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Abstract. In this paper, we propose a two-level integrated model for
accurate face shape alignment. At the low level, the shape is split into
a set of line segments which serve as the nodes in the hidden layer of
a Markov Network. At the high level, all the line segments are con-
strained by a global Gaussian point distribution model. Furthermore,
those already accurately aligned points from the low level are detected
and constrained using a constrained regularization algorithm. By analyz-
ing the regularization result, a mask image of local minima is generated
to guide the distribution of Markov Network states, which makes our al-
gorithm more robust. Extensive experiments demonstrate the accuracy
and effectiveness of our proposed approach.

1 Introduction

Shape alignment is a fundamental problem in computer vision with applications
in many areas, such as medical image processing [1], object tracking [2], face
recognition and modeling [3], and face cartoon animation [4]. Accurate align-
ment of deformable shapes or contours depends on estimation of optimal de-
formable shape parameters such that the deformed shape model matches the
image evidence collected from images or video.

A number of different shape models have been proposed for shape alignment.
One approach is to postulate the deformation parameters by reducing the shape
deformation correlations. The shape prior is then modeled by the distribution
of the deformation parameters. The leading work of this approach is the active
shape model (ASM) [5]. In light of this work, several improved methods have
been developed. A Bayesian tangent shape model and an EM based searching
algorithm are proposed in [6] to make the parameter estimation more accurate
and robust. To alleviate the local minima problem, Liu et.al. [7] designed a
hierarchical shape model and DDMCMC inference algorithm. To handle the
nonlinear shape variance, a mixture of Gaussians [8] and kernel PCA [9] are
used to model the distribution of deformation parameters. For optimization,
these methods usually generate an observed shape by sampling each feature
point independently from a local likelihood and then regularize it using the
shape prior model. The main advantage of these methods is that the global
regularization step based on a shape prior may help to assure an overall shape
reasonably in line with the object. However, since each feature point is sampled
without considering its relationship with neighbor points, the observed location
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of each individual point is very sensitive to noise. To avoid the influence of the
faraway outliers, some works such as [10] imposed a simple smoothness constraint
between the neighbor points and used Dynamic Programming (DP) to find an
observed optimal shape. Unfortunately, the observed shape optimized by DP
was still directly regularized by the PCA shape model. The problem is that the
regularized shape is usually placed at a mean position with the minimal sum of
points distance to the observed optimal shape. Thus it cannot guide each “bad”
point of observed shape to the accurate location. Moreover, it may even drag
away the already accurately aligned points. Therefore, alignment accuracies of
these methods are in general insufficient for many applications.

Recently, a different type of shape alignment method based on the Markov
Random Field model has been proposed [11]. In this method, each feature point
is considered as a node in a graph, and a link is set between each pair of fea-
ture points with the interaction energy designed to impose the local structure
constraints between them. The benefit of such a model is that the shape prior
is distributed in a Markov network of components and the image observation
is still distributed by modeling the image likelihood of each individual compo-
nent. The close interaction between the local image observation and structure
constraints leads to far more accurate local shape estimation. The shortcoming
of such an approach is that it models the shape only in a local neighborhood.
Such a low level model cannot capture high level semantics in the shape. The
lack of a global shape prior often leads the methods to nonstable results.

In this paper, by combining the advantages of the above two approaches, we
propose an integrated model for accurate shape alignment. At the low level,
the shape is modeled as a Markov Network with simple structure to effectively
capture the local geometry constraints. At the high level, a global points distri-
bution model based on PCA is adopted to regularize the inferred shape from the
Markov Network. In order to avoid a decrease in accuracy during regularization,
a constrained regularization algorithm is developed to keep the “good” point
positions. The information from the global model is also fed back to the next
Markov Network inference step by a mask image to guide the distribution of
Markov Network states. This scheme effectively prevents the Markov Network
from sticking to the local minima. The accuracy of the proposed approach has
been demonstrated by extensive experiments.

2 A Two-Level Shape Model

In this section, we present a two-level model for shape alignment. The shape is
split into a set of line segments and modeled as a Markov Network with simple
structure to make the searching stage more effective and robust. At the same
time, all the line segments are correlated through a global point distribution
model to guarantee a globally reasonable shape.

2.1 Low Level Shape Model Based on Markov Network

Assuming that a shape S is described by N feature points (xi, yi) in the image,
we can represent it by a 2N -dimensional vector S = {(xi, yi), i = 1, ..., N}.
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We break the shape S into a set of line segments by the feature points. The
parameters of each line segment qi are the coordinates of its two endpoints
qi = [ws

i ,w
e
i ]. As shown in Figure 1 (a), these line segments are the nodes in the

hidden layer of the graph. If two nodes are correlated, there will be an undirected
link between them. For a deformable shape, we put a link between the connected
line segments.

Assuming the Markovian property among the nodes, the shape prior can be
modeled as p(Q),Q = {q0,q1, ...,qK}, which is a Gibbs distribution and can
be factorized as a product of all the potential functions over the cliques in the
graph:

p(Q) =
1
Z

∏

c∈C

ψc(Qc) (1)

where C is a collection of cliques in the graph and Qc is the set of variables
corresponding to the nodes in clique c, and Z is the normalization constant or
the partition function.

In the context of deformable shapes, we adopt a pairwise potential function
ψij(qi,qj) to present the constraint between two connected line segments. Thus
we write the shape prior p(Q) as:

p(Q) =
1
Z

∏

(i,j)∈C2

ψij(qi,qj) (2)

The pairwise potential function is defined by the constraints of the distance
of two endpoints (we

i and ws
j) and the angle γij between the two line segments,

as illustrated in Figure 2:

ψij(qi,qj) = G(dij ; 0, σd
ij)·G(Aij ; µA

ij , σ
A
ij) (3)

where dij = |we
i − ws

j | is the distance between we
i and ws

j , Aij = sin(γij), and
σd

ij and σA
ij are variance parameters that control the tightness of the connectivity

constraint.
Given the image observation I, as shown in Figure 1 (a), each segment qi is

also associated with its image observation, denoted as Γi. Assuming the local
observation is independent of other nodes given qi, the likelihood is factorized as:

p(I|Q) =
∏

i

pi(Γi|qi) (4)

Then the posterior can be factorized as:

p(Q|I) ∝ 1
Z

∏

i

pi(Γi|qi)
∏

(i,j)∈C2

ψij(qi,qj) (5)

For a complex shape, such as the face that contains multiple parts (brows,
eyes, etc.), only the connected line segments belonging to the same part are
linked, as shown in Figure 1 (b). We do not add links between different parts.
This will guarantee that the good parts (with strong local image observation)
move to its accurate position while not being affected by other bad parts. Such
a simple structure is also easy for inference. The global relationship between
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Fig. 1. The Markov Network for face. (a) The graph for the eye shape. (b) For the
graph of face, the links are added within each black line.
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Fig. 2. The constraint of two connected line segments

different parts is constrained by a global shape model as explained in the follow-
ing sections.

2.2 Global Shape Model Based on PCA

We adopt principal components analysis (PCA) to model the points distribution
of a shape S as in [5]. To remove the shape variation caused by the global
transformation, the shape is first aligned to the tangent space:

S = cRθx + t (6)

where x is the tangent shape vector, c is the scaling parameter, Rθ is the rotation
matrix and t is the translation parameter.

PCA is then adopted to find a set of main deformable modes. The deformable
shape can be generated by a linear combination of these modes. Suppose r modes
are retained in PCA, then:

x = µ + φrb + ε (7)

where µ is the mean shape, and φr consists the first r columns of the projection
matrix. Each column of φr corresponds to a deformable mode. ε is an isotropic
noise in the tangent space. b is a hidden variables vector to generate the shape.
Each item of b is independent and b is distributed as a multivariate Gaussian:

p(b) = G(b; 0, Λ) (8)

where Λ = diag(λ1, ..., λr). λi is the ith eigenvalue.
Under such model, the global shape prior is modeled as p(S) ∼ p(b).
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2.3 An Integrated Model

In our integrated model, a deformable shape is parameterized by the hidden vari-
able b, the pose parameters Θ = (c, θ, t) and the positions of the line segments
Q = {qi}. Given an observation image I, we want to maximize the following
posterior p(b, Θ,Q|I) to get the optimal shape. Notice that given Q, b and Θ
can be considered as independent of I, thus

p(b, Θ,Q|I) ∝ p(b, Θ|Q)p(Q|I) (9)

p(Q|I) is defined in Equation (5), and the likelihood and low level’s shape prior
are factorized in this part. The final shape S can be easily got from Q by setting
the position of one point si as the average position of the connected segments’
endpoints, which can be written as S = TQ, so p(b, Θ|Q) can be evaluated as
p(b, Θ|TQ), which is:

p(b, Θ|Q) ∝ p(TQ|b, Θ)p(b) (10)

Maximizing the posterior equation (9) is equal to minimizing the following
energy:

E = λEp + Emn (11)

where
Ep = − log p(b, Θ|Q) (12)

Emn = − log p(Q|I) (13)

λ is a weighting parameter to balance the strength of the global shape prior and
the Markov Network.

Based on this integrated model, the local and global shape constraints are
imposed by Markov Network and the global PCA model respectively. The local
structure constraints make the feature points more consistent with the image
observation and robust to the local noise, thus a more accurate result can be
achieved. And the global shape constraint regularizes the globally unreasonable
shape to obtain a more stable result.

Besides, in order to make the inference more efficient, we adopt a hierarchical
shape model similar to [7]: the shape resolution changes from coarse to fine
corresponding to a Gaussian pyramid of the image. The located coarse shape is
used to initialize the search for a finer shape in the higher resolution image.

Hierarchical Shape Model. Suppose Sl is the shape at the resolution level l
and Sl+1 is the shape at the coarser resolution level l+1, we model the conditional
distribution p(Sl|Sl+1) as a Gaussian, as in [7]. Given the located coarse shape
Sl+1, we initialize the finer shape Sl as:

S0
l = max

Sl

p(Sl|Sl+1). (14)
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3 Shape Alignment by the Two-Level Shape Model

To find the optimal shape which minimizes the energy Equation (11), we update
the shape to minimize Emn and Ep iteratively. To minimize Ep, the previous
methods such as [5] usually place the regularized shape at a mean position
with the minimal sum of points distance to the shape obtained in the Emn

minimization step. Thus some points that have already converged to the good
positions will be dragged away by those “bad” points. Also, although some “bad”
points are regularized in the Ep minimization step, they may fall into the same
false positions again in the next Emn minimization step.

In order to solve these problems, we propose a new iterative optimization
strategy. To avoid a decrease of the accuracy during the Ep minimization step, a
constrained regularization algorithm is proposed to detect and keep the “good”
points. Also to prevent the search from falling into the same mistake twice, the
information from the global shape model is fed back to the next Emn mini-
mization step by recording the “bad” areas. Such optimization strategy helps to
achieve more accurate and robust alignment result.

3.1 Alignment Algorithm Overview

We design a multi-resolution iterative search strategy to find the optimal shape.
For searching at resolution level l, the algorithm is summarized as follows:

1. Given a located coarse shape Sl+1, initialize the finer shape S0
l by Equation

(14);
2. In the neighboring region of current shape St

l , find the optimal line segments
set Qt

l to minimize the Emn in Equation (13), see subsection 3.2;
3. Update the global shape and pose parameters {b, Θ} to fit Qt

l using con-
strained regularization algorithm, and try to find a better shape S̃t

l with
lower posterior energy in Equation (11), see subsection 3.3;

4. If a better shape S̃t
l is found: St

l = S̃t
l , and also create the mask image for

guiding the distribution of Markov Network states. Else, St
l = TQt

l , and
repeat until convergence, see subsection 3.4.

The algorithm is converged if the posterior energy of current step is larger
than the previous step, i.e. E(St

l) > E(St−1
l ), or the changing is small enough,

i.e. E(St
l) − E(St−1

l ) < δ.

3.2 Local Search by Markov Network

Given the current shape St
l , we first discretize the state space of the Markov

Network in the neighbor of St
l . Then for an open curve, such as the facial contour,

we adopt DP to find the optimal solution which is very efficient. For a closed
curve, such as the eye part, we use loopy belief propagation (BP) [12] which
produces excellent empirical results for a graph containing loops [13].

To make the inference more efficient, we generate an efficient state set by
pruning states according to the strength of the local likelihood, then generating
new possible states based on the Markovian property.
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In more details, as shown in Figure 3, inspired by ASM [5], we distribute the
possible states along the profiles of St

l . Then we select the states from coarse to
fine: the line segments connecting the profile points sampled at a larger step are
tested first and those with strong local likelihood are selected. Then we select
stronger ones in the neighborhood of the kept line segments.

States pruning based on local likelihood does not consider the relationship
between one node and its neighbors, thus some key states may be missed. As
shown in Figure 3, if the two green states are selected for qi−1 and qi+1, but the
red one of qi connecting them is not selected, we cannot find a good solution. So
we add new possible states based on the Markovian property: for a node qi, given
the states of its neighbors, we add the connections with a large enough potential
as the new states of qi. Based on the above states discretization mechanism, 15
states kept for each node are enough for inference, which makes the algorithm
more efficient.

Local search by the Markov Network will make the algorithm more robust to
local noise. As shown in Figure 4, in the previous approaches [5][6], each feature
point is moved independently. The problem is that although some points have
moved to good positions, the final shape will still be dragged to a bad position
after the regularization because of those bad points, as shown in Figure 4 (b)

iq

1−iq 1+iq

Fig. 3. Generate Markov Network states. The black line (most thick black line in
printed version) is the current shape St

l . qi,qi−1,qi+1 are linked Markov Network
nodes. The pink line segments (3 line segments starting from the same point) are some
candidate states of qi. If the two green line segments (line segments up the qi−1 and
qi+1) are selected by qi−1 and qi+1, the red line segment (line segment up the qi)
should be added to qi for inference.

(a) (b) (c) (d) (e)

Fig. 4. Comparing the result of one step local search by Markov Network with ASM’s
approach. The search is executed at the low resolution (64x64) level with a ±4 pixels
search range along the shape profile for both methods. (a) The initial shape. (b) The
result of ASM’s approach. (c) The result of regularizing the shape of (b) with the shape
model. (d) The result of local search by Markov Network. (e) The result of regularizing
the shape of (d) in our constrained way.
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and (c). As a result, a precise alignment result cannot be achieved. In our in-
tegrated model, by distributing the shape prior into the nodes of the Markov
Network, the movement of one point is affected by the local image observation
and the messages from its neighbors together, thus if the strength of the good
points are strong enough, other points can be dragged away from the bad areas,
as shown in Figure 4 (d) and (e). From our experiments, in many cases our algo-
rithm can drag the shape out of local minima and generate a more precise result.

3.3 Constrained Regularization

Only minimizing Emn can not guarantee a globally reasonable shape, especially
when a strong edge appears nearby the ground truth, as shown in Figure 6 (a).
Given the shape S∗ obtained by Markov network inference, we expect the reg-
ularization of S∗ will drag the “bad” points toward the better positions and
maintain the positions of those “good” points. However, directly minimizing Ep

as in ASM [5] does not meet this expectation. Some “good” points are dragged
away as shown in Figure 6 (b). As a result, Ep is minimized but Emn becomes
much larger. To solve this problem we propose a constrained regularization al-
gorithm . The key idea is to select some points of S∗ that need to be fixed, then
add these constraints during Ep minimization step.

We formulate Equation (12) more clearly:

Ep = ∆T Σ−1
l ∆ + bT Σ−1

b b (15)

where ∆ = S∗ − (cRθx + t),x = µ + φrb. We add constrains by the likelihood
variance matrix Σl = diag(σ2

1 , σ
2
2 , ..., σ2

N ). σi is set as a smaller value, if the
corresponding point needs to be constrained. To find the optimal {b, c, θ, t}, we
adopt EM algorithm as [6].

To explain how we add constraints, we define the local energy of a feature
point si first. Denoting {qi

k}n
k=1 as the line segments connecting to point si, the

local energy is defined as the mean of these line segments’ likelihoods and their
potentials:

e(si) = − 1
n

∑

k

log p(Γk|qi
k) − 1

m

∑

k,j

log ψkj(qi
k,qi

j) (16)

Potential ψkj(qi
k,qi

j) is defined as in Equation (3). m is the number of added
potentials.

To add the constraints, we first minimize Equation (15) without any constraint
(set σi as the same value) and denote the regularized shape as S0. Then we
calculate the changing ratio of the local energy of each point: ∆ei = (e(s0

i ) −
e(s∗i ))/e(s∗i ). It’s obvious that when ∆ei <= 0, the points are moved to a better
location and need not to be constrained, while when ∆ei > 0, the points may be
moved to a worse location, and the larger ∆ei is, the priority to constrain this
point is higher. So we query those points with ∆ei > 0 in the order of ∆ei from
large to small, then test which point to be constrained following this order.
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To guarantee that the added constraint will drag the whole shape to a better
location, we accept the constraint only when the shape’s energy E(St) becomes
lower, where E(·) is defined as Equation (11). If one constraint point is accepted,
we re-order the points based on the local energy changes between current St and
the Markov Network result S∗. The algorithm is summarized in Figure 5.

Given the shape S∗ from Markov Network, the minimal energy Emin = E(S∗), the
optimal shape S̃ = S∗, the constraint marks of all points: {bi = false}, the likelihood
variance Σl = diag(1, 1, ..., 1), vk is the point index, {vk} is the points order.

1. Set Σl: σi = 0.01 if bi = true, minimize Equation (15) to find an optimal shape St

2. Evaluate the shape energy E(St).
If E(St) < Emin: set S̃ = St, Emin = E(St)
else: set bvk = false, bvk+1 = true, goto 1.

3. Calculate the local energy changes: {∆ei}, update the points order {vk},
Set bv0 = true, goto 1.

4. Repeat the above process, until the allowed maximum tested points number has
achieved

Fig. 5. Constrained Regularization Algorithm

Figure 6 (b) and (c) shows the procedure of constrained regularization. Our
algorithm can generate reasonable shape while keeping the positions of those
good points.

3.4 Guiding the Distribution of Markov Network States

After the regularization, if a better shape S̃t is found, this suggests that some
parts of the Markov Network result Qt is really bad to make the shape deviates
the global shape prior. To prevent the Markov Network from getting stuck into
the same mistake in the next local search step, we generate a mask image that

(a) (b) (c) (d) (e)

Fig. 6. The procedure of constrained regularization and guiding Markov Network states
distribution. The yellow shape (white shape in printed version) is the result of Markov
Network. The dark blue shape (black shape in printed version) is the result after regu-
larization. (a) The result after one step Markov Network local search. (b) Regularization
without constraints. (c) Regularization with constraints. (d) The states are forbidden
to distribute in the red area (thick gray line in printed version). (e) After pruning the
states in the blue area in (d), the result of Markov Network is much better.
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points out the danger regions. Then we prune those states that mostly drop into
the marked regions.

To mask the danger regions, we first calculate the distance of each line segment
qt

i to the better shape S̃t. Then if one line segment’s distance is much larger than
the mean distance, which shows that its location is really bad, we will draw it as
a line with a certain width on the mask image, as shown in Figure 6 (d). Since
after the constrained regularization, the shape S̃t fits the good points quite well,
detecting the bad line segments by this simple method is robust. By preventing
the states from dropping into the detected wrong regions, the Markov Network
will converge to the right position, see in Figure 6 (e).

4 Experiments

In this section, we apply the integrated shape model for face alignment and com-
pare it with BTSM [6] and demonstrate that our algorithm improves accuracy
greatly. The reason for comparing with BTSM is that it is an improvement of the
classic ASM algorithm and extensive experiments have demonstrated its good
performance in the context of face alignment.

To compare the accuracy of the two algorithms we use a set of child face images
with size of 512×512 and divide the data set into 428 images for training and 350
images for testing. Each image contains a face with a size ranging from 270×270
to 330 × 330. A total of 87 feature points are manually labeled on each image
for both the training and testing data sets. This data set contains the photos of
children from 2 to 15 years old with different expressions. Thus the face shape
variance is large. Consequently, although the images have good quality, the data
set is still difficult for precise alignment.

In our hierarchical search scheme, a four-level Gaussian pyramid is built by
repeated sub-sampling. For each image layer from coarse to fine, the correspond-
ing face shape contains 28, 37, 57, 87 feature points respectively. For each test
image, an initial shape is generated by randomly rotating (from −20◦ to 20◦)
and scaling (from 0.9 to 1.1) the mean shape of the training set, and it is fed
into the two algorithms.

To quantitatively evaluate the accuracy of the algorithm, we calculate the
estimation error by a curve difference measurement. Defining Dk as the distance
of one point Pk of the searched shape to its corresponding ground true curve as
explained in Figure 7(a), the estimation error is calculated as:

dist(A)j =
N∑

k=1

DA
k (17)

where dist(A)j denotes the estimation error of algorithm A on the image j, and
N is the number of feature points. For those closed sub-parts such as the eyes,
brows and mouth, we break one closed contour into two open curves as shown
in Figure 7(b). Comparing with the error measurement by summarizing the
distance between searched point and annotated point, such a curve measurement
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Searched shape

Closed contour Two open curves

(b)

P1 P2

P10
P20

Ground truth

(a)

Fig. 7. Illustration for shape distance definition. (a) For the point P1 of an open curve,
D1 is defined as the minimum distance |P1P10|. For the endpoint P2, D2 is defined as
the distance between two endpoints |P2P20|. (b) The closed contour is broken into two
open curves to calculate the error.
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Fig. 8. Comparison of the accuracy of our algorithm and BTSM for the whole facial
shape (a), facial contour (b), the eyes (c) and the mouth (d), respectively. The x-axis
denotes the index j of test images and the y-axis denotes the difference of the estimation
errors dist(BTSM)j − dist(our algorithm)j . Points above y = 0 (blue stars) denote
images with better accuracy by our algorithm and points below y = 0 (red circles) are
opposite.

is more reasonable for the comparison of alignment accuracy, because in many
cases the fitted curves are almost the same although the positions of two sets of
control points are different.

We have plotted j ∼ dist(BTSM)j − dist(our algorithm)j in Figure 8(a) for
the whole face alignment. It is shown that on 320 of 350 (91.4%) images, the
search results of our algorithm are better than that of BTSM. Since a human
is more sensitive to the alignment accuracy for facial contour, eyes and mouth,
we also compare the accuracy of these three parts respectively. For the facial
contour, the eyes and the mouth, 308(88.0%), 309(88.3%), 289(82.6%) of 350
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Fig. 9. Comparison of our algorithm and BTSM results. The first and third rows are
our results, the second and fourth rows are BTSM results.

Fig. 10. Comparison of our algorithm and BTSM searching results for the mouth part.
The first row is the mouth part cut from the test image, the second row is our results,
and the third row is BTSM’s results.

results of our algorithm are better than that of BTSM. As shown in Figure 8(b),
8(c) and 8(d), the improvement is distinct.

Figure 9 shows a set of searching results of our algorithm and BTSM. In the
case that the facial contour or other facial sub-parts is largely variant from the
average shape or there are wrinkles and shadings on the face, our algorithm can
give more accurate results than BTSM. In many cases, BTSM can localize the
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Fig. 11. Comparison of our algorithm and BTSM searching results for the eye part.
First row is the eye part cut from the test image, the second row is our results, and
the third row is BTSM’s result.

whole face well, but when you look at each part closely, the results are often not
accurate enough, as shown in Figure 10 and Figure 11, while our algorithm can
get more accurate results.

5 Conclusion

In this paper, we present an integrated model for accurate shape alignment. The
low level shape model based on a Markov Network serves to align the feature
points to the image clues more accurately, while the global shape model based on
PCA guarantees the shape to be globally reasonable. Constrained regularization
and the mask image for guiding the distribution of Markov Network states make
the algorithm more effective and robust. We have compared our algorithm with
BTSM and demonstrated its greatly improved accuracy.
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