 + 1

σ4 = x → x1, m → m0 − x1 − 1, t → t0, cp → cp0 + 1

η1 : (q1, true, σ1) η2 : (q2, true, σ0) ηδ : (qδ, true, σ0)

η4 : (q0, π0, σ3) η6 : (q0, π2, σ1)η5 : (q0, π1, σ4)

η3 : (q0, true, σ2)

η7 : (q0, true, σ0)

Fig. 2. Symbolic execution tree

Example 2. Figure 2 illustrates the beginning of the symbolic execution of the
ATM system presented in Figure 1.

3.2 Inclusion Criterion

A reactive system is supposed to continuously interact with its environment.
Thus, behaviours viewed as sequences of interactions are very often arbitrary
long. It explains that IOSTS specifications of reactive systems often contain
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internal loops. This implies that the symbolic execution of the corresponding
IOSTS has infinite paths. However, in practice, one can consider an arbitrary
long behaviour as a sequence of ”basic” behaviours. For example, the ATM
system basically offers few basic behaviours. It may: (1) provide the user with
money, (2) receive deposit from the user or (3) give the current level of the
user account. Any ”complex” behaviour of the ATM system can be seen as a
sequence of such basic behaviours. Now if one considers the symbolic execution
of the ATM system, one would observe a lot (or even an infinite number) of
occurrences of those basic behaviours. In other words, information on symbolic
behaviours provided by the symbolic execution may be highly redundant in terms
of basic behaviours. We propose to cut the symbolic execution of an IOSTS in
order to lower this redundancy. Definition 9 of symbolic execution shows that
behaviours are indeed determined by states, that is why our procedure to cut the
tree is grounded on a relation upon states. From a symbolic state η = (q, π, σ)
one can extract constraints on the set A of attribute variables : the set of all
possible interpretations νA : A → M corresponding to η are restrictions3 to A of
all interpretations ν : A ∪ F → M such that4 M |=ν

∧
x∈A(x = σ(x)) ∧ π. If the

set of possible interpretations of A for η1 is included in the one of η2 one says
that η1 ⊆ η2.

Definition 10 (States inclusion). Let η = (q, π, σ) and η′ = (q, π′, σ′) be
two symbolic extended states with resp. Fη and Fη′ as subsets of variables in F
occurring resp. in π and π′. η ⊆ η′ iff, if for any ν : A ∪ Fη → M such that
M |=ν (∧x∈A(x = σ(x)) ∧ π) then there exists ν′ : A ∪ Fη′ → M such that
ν|A = ν′

|A and M |=ν′ (∧x∈A(x = σ′(x)) ∧ π′).

Let us consider η1 and η2 verifying η1 ⊆ η2. Any transition that can be sym-
bolically executed from η1 can also be symbolically executed from η2. Moreover
if one executes a transition t from η1 and from η2, this results in two target
symbolic extended states η′

1 and η′
2 such that η′

1 ⊆ η′
2. Recursively applying this

reasoning step allows one to deduce that any symbolic behaviour that can be
deduced from η1 can also be deduced from η2. Then we propose to consider a
reduced symbolic execution by removing the subtree of root η1.

Definition 11 (Restriction by inclusion). Let SE(G) = (Ssat, init, Rsat)
be a symbolic execution of G. A restriction of SE(G) satisfying the inclusion
criterion is a triple SE(G)⊆ = (Ssat

⊆, init, Rsat
⊆) where:

– Ssat
⊆ ⊆ Ssat, init ∈ Ssat

⊆, and Rsat
⊆ ⊆ Rsat.

– For any η ∈ Ssat
⊆ if there is no (η, sa, η′) ∈ Rsat

⊆ then either there is no
(η, sa, η′) ∈ Rsat or there exists η′′ ∈ Ssat

⊆ such that η ⊆ η′′.
– For any η ∈ Ssat

⊆, if there exists (η, sa, η′) ∈ Rsat
⊆ then for all (η, sa′, η′′) ∈

Rsat, (η, sa′, η′′) ∈ Rsat
⊆.

3 As usual, the restriction of an application f : X → Y to a subset Z of X will be
denoted by f|Z .

4 When reading x = σ(x) for x ∈ A in the formula, the reader should be aware that
σ(x) denotes in fact an expression in terms of variables of F .
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Definition 11 does not require that the restriction gets a finite number of sym-
bolic extended states: it may happen that symbolic extended states cannot be
compared through ⊆. However, in practice, reactive systems generally have the
property that they regularly come back to already encountered states, as for
example the initial state. For such systems, the restriction by inclusion of their
symbolic execution generally gives a finite tree.

Example 3. Figure 2 corresponds in fact to a restriction by inclusion of the
symbolic execution of the ATM system. Indeed, η4 ⊆ init since η4 contains the
same state q0 as init and the constraints in η4, i.e. π0 = cp0 ≤ 2∧x1 ≤ m0∧m0 ≥
1000, are stronger that those in init (true). The symbolic extended states η3,
η5, η6 and η7 are handled in the same way.

4 Conformance Testing for IOSTS

4.1 Our Approach

Conformance testing supposes that a formal conformance relation is given be-
tween the specification G and the system under test SUT . We propose to adapt
the ioco relation used for example in [12]. As usual for conformance testing,
we consider that the SUT is only observable by its input/output sequences. In
particular, data handled in these sequences are concrete values which may be
denoted by ground terms of TΩ. By hypothesis, the SUT may be modelled as a
labelled transition system for which transitions are simple emissions (output) or
receptions (input) carrying concrete values. Moreover, as usual, the SUT is sup-
posed to accept all inputs in all states. The set of traces which can be observed
for the SUT , denoted by Trace(SUT ), is a subset5 of (Act(M)∪{(δ, !)})∗. Intu-
itively a SUT is conform to its specification with respect to ioco if the reactions
of the SUT are the same than those specified when it is stimulated by inputs
deduced from the specification.

Definition 12. SUT conforms to G if and only if for any tra ∈ Trace(Gδ) ∩
Trace(SUT ), if there exists act ∈ Act(M) ∪ {(δ, !)} of the form (c, !, t) or (c, !)
such that tra.act ∈ Trace(SUTδ), then tra.act ∈ Trace(Gδ).

Test purposes are used to select some behaviours to be tested. In our case, test
purposes consist of some finite paths of the symbolic execution of the specifica-
tion. For each of those paths, the last symbolic extended state is the target state
of an output action and is labelled by the keyword accept. All states belonging
to a chosen path (except the last one labelled by accept) are labelled by skip.
So, a skip label simply means that it is still possible to reach an accept state by
emitting or receiving additional messages . So, a test purpose is a finite subtree
of the symbolic execution whose leaves are labelled by accept and intermediate
nodes are labelled by skip. All other states, external to the test purpose, are
5 The absence of outputs from SUT can be observed through the emission δ!, and in

this case, this cannot be directly followed by another emission.
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labelled by �: they are not meaningful with respect to the selected paths of the
test purpose.

Definition 13. Let G be an IOSTS with SE(Gδ) = (Ssat, init, Rsat) its as-
sociated symbolic execution. A symbolic test purpose for G is an application
TP : Ssat → {skip, accept,�} such that:

– there exists η verifying TP (η) = accept,
– for any η, η′ verifying TP (η) = TP (η′) = accept, there is no finite path

st1 · · · stn such that for some i ≤ n, source(sti) = η and target(stn) = η′,
– for any η′ verifying TP (η′) = accept, there exists (η, sa, η′) in SE(Gδ) such

that sa is of the form c!t or c!.
– TP (η) = skip iff there exists a finite path st1 · · · stn such that for some i ≤ n,

source(sti) = η and TP (target(stn)) = accept. Otherwise TP (η) = �.

Unlike [5], our test purposes directly characterize by construction a subset of the
specified behaviours since they are extracted from the symbolic execution of the
specification. In the following sections, the considered test purposes will refer to
an arbitrary test purpose generically denoted by TP .

4.2 Preliminary Definitions and Informal Description

A test execution consists in executing on the SUT a transition system, called
a test case and devoted to produce testing verdicts as PASS or FAIL. The
test case and the SUT share the same set of channels and are synchronized by
coupling emissions and receptions on a given communication channel. We focus
on the sequence of data exchanged between the test case and the SUT . These
data are in fact elements of M (the model of the data part) and will be denoted
by ground terms of TΩ. We use the following notations: obs(c!t) with t in TΩ

to characterize that the SUT emits through the channel c the concrete value
denoted t and stim(c?t) to represent stimulations of the SUT , occurring when
the data t is sent by the test case to the SUT . We also use the following generic
notation [ev1, ev2, . . . , evn|V erdict] for a sequence of synchronized transitions
between a test case and the SUT leading to the verdict V erdict, each action evi

being issued either from an observation obs(evi) or a stimulation stim(evi).
Testing a SUT with respect to a given symbolic test purpose amounts to look

for stimulating and observing the SUT in such a way that when conformity
is not violated, the sequence of stimulations and observations corresponds to a
trace (belonging to semantics) of at least one path of the test purpose.

To reach this goal, the testing process achieves two tasks. The first one consists
in computing, each time it is required, a stimulation compatible with reaching an
accept state. The second one consists in computing all the symbolic states which
may have been reached taking into account the whole sequence of observations/
stimulations already encountered.

We firstly define contexts composed of a symbolic state and of a formula
expressing constraints induced by the sequence of previously encountered in-
puts/outputs.
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Definition 14 (Context). A context is a couple (s, f) where s ∈ Ssat and f is
a formula whose variables are in F .

As previously pointed out, there may be more than one single context compati-
ble with a sequence of observations/stimulations. This is taken into account by
using a set of contexts, generically noted SC (for Set of Contexts), represent-
ing the set of all potential appropriate contexts for a given sequence of stimula-
tions/observations. We introduce some auxiliary functions useful to reason about
sets of contexts, in particular in order to be able to compute the sequence of sets
of contexts resulting from the successive application of elementary actions.

Definition 15 (Function Next(ev, SC)). Let SC be a finite set of contexts
and ev ∈ Act(ΣF ). If ev is of the form c�t (resp. c�) with � ∈ {?, !} then
(s′, f ′) ∈ Next(ev, SC) with s′ = (q′, π′, σ′) iff:

– there exists (s, f) ∈ SC such that (s, c�u, s′) ∈ R (resp. (s, c�, s′) ∈ R)
– f ′ is f ∧ (t = u) (resp. f) and f ′ ∧ π′ is satisfiable.

Thus, Next(ev, SC) computes the set of all contexts following directly the con-
text SC with the event ev. When stimulating the SUT , it matters to check
whether the computation of a stimulation is compatible with the goal of finally
reaching an accept state. For that, for any context ct, the targetCond(ct) pred-
icate allows us to confront constraints inherited from the first observations or
stimulations to the target states, those labelled by accept by the test purpose.

Definition 16 (targetCond(ct)). Let ct = (s, f) be a context such that TP (s) =
skip and6 E = {s′ ∈ Ssat | ∃m ∈ (Act(ΣF ))∗, s

m−→ s′ and TP (s′) = accept},
then targetCond(ct) is the formula :

∨

(q,π,σ)∈E

π.

Given a set of contexts SC, we distinguish among all contexts in Next(ev, SC)
those which are pertinent with respect to the considered test purpose:

Definition 17 (Functions NextSkip(ev, SC) and NextPass(ev, SC)). Let
SC be a finite set of contexts and ev ∈ Act(ΣF ). If ev is of the form c�t (resp.
c�) with � ∈ {?, !} then (s′, f ′) ∈ NextSkip(ev, SC) iff:

– there exists (s, f) ∈ SC such that (s, c�u, s′) ∈ R (resp. (s, c�, s′) ∈ R)
with TP (s′) = skip

– f ′ is f ∧ (t = u) (resp. f) and f ′ ∧ targetCond(s′) is satisfiable.

NextPass(ev, SC) is defined in the same way with the difference that TP (s′) is
required to be accept instead of skip.

Let us remark that for a given symbolic state s′ = (q′, π′, σ′), the predicate
targetCond(s′) is necessarily stronger7 than π′ since by definition of symbolic

6 For a labelled graph G and a word m = a1. · · · . an, the notation s0
m−→ sn stands

for any path s0
a1−→ s1 · · · sn−1

an−−→ sn where each si
ai−→ si+1 is a transition of G.

7 π′ is said to be stronger than π iff for any interpretation ν, if M |=ν π′, then M |=ν π.
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execution, the set of constraints is increasing at each new transition. Thus, we get
NextSkip(ev, SC) ⊆ Next(ev, SC) and NextPass(ev, SC) ⊆ Next(ev, SC) for
all contexts SC and events ev. Emptiness of NextSkip(ev, SC) means that no
more accept is now reachable while non emptiness of NextPass(ev, SC) means
that at least an accept has been reached.

obs(c!t) d!l

(1) Pass

(η3, ϕ3)

(η1, ϕ1)
skip

accept

(η0, ϕ0)

(η2, ϕ2)

obs(d!l)c!t

(2) Inconc

(η3, ϕ3)

accept

skip
(η1, ϕ1)(η0, ϕ0)

(η2, ϕ2)

obs(c!t)

(3) WeakPass

skip

accept

(η0, ϕ0)

(η2, ϕ2)

(η1, ϕ1)

(η3, ϕ3)

obs(c!t) d!lc!t

(4) Fail

obs(e!x)

skip

accept

(η2, ϕ2)

(η0, ϕ0) (η1, ϕ1)

(η3, ϕ3)

Fig. 3. Algorithm’s explanations

Let us illustrate our algorithm with Figure 3 and describe an execution step
based on an emission ev from the SUT and starting from SC={(η0, ϕ0), (η1, ϕ1)}.
If Next(ev, SC) is empty, that is the case for ev = e!x, this means that the emis-
sion is not specified and so we conclude FAIL (see Figure 3 (4)). If an accept
is reached (NextPass(ev, SC) non empty) we conclude PASS when no other
context is reached, see for example Figure 3 (1) with NextPass(c!t, SC) =
{(η2, ϕ2)}, or WeakPASS when others contexts are also reached, see for ex-
ample Figure 3 (3) with Next(c!t, SC) = {(η2, ϕ2), (η3, ϕ3)}. In this last case,
we cannot distinguish whether the inner state of the SUT is represented by
the reached accept state (η2, ϕ2) or by the state (η3, ϕ3) outside of the test
purpose. At last, if NextSkip(ev, SC) is empty while Next(ev, SC) is not, see
Figure 3 (2) for ev = d!l, this means that the emission was specified but was
not aimed by the test purpose. Then, we conclude by an inconclusive verdict
INCONC.

4.3 Inference Rules

Let us recall that our goal is to compute sequences [ev1, . . . , evn|V erdict] rep-
resenting synchronized transitions between a test case and the SUT leading to
the verdict V erdict, each action evi being derived either from an observation
obs(evi) or a stimulation stim(evi), and V erdict belonging to this set of key-
words : {PASS, WeakPASS, INCONC, FAIL}. For that, we will take into
account the knowledge of the associated contexts. Each step of the construc-
tion of such a sequence will be described by means of inference rules. Those
rules are structured as follows8 SC

Result cond(ev) where SC is a set of contexts,
Result is either a set of contexts or a verdict, cond(ev) is a set of conditions
including the observation obs(ev) or the stimulation stim(ev). One should read

8 The initialisation rule will not respect this generic structure since it will simply
consist in introducing the starting context.
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a rule as follows: Given the current set of contexts SC, if cond(ev) is verified
then the algorithm may achieve a step of execution, with ev as elementary ac-
tion. As long as Result is a set of contexts, a new rule may be applied to pursue
the computation of the sequence. And of course, reaching a verdict stops the
algorithm.

Rule 0: Initialisation rule

{(init, true)}

Rule 1: The emission is compatible with the purpose but no accept is reached.

SC

Next(ev, SC)
obs(ev), NextSkip (ev, SC) �= ∅, NextPass(ev,SC) = ∅

Rule 2: The emission is not expected with regards to the specification.

SC

FAIL
obs(ev), Next(ev, SC) = ∅

Rule 3: The emission is specified but not compatible with the test purpose.

SC

INCONC
obs(ev),Next(ev, SC) �= ∅, NextSkip(ev, SC) = ∅, NextPass(ev,SC)=∅

Rule 4: All next contexts are accept ones.

SC

PASS
obs(ev),Next(ev, SC) = NextPass(ev,SC), Next(ev, SC) �= ∅

Rule 5: Some of the next contexts are labelled by accept, but not all of them.

SC

WeakPASS
obs(ev),NextPass(ev,SC) �= ∅, NextPass(ev,SC) � Next(ev, SC)

Rule 6: Stimulation of the SUT

SC

Next(ev, SC)
stim(ev),NextSkip (ev, SC) �= ∅

Rules from 1 to 5 concern observations while only Rule 6 concerns stimula-
tions. Rule 5 calls for some comments: a verdict WeakPASS means both that
the test purpose is reached and that the sequence of observations/stimulations
may correspond to another behaviour of the symbolic execution. This verdict
is thus a kind of warning. One should pursue the test execution sequence
to distinguish which states really correspond to the performed execution
sequence.

We can consider a transition system, denoted TS(TP ), from a test purpose
TP and the set of inference rules. The states are the sets of contexts appearing in
the rules and four special states labelled by the verdicts. Two states are related
by a transition labelled by an emission ev = c!t or ev = c! (resp. a receipt
ev = c?t or ev = c?) if they can be relied by the application of the unique
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rule conditioned by stim(ev) (resp. of one of the rules conditioned by obs(ev)).
Such a transition system is a simple labelled one. If such a transition system
is synchronized with the system under test in such a way that emissions and
receptions are synchronized by sharing the same communication channel and
the same data, then any licit sequence of synchronized transitions is necessarily
finite and leads to one of the four verdicts. In fact, this transition system may
be viewed as a test case in the sense of [4], except that our transition system
may be non-deterministic. Indeed, for a given set of contexts, several rules may
be applied. In particular, depending of the form of the specification, one can
choose to send to the system a message, to wait for an emission or to observe
quiescence. Even worse, for a given rule, several choices are often possible for
the data carried by the associated observation or stimulation.

We note st(TP, SUT ) the set of [ev1, . . . , evn|V erdict] such that ev1 . . . evn is
a sequence of synchronized transitions between TS(TP ) and SUT leading to the
final state labelled by V erdict in TS(TP ). Finally, we introduce the notation:
vdt(TP, SUT ) = {V erdict | ∃ev1, . . . evn, [ev1, . . . , evn|V erdict]∈st(TP, SUT )}

Using these notations, we can now state the correctness and the completeness
of our algorithm:

Theorem 1. For any IOSTS G and any SUT :

Correctness: If SUT conforms to G, for any symbolic test purpose TP ,
FAIL /∈ vdt(TP, SUT ).

Completeness: If SUT does not conform to G, there exists a symbolic test
purpose TP such that FAIL ∈ vdt(TP, SUT ).

The completeness property holds up to all the non-deterministic choices induced
by our set of rules and captured in the set vdt(TP, SUT ).

5 Criterion-Based Test Purposes

Most of the times, the set of all finite symbolic behaviours associated to a speci-
fication is lucky enough to be infinite. In such a case, one generally uses coverage
criteria to define test purposes.

The first idea is to simply cut the (infinite) symbolic execution of a specifica-
tion according to a parameter n indicating the length of the paths to be tested.
The corresponding test purpose will contain all the paths of length n derived
from the symbolic execution, provided that they are terminated by an output
action.

Definition 18 (“all paths of length n”). Let G be an IOSTS on the sig-
nature Σ and let us consider SE(Gδ) = (Ssat, init, Rsat) its associated symbolic
execution. Let n ≥ 0. The test purpose ”all paths of length n” for G is the
test purpose TGn : Ssat → {skip, accept,�} such that the only symbolic states
labelled by accept by TGn are given by the following property. For any path
p = t1 · · · tn of SE(Gδ) starting from init and verifying length(p) = n:
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– either act(tn) ∈ Output(Σδ) and TGn(target(tn)) = accept,
– or for any9 p.t ∈ Extout(p), label(target(t)) = accept.

The criterion “all paths of length n” allows one to characterize a countable family
of test purposes, approaching more and more the whole symbolic execution of
the specification. Then, the tester can make an trade-off between the size of the
test purpose (in relation with the parameter n) and the testing cost. Moreover,
such a test purpose may be decomposed in as many test purposes as accept
states: indeed, for each accept state, we can build a dedicated test purpose with
this state as unique accept state. Such a decomposition allows the tester to
systematically try to reach each accept state, thus, to reach each path of length
n (up to the fact that they are not necessarily terminated by an output action).

The criterion “all paths of length n” allows us to build test purposes. However,
the pertinent length n to be chosen is up to the tester. In order to help the tester
to chose this parameter n, we propose to use the restriction by inclusion defined
in Definition 11. This characterizes a subpart of a symbolic execution with no
redundant behaviours. The inclusion criterion gives some clear indications about
the size of basic behaviours of the specification. Intuitively, one can choose for
the value of the parameter n the length pmax of the longest path of a restriction
by inclusion of a symbolic execution. More generally, one can compose basic
behaviours by juxtaposing them. It suffices to take for the parameter n, pmax,
2 × pmax, . . . or k × pmax if we want to consider all the combinations of k basic
behaviours.

Definition 19 (“k-inclusion” criterion). Let G be an IOSTS and
SE(Gδ)⊆ = (Ssat

⊆, init, R⊆) be a restriction of SE(Gδ) satisfying the inclusion
criterion. Let us note pmax ∈ FP (SE(Gδ)⊆) such that for all p∈ FP (SE(Gδ)⊆),
length(pmax) ≥ length(p). Let k > 0. The test purpose ”k-inclusion criterion”
associated to SE(Gδ)⊆ is the test purpose ”all paths of length k× length(pmax)”
for G.

Example 4. Figure 4 illustrates the construction of test purposes. The leaves of
the symbolic tree constructed in Figure 2, i.e. the restriction by inclusion of the
ATM system, are represented by a circle ©. This tree is completed from the
symbolic state η3 with symbolic states (that are represented by a triangle �) to
have the same length for all paths of the tree (the dotted line marks the length 2).
For each leaf above the dotted line which does not result from an output, some
additional outputs are considered to ensure that paths to be tested are observed
by outputs. This last step introduces the states η11, η12, η13, η14, η15. Finally,
the states that are in a square � are those labelled with accept. It corresponds
to the 1-inclusion criterion (for lack of space, we cannot unfold the symbolic
tree until the 2-inclusion criterion but it would be the same construction). Now,
we can apply the rules of our algorithm over the paths of the symbolic tree of
Figure 4. We explain the computation of the final verdict by making explicit the

9 Let us recall that by extension, symbolic executions of IOSTS inherit from notions
associated to IOSTS: here, we have translated the notion Extout defined for IOSTS.
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δ!

check?
cash!x1

cash!x1

screen!
”no money”

sum!m0

amount?x2

cash!x2 δ!

init

screen! sum!m1”no money”

amount?x1

cash!x2

check?

deposit?t2

δ!

deposit?t1

η1 η2 η3 ηδ

η4 η5 η6 η7 η8 η9 η10 η′
δ

η12η11 η13 η15η14

Fig. 4. Construction of test purposes

intermediate applications of rules over the current set of contexts (SC) using the
following notation : SC

action−−−−→
rule

SC′ where action denotes the current element of

the considered trace (either of the form c!t, c!, c?t or c?), rule indicates which
rule is applied to get the next set of context SC′.

Let us consider the trace [deposit?250 amount?50 cash!50 | WeakPASS].

SC0 = {(init, true)} deposit?250−−−−−−−→
rule6

SC1 = {(η3, t1 = 250)} amount?50−−−−−−−→
rule6

SC2

SC2 = {(η8, (t1 = 250 ∧ x2 = 50))} cash!50−−−−−→
rule5

WeakPASS

The WeakPASS verdict is due to the 2 equalities:

• Next(cash!50, SC2) = {(η11, (t1 = 250∧x2 = 50)), (η12, (t1 = 250∧x2 = 50))}
• NextPass(cash!50, SC2) = {(η11, (t1 = 250 ∧ x2 = 50)}.

One cannot decide whether the test purpose has been achieved (the real state
corresponds to η11) or missed (the real state corresponds to η12).

5.1 Implementation Issues

The work presented here is implemented as an extension of the AGATHA tool
set [7, 10] which uses symbolic execution techniques to debug and validate spec-
ifications. The AGATHA tool allows to unfold IOSTS specifications in the form
of trees provided with path conditions for all paths of trees. Trees are computed
according to coverage criteria including those grounding test purpose definitions
discussed in Section 5. Those test purposes are thus obtained for free. All rules
defined in Section 4.3 are implemented. However applying those rules does not
necessarily lead to a deterministic process. Implementing deterministic strategies
for rules appliance is still an open issue. Presburger arithmetics [8] constitutes
the data part of IOSTS treated by AGATHA. The algorithm requires some
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decision procedures (for inclusion criterion) and constraint solving (to compute
stimulations). This is done thanks to the Omega Library [1].

6 Conclusion

We have proposed an approach to test reactive systems specified as Input/
Output Symbolic Transition Systems (IOSTS). Symbolic execution allows us
to re-express the specification in the form of a tree whose set of paths denotes
the set of all behaviours of the specification. We propose to define test purposes
by selecting a finite set of behaviours (i.e. paths) in the symbolic execution tree.
We define an algorithm to test SUT with regard to a test purpose. This algo-
rithm is given by a set of rules, both to compute stimulations of SUT which
are adequate to achieve the test purpose and to assign a verdict to a test execu-
tion. There may be four verdicts: PASS, FAIL, INCONC and WeakPASS.
WeakPASS is a verdict which expresses that conformance is observed but we
are not able to ensure that the test purpose is really achieved. Indeed, it may
happen that an input/output sequence observed during a test execution can be
related to several behaviours, not all being accepting paths of the test purpose.

Test purposes may be defined manually but we also propose to use some cov-
erage criteria to automatically extract them. The first one is the all symbolic
behaviours of length n criterion which requires to cover all paths of length n in
the symbolic execution. The other one, so-called restriction by inclusion crite-
rion, extracts a subset of all paths of the symbolic execution tree by avoiding
redundancies. Concerning coverage criteria, we are currently investigating other
kinds of criteria. Our aim is to help the tester in defining test purposes. Indeed
on the one hand test purposes are difficult to define manually as soon as the
specification has a realistic size, but on the other hand the intervention of a
human is often necessary to characterize ”clever” test purposes (i.e. allowing to
discover subtle non conformance).
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