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Abstract. We present a theoretical analysis and a new algorithm for the
problem of super-resolution imaging: the reconstruction of HR
(high-resolution) images from a sequence of LR (low-resolution) images.
Super-resolution imaging entails solutions to two problems. One is the
alignment of image frames. The other is the reconstruction of a HR im-
age from multiple aligned LR images. Our analysis of the latter problem
reveals insights into the theoretical limits of super-resolution reconstruc-
tion. We find that at best we can reconstruct a HR image blurred by a
specific low-pass filter. Based on the analysis we present a new wavelet-
based iterative reconstruction algorithm which is very robust to noise.
Furthermore, it has a computationally efficient built-in denoising scheme
with a nearly optimal risk bound. Roughly speaking, our method could be
described as a better-conditioned iterative back-projection scheme with
a fast and optimal regularization criteria in each iteration step. Experi-
ments with both simulated and real data demonstrate that our approach
has significantly better performance than existing super-resolution meth-
ods. It has the ability to remove even large amounts of mixed noise
without creating smoothing artifacts.

1 Introduction

The problem of obtaining a super-resolution image from a sequence of low-
resolution images has been studied by many researchers in recent years. Most
super-resolution algorithms formulate the problem as a signal reconstruction
problem. Essentially these algorithms differ in two aspects: one is in how the
images of the sequence are aligned; the other is in how the high-resolution image
is reconstructed from the aligned image frames. Both issues are critical for the
success of the super-resolution reconstruction. In this paper we take a flow-based
approach to image alignment ([1, 2, 3, 4]). The focus of the paper is on the later
problem (Reconstructing HR from aligned LR images).

Iterative back-projection methods ([1, 5]) have been shown to be effective for
high-resolution image reconstruction. It is known, however, that the deblurring
process, which is part of this approach, makes it very sensitive to the noise.
Thus, the requirement of very accurate image alignment estimates limits its
practical use. Various regularization methods have been proposed to deal with
the noise issue. However, these methods either are very sensitive to the assumed
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noise model (Tikhonov regularization) or are computationally expensive (Total-
Variation regularization). See [6] for more details.

Our contributions in this paper are two-fold. First, we model the image forma-
tion procedure from the point of view of filter bank theory. Then based on this
new formulation, we provide an analysis of the limits of the high-resolution recon-
struction. The conclusion is that in general full recovery is not possible without
enforcing some constraints on the recovered images. At best we could reconstruct
the image convolved with a specific low-pass filter (namely 1

4 (1, 1) ⊗ (1, 1) for
the case of the Box-type PSF).

Second, based on our new formulation, we present a robust wavelet-based
algorithm to reconstruct the image. The iteration scheme in our algorithm is
inherently more robust to noise than that of classic back-projection methods
([1, 5]), since the projection matrix of our new back-projection scheme has a
better condition number. We will show that, both in theory and experiments, it
has better performance in suppressing the error propagation than other back-
projection iteration schemes.

Furthermore, our algorithm allows us to include a wavelet-based denoising
scheme in each iteration of the reconstruction which effectively removes the noise
without creating smoothing artifacts. The advantage of our denoising scheme
over regularization methods is that it is nearly optimal with respect to the risk
bound. That is, it has the theoretical minimal error in removing noises of un-
known models. Its effectiveness in removing mixed noises and relatively large
amounts of noise is demonstrated in experiments. It is worth mentioning that
our denoising scheme adds very little computational burden compared to other
complicated regularization methods. Briefly, our method could be described as
a generalized iterative back-projection method with a fast and optimal regular-
ization criteria in each iteration step.

Wavelet theory has previously been used for image denoising and deblurring
from static images ([7, 9]). However, it has not been studied much with respect
to the super-resolution problem. In recent work wavelet theory has been applied
to this problem in this sector i [10], but only for the purpose of speeding up the
computation. Our contribution lies in an analysis that reveals the relationship
between the inherent structure of super-resolution reconstruction and the the-
ory of wavelet filter banks. This relationship is fully exploited by using various
techniques from wavelet theory in the iterations of the reconstruction.

2 Analysis of Super-Resolution Reconstruction

2.1 Formulation of High-to-Low Image Formation

We first formulate the high-to-low image formation process. To simplify the ex-
position, in the following we only discuss 1D signals with resolution enhancement
by a factor 2. Later, without much difficulty, the analysis will be extended to
the 2D case with arbitrary resolution increase. Using Farsiu’s notation ([6]), the
image formation process in the pixel domain can be modeled as

y = σ[H ∗ X(F (t))] + N, (1)
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where t is the spatial variable, X(t) is the continuous signal and y is the discrete
signal. H is the blurring operator (either optical blurring or motion blurring or
both), F is the geometric transform, N is the noise in the low-resolution image, σ
is the decimation operator, and “∗” is the convolution operator. Not considering
the noise, the high-resolution (HR) signal x and low-resolution (LR) signal y can
be defined as:

x = σ[X ], y = [σ[H ∗ X(F (·))]] ↓2 . (2)

where ↓2 is the downsampling operator with rate 2.
Next we derive the relation between the LR signal y and the HR signal x.

Define the difference E(t) = X(F (t))−X(t), which is also called the optical flow.
For the simplicity of notation, here we assume a constant flow model E(t) = ε
with 0 ≤ ε < 2 on the denser grid of the HR image x. Thus, in the LR image
the flow is a sub-pixel shift (Recall a 1-unit shift on the coarse grid of y equals
a 2-unit shift on the fine grid of x). For the case of 0 ≤ ε < 1, the first-order
Taylor approximation of Equation (2) can be written as

y = [σ[H ∗ (X(t + ε)]] ↓2= [σ[H ∗ X + H ∗ (εX ′)]] ↓2

= [σ[H ∗ X + ε(H ∗ X ′)]] ↓2= [σ[H ∗ X + ε(H ′ ∗ X)]] ↓2

= [σ[H ∗ X ]] ↓2 +ε[σ[H ′ ∗ X ]] ↓2,

The expression above in the pixel domain is then

y = [a ∗ x] ↓2 +ε[b ∗ x] ↓2, (3)

where a, b are discrete versions of the convolution kernels H and H ′ respectively.
For the case of 1 ≤ ε < 2, a similar argument yields

y = [a ∗ x(· + 1)] ↓2 +(ε − 1)[b ∗ x(· + 1)] ↓2 . (4)

Thus for any LR signal yk with general optical flow Ek(t), we have the approx-
imation of yk as either in the form of:

yk = [a ∗ x] ↓2 +εk ·∗[b ∗ x] ↓2

or in the form of:

yk = [a ∗ x(· + 1)] ↓2 +(εk − 1) ·∗[b ∗ x(· + 1)] ↓2,

where ·∗ denotes the component-wise multiplication operator (to denote general
optic flow), and εk denotes the discrete sample of the optical flow Ek(t). Having
available the optical flow values εk for multiple low-resolution images yk, we can
extract the four components:

[a ∗ x] ↓2, [a ∗ x(· + 1)] ↓2
[b ∗ x] ↓2, [b ∗ x(· + 1)] ↓2 .

(5)

As will be shown in the next subsection, the two filters a and b (which are
determined by the blurring kernel H and its derivative H ′) characterize the
super-resolution reconstruction.
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Let us next look at some examples of filters a and b for different blurring
kernels.

Example 1. Consider the box-type blurring kernel H = 1
2nχ[−n,n]. Let E(t) =

ε ≤ 1. Then we have

y(j) =
∫ ∞

−∞
χ(2j − t)X(F (t))dt =

1
2n

∫ 2j+n

2j−n

X(F (t))dt =
1
2n

∫ 2j+n

2j−n

X(t+ ε)dt.

Approximating the integration by quadrature rules, we obtain

y(j) =
1
2n

(
1
2
(1 − ε)x(2j − n) +

n−1∑
i=−n+1

x(2j − i) +
1
2
(1 + ε)x(2j + n)).

Or equivalently,
y = [a ∗ x + ε(b ∗ x)] ↓2, (6)

where a and b are the following low-pass and high-pass filters respectively:

a =
1
4n

(1, 2, · · · , 2, 1), b =
1
4n

(−1, 0, · · · , 0, 1).

Example 2. Consider a Gaussian-type blurring kernel H . Using the Cubic Car-
dinal B-spline B(t) as approximation to the Gaussian function we have

y(j) =
∫ ∞

−∞
B(2j − t)X(F (t))dt.

Again, by the quadrature rule, we have the approximation

y =
∑

i

x(2j − i)(a(i) − εb(i)),

where a = 1
96 (1, 8, 23, 32, 23, 8, 1), b = 1

48 (3, 12, 15, 0, −15, −12, −3).

2.2 Analysis of the HR Reconstruction

Given multiple LR signals yk with different motions εk, theoretically we can
obtain two complete sequences a ∗ x and b ∗ x. An interesting question arises.
Without any assumption on the finite signal x, can we theoretically reconstruct
the signal sequence x from these two sequences a ∗ x and b ∗ x?

To answer this question, let us express the sequences in another form. Let us
write the Z-transform of a signal sequence x = {x(i)} as

x(z) =
∑

i

x(i)z−i.

Then with a(z) and b(z) being the Z-transforms of the filters a and b, the Z-
transforms of a ∗ x and b ∗ x are a(z)x(z) and b(z)x(z) respectively. Now the
question can be answered by investigating whether the polynomial equation

(a(z)x(z))u(z) + (b(z)x(z))v(z) = x(z), (7)
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is solvable for the two unknowns u(z) and v(z). Eliminating x(z) from both sides
of the equation (7) yields

a(z)u(z) + b(z)v(z) = 1. (8)

From the theory of Diophantine equation we know that

Lemma 1. Given two polynomials a(z) and b(z), Equation (8) is solvable if and
only if the greatest common divisor of a(z) and b(z) is a scalar, that is, a(z) and
b(z) are co-prime.

It is observed that a(z) and b(z) in our two examples (Example 1 and 2): both
have a common divisor

c(z) = (1 + z),

which can be seen from the fact that a(−1) = b(−1) = 0 and thus z = −1 is the
root of both a(z)and b(z). Thus for these blurring kernels we cannot perfectly
reconstruct x(z) from a(z)x(z) and b(z)x(z). This conclusion holds true not only
for our examples, but also for general blurring kernels, as we will show next.

We follow Baker’s modeling of the blurring kernel H ([11]). The blurring kernel
(Point spread function) is decomposed into two components:

H = Ω ∗ C,

where Ω(X) models the blurring caused by the optics and C(X) models the
spatial integration performed by the CCD sensor. Typically Ω is modeled by a
Gaussian-type function and C is modeled by a Box-type function. Notice that

H ′ = Ω′ ∗ C.

Thus we can express the corresponding discrete filters as:

a = � ∗ c; b = τ ∗ c,

where c is the discrete version of the spatial integration kernel C, and � and τ are
the discrete versions of H and H ′. Since a(z) and b(z) have a common divisor
c(z), we cannot reconstruct x(z) for general x(z), unless C is a Dirac function,
which generally is not true. Based on Lemma 1, we then have the following claim.

Claim 1. Given multiple LR finite signals yk, we can not perfectly reconstruct
the HR finite signal x without any assumptions on x. At most we can reconstruct
c ∗ x for some low-pass filter c. The corresponding Z-transform c(z) of c is the
greatest common divisor of a(z) and b(z), which includes the spatial integration
filter.

Notice that c is a low-pass FIR (finite impulse response) filter. To recover x from
c ∗ x, we have to apply a high-pass filter on c ∗ x and impose some boundary
condition on the signal x. Such a deblurring process generally is sensitive to the
noise. A reasonable strategy then is to modify our reconstruction goal during the
intermediate iterative reconstruction process. Instead of trying to reconstruct x,
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we reconstruct c ∗ x in the iterative process, and we leave the recovery of x from
c ∗ x to the last step after finishing the iterative reconstruction.

Thus the modified HR signal to be reconstructed becomes x̃ = c ∗ x. The
corresponding equation for yk and x̃ is then:

yk = [� ∗ x̃] ↓2 +εk · [τ ∗ x̃] ↓2 (9)

or
yk = [� ∗ x̃(· + 1)] ↓2 +(εk − 1) · [τ ∗ x̃(· + 1)] ↓2,

where the Z-transform of � and τ are a(z) and b(z) divided by their greatest
common divisor c(z).

It is worth mentioning that we model the blurring procedure from HR to
LR by a first-order Taylor approximation. But our reasoning could easily be
extended to the modeling by higher-order Taylor approximations, leading to the
same conclusions.

3 Reconstruction Method

3.1 Reconstruction Based on PR Filter Banks

Introduction to PR filter banks. Before presenting our algorithm, we first
give a brief introduction to 2-channel PR (perfect reconstruction) filter banks
(see [12] for more details). A two-channel filter bank consists of two parts: an
analysis filter bank and a synthesis filter bank. In our case, the signal x̃ is first
convolved with a low-pass filter � and a high-pass filter h and then subsampled
by 2. In other words, we analyze the signal by an analysis filter bank. Then a
reconstructed signal x̂ is obtained by upsampling the signal by zero interpolation
and then filtering it with a dual low-pass filter g and a dual high-pass filter q.
In other words, we reconstruct the signal by synthesizing the output from the
analysis bank with a synthesis filter bank. See Fig. 1 for an illustration.

Fig. 1. Two-channel filter bank

Such a filter bank is called a PR filter bank if x̂ = x̃ for any input x̃. It is
known that (see [12]) the synthesis filters {�, h} of a perfect reconstruction filter
bank have to satisfy the following condition:

�(z)h(−z) − �(−z)h(z) = zmfor some integer m (10)

and the corresponding synthesis filters amount to

g(z) = h(−z); q(z) = −(�(−z)).
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Thus, given any low-pass filter �(z), we can find the corresponding high-pass
filter h(z) such that we have a PR filter by solving the linear system (10).

Iterative reconstruction scheme. We have available a number of signals
yk and the corresponding estimates of the optic flow values εk. We also have
estimates of the convolution kernels � and τ . Let then � be the low pass filter
of our PR filter bank, and we compute the corresponding h (Note h may be
different from τ).

Recall that for each LR signal yk, we have

yk = [� ∗ x̃] ↓2 +εk ·∗[τ ∗ x̃] ↓2 .

Thus [� ∗ x̃] ↓2 amounts to

[� ∗ x̃] ↓2= yk − εk ·∗[τ ∗ x̃] ↓2 . (11)

Notice that the process of a signal x̃ passing through a PR filter bank as shown
in Fig. 1 can be expressed as:

x̃ = g ∗ [(� ∗ x̃) ↓2] ↑2 +q ∗ [(h ∗ x̃) ↓2] ↑2 . (12)

Combining Equation (11) and (12), we obtain the iterative reconstruction of x̃
from K LR signals yk as follows: At step n + 1

x̃n+1 = q ∗ [(h ∗ x̃n) ↓2] ↑2 +g ∗
( 1

K

K∑
k=1

[yk − εk ·∗(τ ∗ x̃n) ↓2] ↑2

)
. (13)

Relation to other back-projection methods. Applying Equation (12), we
can rewrite Equation (13) in the form

x̃n+1 = (x̃n − g ∗ [� ∗ (x̃n) ↓2] ↑2 +g ∗
( 1

K

K∑
k=1

[yk − εk ·∗(τ ∗ x̃n) ↓2] ↑2

)

= x̃n + g ∗
( 1

K

K∑
k=1

[yk − (� ∗ x̃n + εk · ∗(τ ∗ x̃n)) ↓2] ↑2

)
.

It can be seen that the iteration scheme presented here falls in the class of
back-projection methods. But it has advantages over the usual back-projection
iterations. Consider the well-known method by Irani and Peleg [1]. Its iteration
can be described as:

xn+1 = xn +
1
K

K∑
k=1

T−1
k

(
((yk − [� ∗ Tk(xn)] ↓2) ↑2) ∗ p

)
, (14)

where Tk is the geometric transform between yk and x̃, and the high-pass filter
p is the deblurring kernel. Notice that the two methods differ in the deblurring
kernel: one is g with g(z) = h(−z) defined in Equation (10); the other is p in
Equation (14), the approximate inverse filter of �.
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The requirement on p in (14) is

||δ − � ∗ p|| < 1, (15)

where δ is the ideal unit impulse response filter. In other words, p should be a
good approximation for the inverse of �. In comparison, g in our iteration only
needs to satisfy:

�(z)g(−z) − �(−z)g(z) = zm, (16)

that is, �(z)g(−z) either has to have no odd-order components or no even-order
components. Briefly, Iteration (14) requires a deblurring kernel p such that � ∗ p
has small coefficients everywhere but the origin. In comparison, Iteration (13)
only requires a kernel g with half the coefficients of � ∗ g being zero.

It is easy to see that the noise will be propagated exponentially as O(‖p‖n) in
(14) and as O(‖g‖n) in (13). Generally the flexibility of g(z) makes it possible
to design a g that has much smaller norm than p. This leads to much better
resistance to noise propagation. Here is an example: Consider � = 1

4 (1, 2, 1).
Then

g = (−1/8, −1/4, 3/4, −1/4, −1/8)

is a dual PR filter for � with

�(z)g(−z) = −1 + 9z−2 + 16z−3 + 9z−4 − z−6.

It is easy to check that ‖g‖2 is around 0.85. The minimum for the norm of all
filters with the same length as g is around 1.1. The corresponding p is

p = (
1
2
, −2

3
,
4
3
, −2

3
,
1
2
).

This clearly indicates that our iteration scheme is more robust to noise than the
usual back-projection scheme.

3.2 Algorithm on 2D Images with Denoising

Next we generalize the algorithm to 2D images. Furthermore we introduce a
denoising process during the iterative reconstruction to suppress the noise in the
optical flow estimation.

Extension to 2D image. All the previous analysis can be generalized using
the tensor product. By an argument similar as for the 1D case, we approximate
the LR image ILR with the HR image IHR as follows:

ILR = [(a ⊗ a) ∗ IHR + u ·∗((a ⊗ b) ∗ IHR) + v · ∗((b ⊗ a) ∗ IHR)] ↓2,

where “⊗” is the Kronecker tensor product and (u, v) is the 2D optical flow
vector. Then the 2D analysis bank is

Low-pass filter: L = � ⊗ �,
High-pass filters: H1 = � ⊗ h, H2 = h ⊗ �, H3 = h ⊗ h
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and the 2D synthesis filter bank is

Low-pass filter: G = g ⊗ g,
High-pass filters: G1 = g ⊗ q, G2 = q ⊗ g, G3 = q ⊗ q.

It is easy to verify that the 2D filter bank defined above is a perfect reconstruction
filter bank with the analysis filter bank {L, Hi} and the reconstruction filter bank
{G, Qi}. Then generalizing (13), the iterative equation for the reconstruction of
the HR image Ĩ from LR images ILR

k amounts to:

Ĩn+1 =
∑3

i=1 Qi ∗ [(Hi ∗ Ĩ(n)) ↓2] ↑2

+ G ∗ 1
K

(∑K
k [ĨLR

k − u ·∗((� ⊗ τ) ∗ Ĩn) ↓2 −v ·∗((τ ⊗ �) ∗ Ĩ(n)) ↓2] ↑2 )

Recall that here Ĩ is the blurred version of the true I with Ĩ = (c ⊗ c) ∗ I.

Modified algorithm with denoising process. There always is noise in the
estimated flow u, v. However, the deconvolution operator could make the HR
image reconstruction very sensitive to such noise. It is known that the noise
variance of the solution will have hyperbolic growth when the blurring low-pass
filter has zeros in the high frequencies. Thus, denoising is necessary in order to
suppress the error propagation during the iterative reconstruction.

To suppress the noise, we introduce a wavelet denoising scheme which sub-
tracts some high-frequency components from Ĩn. Briefly, we first do a wavelet
decomposition of the high-pass response, then apply a shrinkage of wavelet co-
efficients to the decomposition, and then reassemble the signal.

Our iteration scheme with built-in denoising operator amounts to

Ĩn+1 =
∑3

i=1 Qi ∗ [Ψ(Hi ∗ Ĩ(n)) ↓2] ↑2

+ G ∗ 1
K

(∑K
k [ĨLR

k − u ·∗((� ⊗ τ) ∗ Ĩn) ↓2 −v ·∗((τ ⊗ �) ∗ I(n)) ↓2] ↑2

)
.

The denoising operator Ψ defined in the equation above is

Ψ(Hi ∗ Ĩn) = G ∗ [
(
L ∗ (Hi ∗ Ĩn)

)
↓2] ↑2 +

3∑
i=1

[Qi ∗
(
Γ [Hi ∗ (Hi ∗ Ĩn)]

)
↓2] ↑2,

where Γ is the thresholding operator. Here we use the following soft-denoising
scheme ([12]):

Γ (ν) =
{

Sign(ν)(ν − μ) if |ν| > μ
0 Otherwise.

Briefly the process of super-resolution is:

1. Compute the affine flow between every frame and the key frame.
2. Transform the affine flow to sub-pixel shifts on the finer grid of the HR

image.
3. Apply the iteration process described above to the key frame to obtain the

HR image.
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The algorithm above could easily be adapted to different blur filters by modifying
the corresponding dual filters G, Qi. Also, here we only consider a resolution
increase by a factor 2. Any other resolution increase could easily be achieved by
changing the two-channel PR filter bank to an M-channel PR filter bank.

Relation to regularization methods. One popular denoising technique used
for robust reconstruction is regularization ([13]). Recall that back-projection
methods basically find x̃ by minimizing

∑K
k ‖yk − ỹk(x̃)‖2

2, where ỹk(x̃) is the
LR signals derived from our estimated x̃. Such a least square problem usually is
ill-conditioned. One way to increase the stability is to enforce a regularization
term and solve:

min
x̃

K∑
k

‖yk − ỹk(x̃)‖2
2 + α‖Φ(x̃)‖,

where Φ is some regularization function and α is some pre-defined smoothing
factor. If the regularization is a least squares problem, we call it a Tikhonov-type
regularization. The advantage is its simplicity and efficiency, the disadvantage is
its relatively poor performance. A nonlinear diffusion regularization, like Total
Variation regularization usually performs better, but is computational expensive.

Wavelet denoising is closely related to nonlinear diffusion regularization. [14]
shows that a simple soft-denoising with Haar wavelets (� = 1

2 (1, 1), h = 1
2 (1, −1))

is equivalent to Total Variation based nonlinear diffusion (Φ(x̃) = ‖x̃‖1) for a
two-pixel signal. Roughly speaking, the wavelet denoising process in our recon-
struction is comparable to some nonlinear diffusion regularization schemes in its
ability to suppress the error propagation. However it doesn’t have the computa-
tional burden of most nonlinear diffusion regularizations, since it only needs a
linear wavelet decomposition over one level. In comparison nonlinear regulariza-
tions need to solve a nonlinear optimization.

4 Experiments and Conclusion

We compare our algorithm’s high-resolution reconstruction to standard methods
using both simulated and real data.

Simulated data. We simulated 4 low-resolution images (16 × 16) from a high
resolution image by shifting, blurring and downsampling. The blurring filter is

� =
1
16

⎛
⎝1 2 1

2 4 2
1 2 1

⎞
⎠ .

Noise of three types of sources was simulated:

1. Error in motion estimation. It is modeled by local Gaussian white noise with
parameter σ. The local covariance matrix is made up by the magnitudes of
the image gradients.

2. Noise in pixel formation. We added a Gaussian white noise with parameter
γ to the pixel values.
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3. Error in PSF modeling. We also checked how error in the PSF modeling influ-
ences the performance. The approximated PSF �̂ used in the reconstruction
was

�̂ =
1
16

⎛
⎝1 1 1

1 8 1
1 1 1

⎞
⎠ .

We compared our wavelet-based method to the popular “POCS” back-
projection method ([8]) enforced by Tikhonov regularization (See Fig. 2). It
is possible that enforcing Total Variation regularization would give a bit better
results. However, it requires solving a nonlinear minimization over each iterative
step during the reconstruction, which is very computational expensive. In our
implementation, the regularization term is the 2-norm of the Laplacian smooth-
ness constraint with parameter α = 1.

Fig. 3 demonstrates how well the wavelet-based method performs for various
noise settings. Performance is measured by the SNR (Signal-to-Noise
ratio) of the reconstructed image to the true image, which is defined as: SNR =
20 log10

‖x‖2
‖x−x̂‖2

, where x̂ is the estimation for the true image x. Fig. 3 clearly
indicates the advantage of our wavelet-based method in suppressing the noise.
Especially when noise is large, the boost in performance is significant.

Real data. We used an indoor sequence with a paper box (Fig. 4) of 13 im-
age frames. An interesting planar region was chosen manually. Fig. 5 and Fig. 6

(a) Original image (b) Noisy LR image (c) Wavelet (d) Tikhonov

Fig. 2. The HR images (c) and (d) are reconstructed from four LR images by five
iterations. (c) is reconstructed by our method. (d) is reconstructed by POCS method
with Tikhonov regularization. The motion noise is local Gaussian noise with σ = 0.2.
The image formation noise is Gaussian noise with γ = 0.01. The approximation �̂ is
used in the reconstruction instead of the true PSF �.

(a) Comp. for flow noise (b) Comp. for formation noise (c) Comp. for PSF error

Fig. 3. (a) and (b) Compare two methods for various amounts of motion noise and
image formation noise. The reconstructed image is obtained by 5 iterations. The x-axis
denotes the variance of the noise, the y-axis denotes the SNR of the reconstruction. (c)
compares the performance of two methods over the iterations for PSF model error.The
x-axis denotes the iteration number, the y-axis denotes the SNR of the reconstruction.
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(a) Reference frame (b) LR planar image region

Fig. 4. The reference image frame from the video and its selected region

(a)Interpolation (b) POCS (c) Wavelet

Fig. 5. Comparison of one reconstructed HR region for various methods

(a)Interpolation (b) POCS (c)Wavelet

Fig. 6. Comparison of another reconstructed HR region for various methods

show the comparisons of four different methods for different regions. Here the
reconstructed HR images double the resolution of the LR images. The HR im-
age in Fig. 5-6(a) were obtained by cubic interpolation from a single LR image.
In Fig. 5-6(b) we used the POCS method, where the flow field is estimated
by an affine motion model. Fig. 5-6(c) show the results from our reconstruction
scheme. The difference can be visually evaluated. Clearly, there is large improve-
ment from (b) to (c) in Fig. 5 and Fig. 6. The letters in Fig. 5(c) and Fig. 6(c)
are the clearest, and there are minimal artifacts around the edges.

Summary. We have presented a theoretical analysis and a new algorithm for
super-resolution problem based on wavelet theory. It has been demonstrated
both in theory and experiments that the proposed method in this paper is very
robust to noise without sacrificing efficiency. The reconstruction scheme allows
for super-resolution reconstruction from general video sequences, even when the
estimated optical flow is very noisy.
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