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Abstract. In this paper we present a new density estimation algorithm
using mixtures of mixtures of Gaussians. The new algorithm overcomes the
limitations of the popular Expectation Maximization algorithm. The pa-
per first introduces a new model selection criterion called the Penalty-less
Information Criterion, which is based on the Jensen-Shannon divergence.
Mean-shift is used to automatically initialize the means and covariances
of the Expectation Maximization in order to obtain better structure in-
ference. Finally, a locally linear search is performed using the Penalty-less
Information Criterion in order to infer the underlying density of the data.
The validity of the algorithm is verified using real color images.

1 Introduction

The Expectation Maximization algorithm (EM) [1] perhaps is the most fre-
quently used parametric technique for estimating probability density functions
(PDF) in both univariate and multivariate cases. It has been widely applied in
computer vision [2], and pattern recognition [3] applications. In all of these areas,
EM is used to model the PDF of a set of feature vectors using a given parametric
model. Usually a mixture of Gaussians with a finite number of components is
used to approximate the density function. The main advantage of EM is that
it provides a closed-form analytical representation of the PDF. However, EM
suffers a few limitations that will be discussed later.

This paper introduces a new nonparametric approach based on the mean-
shift algorithm for overcoming the limitations of the EM algorithm. The paper
is organized as follows. Section 2 briefly discusses the limitations of both the
EM and the mean-shift algorithms. In Section 3 we introduce a new model
selection criterion called the Penalty-less Information Criterion (PIC) that will
be used in the subsequent sections. Section 4 presents a mean-shift- and PIC-
based method for nonparametrizing the EM algorithm. The results of using the
proposed algorithm are introduced in Section 5. Finally, Section 6 summarizes
the paper and highlights directions for future research. Throughout the paper,
we kindly encourage the reader to refer to the electronic copy for the clearer
color version of the figures.
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2 Expectation Maximization and Mean-Shift

2.1 Expectation Maximization

The Expectation Maximization is popular parametric approach for estimating
the underlying density function of a set of data vectors in both the univariate and
multivariate cases. Usually, the EM is used to approximate the underlying PDF
using a mixture of Gaussian components. EM, however, sufferers from two major
limitations. The first is that the number of components in the mixture must be
a priori specified in order to obtain a reasonable estimate of the true PDF. This
number must be accurately specified in order to balance the computational cost
in both training and testing phases on one hand and the estimation accuracy on
the other. The second limitation is that EM is highly sensitive to the initialization
of the mean vectors and covariance matrices of the mixture.

Usually, the k-means algorithm (or similar algorithms) is used to initialize
the mean vectors and covariance matrices of EM. Unfortunately, this approach
sometimes drives EM towards the wrong mixture values. It sometimes also leads
to numerical problems when estimating the covariance matrices.

Fig. 1.a shows the scatter plot of a bivariate data set drawn from a six-
component Gaussian mixture. In Fig. 1.b the k-means algorithms correctly ini-
tialized the EM which helps convergence to the correct mixture parameters. In
Fig. 1.c the k-means drives EM to converge to the wrong mixture parameters
even though the data set has not changed. This example illustrates the sig-
nificance of the initialization problem even when we know the true number of
mixture components. The advantage of using EM here is its superior ability to
infer the hidden structure of the data (assuming we can initialize it correctly).

Several attempts have been made to overcome the drawbacks of the EM
algorithm. Figuerideo and Jain [4] broadly classify these methods into two cate-
gories: deterministic approaches and stochastic approaches. Deterministic meth-
ods, such as [5] and [6], are based on selecting the number of components
according to some model selection criterion, which usually contains an increasing
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(a) Scatter plot of bivari-
ate data set withdrawn
from a 6-component mix-
ture model
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(c) The k-means biases
the EM to converge to the
wrong parameters

Fig. 1. Mixture parameter estimation using EM initialized by K-means



412 W. Abd-Almageed and L.S. Davis

function that penalizes higher number of components. In [7] and [8] stochastic
approaches based on Markov Chain Monte Carlo methods are used.

2.2 The Mean-Shift

The mode-finding algorithm introduced in [9] which is based on the mean-shift
algorithm [10], compared to the k-means, consistently converges to the modes
of the underlying density function. Therefore, for example, when applied to the
data set in Fig. 1, the mean-shift successfully finds the two local maximum at
[0, −10]T and [0, 10]T respectively.

The limitation of the mean-shift-based mode-finding algorithm is its inability
to infer the hidden structure of the data. For example, Fig. 2.a shows a noisy
image with a hidden structure (the reader is encouraged to refer to the electronic
copy for a clearer image.) The 3D scatter plot of the RGB values of the image is
shown in Fig. 2.b. When mean-shift is used to segment the image in Fig. 2, the
result is a gray image with all pixels set to [128, 128, 128]T since mean-shift is
technically “blind” to the structure of the data.

(a) A noisy image with a hidden
structure

(b) The RGB scatter plot of the im-
age in Fig. 2.a

Fig. 2. Noisy image with hidden structure

3 The Penalty-Less Information Criterion

Let X = {xi}N
i=1 be a set of N vectors to be modeled. We use EM to model the

data by a mixture of k Gaussian components as shown in Equation 1,

p(x|Θ) =
k∑

i=1

πi N (x, μi, Σi) (1)

where μi, Σi and πi are the mean, covariance and weight of component i, re-
spectively and Θ = {μis, Σis, πis} is the set of parameters of the k-component
mixture model (such that

∑k
i=1 πi = 1). The parameters set Θ can be estimated

by applying the EM algorithm on X. The set X can now be clusterized into k
subsets (i.e. clusters) using the Mahalanobis distance based on Θk, such that
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X =
k⋃

i=1

Xi (2)

where Xi is the subset of vectors that belong to cluster i.
For each cluster, i, we compute two estimates of the probability density func-

tion (PDF) underlying the data. First, we compute a parametric estimate of the
PDF as shown in Equation 3

pi
EM (x) = πi N (x, μi, Σi) (3)

where pi
EM indicates the EM-based estimate of the PDF of subset Xi. The second

PDF is a kernel density estimate (KDE) of the PDF of the cluster data given by

pi
KDE(x) =

1
N i

Ni∑

j=1

1
|Hj |

K
(

x − xi
j

Hj

)
(4)

where N i is the number of vectors in cluster i, Hj is the adaptive bandwidth
matrix of vector j, xi

j is vector number j of cluster i and K(.) is the kernel func-
tion. Since computing the kernel-based estimate of the PDF is computationally
prohibitive in higher dimensions, we use the Improved Fast Guass Transform
[11], which significantly reduces the complexity of the problem. The adaptive
bandwidth is computed using the sample-point estimator of [12]. In this paper,
we use the standard multivariate Gaussian as the kernel function.

We define the Penalty-less Information Criterion (PIC ) of a model with k
components as the sum of weighted Jensen-Shannon divergence [13] between
pi

EM and pi
KDE for all clusters as follows

PICk =
k∑

i=1

πi J SD(pi
EM , pi

KDE) (5)

where

J SD(pi
EM , pi

KDE) =
1
2

(
KLD(pi

EM , pi
Avg) + KLD(pi

KDE , pi
Avg)

)
, (6)

pi
Avg =

1
2

(
pi

EM + pi
KDE

)
(7)

and

KLD(p1, p2) =
∫

∀x
p1(x) log

(
p1(x)
p2(x)

)
dx (8)

Jensen-Shannon divergence is used here because it is a symmetric version of
Kullback-Leibler KLD divergence. Symmetry is important to equally emphasize
both estimates of the PDF; i.e. pi

KDE and pi
EM . To determine the model k̂

that best represents the data set X, PIC is computed for a range of possible
mixture components and the mixture with a minimum PIC is selected as shown
in Equation 9.

k̂ = argk min PICk and k = kmin, . . . , kmax (9)
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(a) p1
EM and p2

EM (b) p1
KDE and p2

KDE

(c) p1
EM , p2

EM and p3
EM (d) p1

KDE, p2
KDE and p3

KDE

Fig. 3. Data generated from three bivariate normal distributions. a and b:) fitting with
a 2-component mixture, c and d:) fitting with 3-component mixture.

Fig. 4. The PIC for fitting the bivariate data of Fig. 3 using kmin = 2 and kmin = 5.
The PIC is minimum at the correct number of components.

The search procedure is typical for many model selection criteria such as
Bayesian Information Criterion (BIC). In that sense, PIC can be used alone
as a model selection criterion. However, we will show in the next sections that
within the proposed algorithm kmin and kmax are indeed constants.
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Fig. 3 shows a simple example where bivariate data is generated using three
normal distributions. The result of fitting the data using a two-component Gaus-
sian mixture is shown in Fig. 3.a. The corresponding kernel density estimates
of the two clusters is shown in Fig. 3.b. Because of the clear mis-modeling, the
PIC value becomes relatively large. Fig. 3.c shows the result of fitting the data
using a three-component mixture, which is similar to the kernel density esti-
mates of the three clusters. As a result, the PIC value produced is relatively
small. Repeating the same procedure for the range k = {2, 3, 4, 5} results in
the PIC values of Fig. 4, which has a clear minimum at the correct number of
components.

4 Nonparametric EM Using Mixtures of Mixtures

Let Y = {xi}M
i=1 be a set of M vectors to be modeled. Here we use Y instead

of X to denote the entire data set for reasons that will become clear later on.
If we apply the mean-shift mode finding algorithm, proposed in [9], and only
retain the modes with positive definite Hessian, we will obtain a set of m modes
Yc = {xcj }m

j=1 which represent the local maxima points of the density function,
where m � M . For details on computing the Hessian, the reader is referred to
Han et al.’s method [14].

To infer the structure of the data, we start by partitioning Y into m partitions
each of which corresponds to one of the detected modes. For all vectors of Y we
compute a Mahalanobis-like distance δ defined by:

δ(xi|j) = (xi − xcj )
T Pj (xi − xcj )

T ,

i = 1, 2, . . . , M and
j = 1, 2, . . . , m

(10)

where Pj is the Hessian of mode j. The rationale here, as explained in [14] is to
replace the covariance matrix, which may not be accurate at this point, by the
Hessian which represents the local curvature around the mode xcj . Each vector
is then assigned to a specific mode according to Equation 11.

C(i) = argj min δ(xi|j) and j = 1, 2, . . . , m (11)

The data set can now be partitioned as

Y =
m⋃

j=1

Yj (12)

where
Yj = {∀xi ∈ Y; C(i) ≡ j} (13)

It is important to note here that the partitioning of Equation 12 is different than
that of Equation 2.

Each of the detected modes corresponds to either a single Gaussian, such as
those of Fig. 3.a, or a mixture of more than one Gaussian such as that in Fig. 1.a.
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To determine the complexity of density around a given mode xcj , we model the
partition data Yj using a mixture of Gaussians specific to partition j. In other
words,

p(x|Θj) =
k∑

i=1

πi N (x, μi, Σi) (14)

where Θj is the parameter set of the mixture associated with mode xcj . The
initial values for the mean vectors are all set to xcj . The initial values for the
covariance matrices are all set to Pj .

Since the structure of the data around xcj is unknown, we repeat the process
for a search range of mixture complexities [kmin, kmax] and compute PIC for
each complexity. The mixture that minimizes the PIC is chosen to represent the
given partition.

Applying the Penalty-less Information Criterion to all partitions results in
m mixtures of Gaussians with different complexities. The underlying density of
the entire data set Y is now modeled as a mixture of mixtures of Gaussians as
follows

p(x|Θ) =
m∑

j=1

ωj p(x|Θj) (15)

where Θ = {Θj , ωj ; j = 1, 2, . . . , , m} is the set of all parameters. (Note that
we extend the notation Θ here.) Finally, the weights of the mixtures ωjs are
computed according to Equation 16.

ωj =
∑M

i=1 p(xi|Θj)
∑m

j=1
∑M

i=1 p(xi|Θj)
(16)

Algorithm 1 summarizes the proposed algorithm.

Algorithm 1. Nonparametric EM
Data: Y = {x1, x2, . . . , xi, . . . , xM}
Result: Θjs and ωjs
begin

modes, m ←− MeanShift(Y)
Yis ←− PartitionFeatureSpace(Y, modes)
for j ← 1 to m do

X ←− Yj

N ←− M j

for k ←− kmin to kmax do
InitializeAllMeansAtTheModeLocation()
InitializeAllCovariancesAtTheModeLocation()
PIC k, Θk ←− ComputePIC(X,k)

k̂j ←− argk min PIC k

Θj ←− Θk̂j

ωis ←− EstimateMixtureWeights(Y)
end
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5 Experimental Results

5.1 Synthetic Data Example

Fig. 5 shows a set of bivariate vectors generated from a four-component Gaus-
sian mixture. Three of the Gaussian components are co-centered at [.5, .75]T

but with different covariance matrices. The fourth component is a simple compo-
nent centered at [.5, .2]T . The modes detected using mean-shift [9] are overlaid
and marked by crosses. The result of the partitioning procedure of Equation 11
is also shown where the green points indicate Y1 and the blue points indicate
Y2. The mode-based partitioning results in two partitions with different hid-
den structures. For each partition separately, the PIC is computed in the range
[kmin = 1, kmax = 4]. In our experiments we use kmax = 2d, where d is the
dimensionality of the data. Fig. 6.a shows that the correct number of mixture
components, k̂ for the first partition Y1 is k̂ = 1. On the other hand, the correct
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Fig. 5. Bivariate data generated from a 4-Gaussian mixture. The modes detected by
the mean-shift are overlaied on the scatter plot.
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(a) The PIC values for differnet mix-
ture complexities for the first par-
tition, Y1, of Fig. 5. The minimum
PIC value corresponds to k = 1 mix-
ture, which is the correct mixture
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(b) The PIC values for differnet mix-
ture complexities for the second par-
tition, Y2, of Fig. 5. The minimum
PIC value corresponds to k = 3 mix-
ture, which is the correct mixture

Fig. 6. The PIC values for different partitions Yj
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number of components of the second partition Y2 is k̂ = 3, due to the apparent
complex structure of the data, as shown in Fig. 6.b.

5.2 Real Data Examples

To verify the performance of the proposed algorithm, it has been applied in an
image segmentation setting. The results are compared to the those of standard
model selection methods. The Luv color space was used throughout the following
experiments.

Fig. 7.b shows the result of segmenting Fig. 7.a using the standard EM algo-
rithm. The number of mixture components are selected using BIC as given by
Equation 17.

k̂ = argk min −2 log p(Y |θk) + vk ln M (17)

where θk and vk are mixture model with k components and number of free
parameters in θk, respectively. The initial values of the means and covariance
matrices are selected using K-means. It is clear that the model over-segments the

(a) Original Image (b) Segmented image using EM initialized
using K-Means. BIC was used to select
the best model

(c) Segmented Image using EM, with
manually set number of mixture compo-
nents

(d) Segmented Image using the proposed
algorithm

Fig. 7. Image segmentations comparing the proposed algorithm against other tradi-
tional model selection methods
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(b) Hidden structures discovered by the
proposed algorithm. Different colors cor-
respond to different modes of the density
function

Fig. 8. BIC values and hidden structure of Fig. 7

(a) Original Image (b) Segmented image using EM initialized
using K-Means. BIC was used to select
the best model

(c) Segmented Image using EM, with
manually set number of mixture compo-
nents

(d) Segmented Image using the proposed
algorithm

Fig. 9. Image segmentations comparing the proposed algorithm against other tradi-
tional model selection methods
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(a) Original Image (b) Segmented Image using
EM, with manually set number
of mixture components. Good
convergence of K-means

(c) Segmented Image using
EM, with manually set number
of mixture components. Bad
convergence of K-means

(d) Segmented Image using the
proposed algorithm

Fig. 10. Instability of the classical methods. Two different runs of the EM give different
segmentation results.

image. The reason is that BIC only depends on the log likelihood of the feature
vectors penalized by an increasing function of the number of free parameters.

The segmentation result in Fig. 7.c is obtained by visually inspecting the
image and manually setting the number of mixture components to the correct
value and using K-means to set the initial values of model parameters. The
segmentation result are better than Fig. 7.c but not as accurate as desirable.
Also, when the same experiment is repeated, the segmentation result will be
different because of the random nature of the K-means.

Finally, Fig. 7.d shows the segmentation result using the proposed algorithm.
The result is more accurate than the previous ones. Also, we are guaranteed to
obtain the same result when repeating the experiment because the mean-shift
must converge to the same stationary points every time it is applied.

Fig. 5.1.a shows the BIC values for Fig. 7.a. The curve does not have a local
minima that suggests an appropriate model complexity. The ellipses in Fig. 5.1.b
illustrate the hidden structures discovered by the proposed algorithm. Different
modes of the density function require mixtures of variable complexities.

The same experiments was repeated for Fig. 9.a. Fig. 9.b shows the seg-
mentation result of the EM with the BIC used to find the best model and
the K-means used to initialize the model. The result of a manually selecting
the number of mixture components is shown in Fig. 9.c. Finally, the result of the
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Table 1. Number of data points and normalized run-time for model selection using
both BIC search and proposed algorithm

No. of points BIC search run-time Our run-time

Synthetic 2000 0.1583 0.0031
Woman 7598 0.0132 0.0041
House 12288 0.0525 0.0038
Hand 18544 0.2089 0.0040

proposed algorithm is shown in Fig. 9.d. The proposed algorithm yields better
segmentation.

Fig. 10 illustrates the instability of using EM for density estimation and mod-
eling. In both Fig. 10.b and Fig. 10.c the image is segmented using the EM with
manually set number of mixture components and the K-means for initializing
the mixture parameters. In Fig. 10.b the K-means helps the EM to converge
to a good mixture, which yields a good segmentation. However, with the same
number of components, K-means biases the EM to converge to a bad mixture,
which results in a very poor segmentation result.

Table 1 compares the run-times of finding the best mixture model using BIC
search (kmin = 1 and kmax = 10 and using our mixture of mixtures algorithm.
The run-times are normalized by the number of data points. The large difference
is due to two main reasons. The first is that BIC search is performed on the entire
data set while our algorithm is based on partitioning the data set before applying
the PIC search. The second reason is that the BIC search is applied on a wide
range of potential complexities (because it uses the entire data set) while the
PIC search is applied on a smaller range because of its local nature.

6 Conclusions and Future Research

This paper introduces a new method addressing the limitations of the popular
Expectation Maximization algorithm; namely the a priori knowledge regarding
the complexity of the mixture and difficulty of accurate initialization of mixture
parameters.

The paper uses the mean-shift-based mode finding algorithm developed by
Comaniciu and Meer in [9] to estimate the number of Gaussian mixtures that
must be used to model the data. Then, a partitioning algorithm is performed
to cluster the data into subsets. For each subset the regular EM is used to infer
the hidden structure of the underlying density function. The mean vectors of the
mixture is initialized at the mode location found by the mean-shift.

The paper also introduces a model selection criterion, PIC , that is used to
find the mixture that best fits the density of the mixture. The PIC compares
the parametric representation of the density against a nonparametric estimate
of PDF using the Jensen-Shannon divergence, without a penalty term.

Applying the proposed algorithm on 2D and 3D data sets shows the advan-
tages of using the algorithm to obtaining a parametric representation of the
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underlying density without manually initializing the model. In the future, we
plan to apply the proposed algorithm to other computer vision problems and
compare its performance against other popular image segmentation algorithms.
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