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Abstract. We address the problem of segmenting an image sequence into rigidly
moving 3D objects. An elegant solution to this problem is the multibody factor-
ization approach in which the measurement matrix is factored into lower rank
matrices. Despite progress in factorization algorithms, the performance is still
far from satisfactory and in scenes with missing data and noise, most existing
algorithms fail.

In this paper we propose a method for incorporating 2D non-motion cues
(such as spatial coherence) into multibody factorization. We formulate the prob-
lem in terms of constrained factor analysis and use the EM algorithm to find the
segmentation. We show that adding these cues improves performance in real and
synthetic sequences.

1 Introduction

The task of segmenting an image or an image sequence into objects is a basic step
towards the understanding of image contents. Despite vast research in this area, perfor-
mance of automatic systems still falls far behind human perception.

Motion segmentation provides a powerful cue for separating scenes consisting of
multiple independently moving objects. Multibody factorization algorithms [[1,12,|3,4|5]
provide an elegant framework for segmentation based on the 3D motion of the object.
These methods get as input a matrix that contains the location of a number of points in
many frames, and use algebraic factorization techniques to calculate the segmentation
of the points into objects, as well as the 3D structure and motion of each object. A major
advantage of these approaches is that they explicitly use the full temporal trajectory of
every point, and therefore they are capable of segmenting objects whose motions cannot
be distinguished using only two frames [4].

Despite recent progress in multibody factorization algorithms, their performance is
still far from satisfactory. In many sequences, for which the correct segmentation is
easily apparent from a single frame, current algorithms often fail to reach it.

Given the power of single frame cues and the poor performance of 3D motion seg-
mentation algorithms, it seems natural to search for a common framework that could
incorporate both cues. In this paper we provide such a framework. We use a latent
variable approach to 3D motion segmentation and show how to modify the M step in
an EM algorithm to take advantage of 2D affinities. We show that these cues improve
performance in real and synthetic image sequences.
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1.1 Previous Work

The factorization approach to 3D segmentation has been suggested by Costeira and
Kanade [1]] who suggested to search for a block structure in the 3D structure matrix by
computing a P x P affinity matrix ) from the SVD of the measurements matrix. It
can be shown that in the absence of noise, (¢, 7) = 0 for points belonging to differ-
ent segments. In noisy situations the inter block elements Q) (4, j) are not zero, and in
general they cannot be separated from the intra block elements by thresholding. Sorting
the matrix @ to find the segments is an NP-complete problem. Instead, Costeira and
Kanade, suggested a greedy suboptimal clustering heuristic which turns out to be very
sensitive to noise. In addition, the rank of the noise free measurements matrix should be
found from the noisy measurements matrix as an initial step. This is a difficult problem
which is discussed extensively in [2].

Gear [2] suggested a similar method that use the reduced row echelon form of the
measurements matrix as an affinity matrix. Again, in noisy situations the algorithm does
not guarantee correct segmentation. Some assumptions regarding the rank of the mo-
tion matrix are needed. Zelnik et al. [3] incorporate directional uncertainty by applying
Gear’s method on a matrix defined by measurable image quantities (spatial and tempo-
ral derivatives). Kanatani [6] proposed an algorithm that takes advantage of the affine
subspace constraint. Recent works by [5.4]] have addressed the problem of motion seg-
mentation with missing data. Both methods do not make any assumptions nor require
prior information regarding the rank of the motion matrix. In addition [4] handles corre-
lated non-uniform noise in the measurements and utilizes probabilistic prior knowledge
on camera motion and scene structure.

Several authors have addressed the related, but different problem of 3D rigid body
segmentation based on two frames or instantaneous motion [7,/8,9,10]. While these
methods show encouraging results, they lack the attractive property of factorization
methods in which information from the full temporal sequence is used simultaneously.

A different approach for image segmentation is to use single image cues such as
color, intensity, texture and spatial proximity. A common approach is to present seg-
mentation problems as problems of partitioning a weighted graph where the nodes
of the graph represent pixels and the weights represent similarity or dissimilarity be-
tween them. Then some cost function of the partition should be minimized to find
the desired segmentation. In many cases this optimization problem is NP-complete.
Shi and Malik [11] introduced the Normalized Cut criterion and suggested an approx-
imation algorithm based on the spectral properties of a weighted graph describing the
affinities between pixels. Shi and Malik extend their work to 2D motion segmenta-
tion [[12].

Single image cues have been used to improve the performance of various segmen-
tation algorithms. An EM framework for incorporating spatial coherence and 2D image
motion was presented in [[13]]. Kolmogorov and Zabih [14] have discussed incorporat-
ing spatial coherence into various segmentation algorithms. In this work we show how
to incorporate spatial coherence (as well as other 2D non-motion cues) into 3D motion
segmentation, as an extension of [[15,4].
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1.2 Main Contribution of This Work

In this paper we present a unified framework for segmentation using information emerg-
ing from a diversity of cues. While previous segmentation methods can utilize either 3D
motion information or 2D affinities but not both, we combine both sources of informa-
tion.

We follow the constrained factorization approach for motion segmentation [4] based
on the factorization formulation introduced by Costeira-Kanade [[1]. We use 2D affini-
ties to place priors on the desired semgnetation similar to [[11] and show how the priors
on the segmentation induce priors directly on the desired matrix factors. Then con-
strained factorization with priors is performed using the EM algorithm.

In contrast, previous approaches ([[1,2L[3I5]) are based on algorithms (svd, reduced
row echelon form, powerfactorization) which do not provide any apparent way to use
priors on the segmentation.

Using the constrained factorization approach, we avoid the combinatorial search
required by previous factorization approaches (e.g. [1,12,13]]) in noisy scenarios. In our
approach it is guaranteed to find a factorization where the interaction between points
that belong to different motions is strictly 0 even in the presence of noise. In addition,
with this formulation it is easy to deal with missing data and directional uncertainty
(correlated non-uniform noise in the coordinates of tracked points such as the aperture
problem). Another benefit of our formulation is that no assumptions are made regard-
ing the rank of the motion matrix M (all affine motions are dealt with), and no prior
knowledge about it is needed, unlike most previous methods for 3D motion segmen-
tation that require some knowledge or assumptions regarding the rank of the motion
matrix M (see [2] for discussion).

The EM algorithm is guaranteed to find a local maximum of the likelihood of S. Our
experiments show that the additional information in the form of 2D affinities reduces
the dependency in the initialization of the algorithm. Compared to the previous motion-
only EM algorithm [4], the number of initializations required for success has diminished
(details are given in the experiments section).

2 Model

2.1 3D Motion Segmentation — Problem Formulation

A set of P feature points in F' images are tracked along an image sequence. Let (ufp,
vsp) denote image coordinates of feature point p in frame f. Let U = (uyp), V = (vyp)
and W = (wij) where W2i—1,5 = Uij and W2i,5 = Vij for 1 < ) < F, ie. Wis
an interleaving of the rows of U and V. Let K be the number of different motion
components in the sequence. Let {Gk}f:l be a partition of the tracked feature points
into K disjoint sets, each consists of all the points that conform to the kth motion, and
let Py be the number of feature points in Gy, (3 Py = P). Let Mf be a 2 x 4 matrix
describing the jth camera parameters at time 4, and let S; be a 4 x P; matrix describing
the 3D homogeneous coordinates of the P; points in G; moving according to the jth
motion component.
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Let
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m] ' and n are 3 x 1 vectors that describe the rotation of the jth camera; d] and e are
scalars descnbmg camera translationll, and S; describes points location in 3D Let W
be a matrix of observations ordered accordlng to the grouping { G } &£ _1- 1.€. the first P
columns of W correspond to the points in G; and so on. Under affine projection, and
in the absence of noise, Costeira and Kanade [[1]] formulated this problem in the form:

[W]QFXP = Mlapsar .S AKX P 2)
where
rS 0O --- 0
ML ME 01 S . 0
M= : and  §=| 3)
M} Mlé{ 2F x4K _6 0 Sk AKX P

If the segmentation {G } 1< | were known, then we could have separated the point
tracks (columns of the observations matrix) into K disjoint submatrices according to
{Gk}, and run a single structure from motion algorithm (for example [16]) on each
submatrix. In real sequences, where segmentation is unknown, the observation matrix,
W, is a column permutation of the ordered matrix W

W=WIl=MS=S=_8II 4)

where S is a 4K x P matrix describing scene structure (with unordered columns) and
IIpy p is a column permutation matrix. Hence, the structure matrix S is in general not
block diagonal, but rather a column permutation of a block diagonal matrix. The motion
matrix, M, remains unchanged.

For noisy observations, the model is:

Wlpxp = [Mlopsar [Sligxp + Marxp &)

where 7 is Gaussian noise. We seek a factorization of W to M and S under the con-
straint that S is a permuted block diagonal matrix .5, that minimizes the weighted

squared error 3, [(W; — M, S)Tw,; ' (W, — M,S)], where ¥; " is the inverse covariance
matrix of the 2D tracked feature pomts in frame ¢t.
Let 7 be a labeling of all points, i.e. 7 = (my,...,7p), where m, = k stands

for point p is moving according to the kth motion (p € GYy). Let s, denote the 3D

! We do not subtract the mean of each row from it, since in case of missing data the centroid of
points visible in a certain frame does not coincide with the centroid of all points.
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coordinates of point p, and let S denote [s1,...,sp] the 3D coordinates of all points
(S contains both segmentation and geometry information, S contains only geometry
information). Taking the negative log of the complete likelihood (which will be needed
for the EM algorithm presented in section[3), the energy function due to 3D motion is:

E3D Motion(S: ™ M) = > E3p Motion (5p: T M) = (6)
P

Z Z((Wt,p - Mtﬂpsp)TLptTpl(Wt,p - Mtﬂpsp))
P t

Notice that if the motion M is given, ESD-Motion(g ,m, M) is a sum of functions of
variables related to a single point independent of the others.

2.2 2D Affinities

We define affinity between pixels along a sequence similar to [11]. Shi et al. [11]] define
similarity weights in an image as the product of a feature similarity term and a spatial
proximity term:

—IF(H)-F@)I3 —IX@-XG) 13
2 . . .
wig=e T e X if [ X () = XG)IE <7 ©)
0 otherwise

where X (7) is the 2D coordinates of point ¢ in the image and F’ is the vector of features
used for segmentation. For example, if segmentation is performed according to spatial
proximity, F'(i) = 1 for all points.

The weights w;; were defined in [11] for a single image. We adapt them to a se-
quence of images:

1. In order to use the information from all given frames rather than only one, we sum

—[1Xe( ) Xf(])” —HF,() Ff(J)HQ

the energy terms , over the entire sequence. In

the summation, if one of the pomts is unobserved at a certain frame, this frame is
omitted.

2. Since point locations along the sequence are the output of a tracking algorithm,
they are given up to some uncertainty. We give weights to these locations according
to R; '(i, ), the inverse covariance matrix of (X;(7) — X;(j)) in frame ¢ (it can
be shown that the posterior inverse covariance matrix of a 2D point location is

NIz S LI, . N AN
SLI, Y| see [[154}[17]), thereby replacing || X:(i) — X:(j)||5 with
(X:(i) — X:() TR (43,5) (X (i) — X¢(4)). For frames where either point i or j
is missing, R; '(i,7) = 0. In other words, frame # is omitted from the summation.

The energy of an assignment due to spatial coherence is then:

EhD-coherence (™ Z“’p,q 1- —mq)) (3

Notice that Erpy_.oherence (™) is @ sum of functions of two variables at a time.
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3 An EM Algorithm for Multibody Factorization

Our goal is to find the best segmentation and 3D structure. We are looking for

S, = argmax Pr(S, 7|W) = argmax < Pr(S, 7| M, W) > ©)
T S,

s

Maximizing the likelihood of W given S ,m, M is equivalent to minimizing the
energy I/ (S ,m, M), i.e. the negative log of the likelihood function. This energy consists
of two terms: a term of 3D motion information and a term of 2D coherence. These are
the terms E31_Motion (5p> Tp> M) and Erpy_coherence (™) introduced before.

E(S,m M) = E3D-Motion(3’ ™, M) + AE5D_coherence (™) (10)

In order to find the optimal S and 7, we minimize the energy with respect to S and
7 while averaging over M using the EM algorithm. The EM algorithm works with the
expected complete log likelihood which is the expectation of the energy (taken with
respect to the motion, M).

< E3D Motion (%, ™ M) + AE2D_coherence (T) > M=
< E3D_Motion (9, ™ M) >m +AE2D_coherence()

In the E step, sufficient statistics of the motion distribution are computed, such that
< E(S,m, M) > can be computed for every S, . In the M-step, < E(S, 7, M) >
is minimized with respect to .S and 7.

3.1 Optimization with Respect to 7

In this section, we focus on the optimization of < E(S ,m, M) > with respect to
which is a part of the M-step. The missing details regarding the E step and optimization
with respect to S in the M step are given in the next subsection.

The motion energy term (averaged over M) can be written as a sum of functions,
D,,, each of which is a function of variables (s,,, ) related to a single pixel:

< B3D_Motion (%™ M) >m= Y < E3p_Motion($p: Tps M) >u= (12)
p
ZDP(SpﬂTp)
p

The 2D coherence energy function is a sum of terms of pairwise energy V,, ,(mp, 7q)
for each pair of pixels p, g:

ErD-coherence(T) = Z EhD-coherence (Tps M) = 13)

Dyq
Z Vp,q(Tp, q)
P.q
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Therefore < E(S,m, M) > can be represented as a sum of terms D,, involving a
single point and terms V}, , involving pairs of points.

< E(S,m, M) >y= Z Dy(sp, mp) + Z Vo,a(mp, ) (14)

p p,q

With this representation, if s, is known for all p, then 7, can be found for all p by
solving a standard energy minimization problem in a Potts model. In the binary case
(i.e. K = 2), the optimal minimum of the energy function can be found efficiently
using graph cuts [18]. If there are more than two objects, an approximation can be
found using either graph cuts [[18] or loopy belief propagation [19].

Since sy, is not known, we define

Dp(mp) = rr;in Dp(sp, mp) (15)
and then
min < E(S,W,M) >np= (16)
S,
min [Z min Dy (sp, mp) + Z Vop,q(Tps Wq)] =
T Sp
p psq

min lz Dy(mp) + Z Vo.a(Tp, 77!1)]

In the next section we show how Dy, () is computed for each possible value of .
The pairwise terms, V,, 4 (7, mq) are computed directly from the images. Given D, (),
Vp.q(mp, mq) for all possible values of m,, 74, then one of the standard minimization
algorithms for Potts model can be applied to find the optimal 7.

3.2 Complete Description of the EM Algorithm

In the E-step, sufficient statistics of < E(S, 7) > are computed. Recall that only the
3D motion energy term of < E(S,7) >; depends on M, therefore only calculation
of the expectation < E3p_Motion (5p> Tp» Mp) > s is required (Erp_coherence(T) 18
constant with respect to M). We compute these sufficient statistics by representing the
factorization problem of equation[3as a problem of factor analysis [13}4].

In standard factor analysis we have a set of observations {y(¢)} that are linear com-
binations of a latent variable x(¢):

y(t) = Ax(t) +n(t) (17)

with (t) ~ N(0,021) and n(t) ~ N(0,%;). We now show how to rewrite the multi-
body factorization problem in this form.

In equation [3] the horizontal and vertical coordinates of the same point appear in
different rows. To get an equation with all the measurements taken from the same frame
in the same line of the measurements matrix, It can be rewritten as:

S 0

0o S + [U]FXQP (18)

[U Vlpxer =My Myv]rxsk { }
8K x2P
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where My, is the submatrix of M consisting of rows corresponding to U (odd rows),
and My is the submatrix of M consisting of rows corresponding to V' (even rows).

T
Let A = 5;) SOT ] . Identifying y(¢) with the tth row of the matrix [U V] and
x(t) with the ¢th row of [My My, then equation[I8]is equivalent (transposed) to equa-
tion[I7l For diagonal covariance matrices ¥; (the case where ¥, is not diagonal is dis-
cussed in [15/4]) the standard algorithm [20] gives:

E step:
E(z(t)|lyt) = (0,°1 + ATw; " A) FATY Ly (4) (19)
V(a()y(t) = (0721 + ATw; 1 4) (20)
<a(t) > = E(z(t)[y(t)) (@2
z(t)z(t)T > = V(@) |y(t)+ < z(t) >< z(t) >T (22)

Although in our setting the matrix A must satisfy certain constraints, the E-step (in
which the matrix A is assumed to be given from the M-step) remains the same as in
standard factor analysis. In [15], priors regarding the motion are incorporated into the
E-step.

M step:

In the M-step, < E(S,7) > is minimized with respect to S and 7. Section
describes how 7 is found provided that D, (k) is known. Here we describe how to
compute Dy, (k) for all p and k before the algorithm from section[3 can be applied. We
also describe how the optimal S is found.

Denote by s’; a vector of length 3 that contains the optimal 3D coordinates of point
p assuming it belongs to motion model k. In other words,

5’; 2 argmin D, (sp, k) (23)
Sp

For a diagonal noise coyariance matrix ¥; (for a non-diagonal ¥; see [15,4]), by taking
the derivative of < E(S, ) >, we get:

sy = BprCoy! (24)
where

Bk = Y [0 (0, p) (uep— < df >) <m(t)” > (25)
t
+ 0 (p+ Pop + P)(vgp— < €f >) <mi(t) >]
Cor = > [&7 (0, p) < mi(t)mi()” >
t
+ 0 (p+ Pp+ P) < (i (t)” >]
The expectations required in the M step are the appropriate subvectors and submatrices
of < x(t) >and < z(t)x(t)T > (recall equation[Iland the definition of x(¢)). Notice
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that s’; depends only on the motion distribution, the observations of point p and k. It is
independent on the other points and their assignments, given the motion distribution.
D, (k) is therefore
Dy(k) = min Dy(sp, k) = Dy(sk k) = (26)
< Z(Wt,p - MZCS];)TWtjp%Wt,p - Mfé”;) >M=
t
Z < (Wip — Mtksﬁ)TW{;(Wt,p - Mtks};) >M=
t
S WL Wiy, —2 < auk >T a0 W+

t
trace(a Wy ap g < Ty ki >)]

k\T

where ap 1, is a 2 X 8 matrix a, ), = [Osp) (Sk)T:|’ x4 1, is the subvector of x(t)
p

corresponding to the k-th motion (entries 4(k — 1) +1,...,4k and 4K +4(k — 1) +

1,...,4K + 4k) and the required expectations < x¢ > and < mt’kxtT’k > 7 were

computed in the E-step.
Now that D,,(k) is known for all p for every k, 7 is found as described in section[3l
After finding , then s, = s,”. An outline of the algorithm is given in Algorithm[Il

Algorithm 1. An outline of the EM algorithm for segmentation
Iterate until convergence:

1. E-step:
(a) fort=1,...,T,
— Compute < z(t) >, < z(t)=(t)T > using equations [[91- 21
2. M-step:
(a) forp=1,..., P,
- fork=1,...,K,
i. Compute s'; using equation 241
ii. Compute D, (k) using equation 26
(b) find 7 using a standard energy minimization algorithm (for example, graph cuts or BP).
(c) forp=1,..., P,
— assign s, = s,”
(d) Update A

The proposed segmentation algorithm can handle correlated non-uniform noise and
can be applied even when there is missing data (these are just points for which W{l (i,17)
= 0). See [15,/4] for further details. Even in the presence of noise and missing data, it
is guaranteed to find a factorization where the structure matrix has at most 4 nonzero
elements per column, resulting in increased robustness.
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4 Experiments

In this section we test our algorithm and compare it to previous algorithms on synthetic
and real sequences.

EM guarantees convergence to a local maximum which is dependent on the ini-
tialization. In these experiments, we start with several (random) initializations for each
input, and choose the output that achieves maximal likelihood to be the final result.
Empirical results show that for (synthetic) noise free scenes, the global maximum is
usually found with a single initialization. As the amount of noise increases, the number
of initializations needed for success also increases. For the experiments reported here,
the maximal number of initializations is 10 (for both EM versions).

The global minimum of equation[I6 was found using graph cuts in the experiments
with two objects. Loopy belief propagation was used for minimization in experiments
with more than two objects.

4.1 Experiments with Synthetic Data

We begin with a series of synthetic examples that demonstrate our approach vs. previous
approaches of: [1L11,14]] and normalized cut with affinities that are a linear combina-
tion of 2D affinities and the Costeira-Kanade motion interaction matrix (referred as
NCut Motion+2D in table 1). The following scenarios are tested (see figure [)):

1. A scene containing two objects with different 3D motions that are located far away
from each other,

2. A scene with two coaxial objects (and thus cannot be separated spatially) rotating
with different angular velocities,

3. And a scene containing two objects that are close to each other and have similar
(yet different) motions.

We test each of these scenes in the presence and absence of mild amount of noise
(o0 = 0.5) and significant amount of noise (¢ = 10, that was selected to show the
difference in the performance of the two versions of EM).

In the first scenario, both 3D motion and spatial proximity provide a good sepa-
ration between the objects. All algorithms have shown perfect results when there was
no noise, as expected. Once mild amount of noise was added, the performance of CK
(Costeira-Kanade, [1]]) deteriorated while the segmentation results of the 3 other algo-
rithms remained unchanged.

In the second scenario, the objects cannot be separated spatially in each individual
image, but in the overall sequence some spatial information exists as the objects have
different angular velocities. Despite of the existence of some spatial information, both
versions of Normalized Cut failed to segment the objects in both the clean and noisy
scenes. The other 3 algorithms have separated the objects perfectly in the noise free
scenario due to their different motions (which were chosen to create a full rank motion
matrix, M). Once mild amount of noise was added, again CK failed while the results of

% For the experiments with Normalized Cut we used the code available at http://www.seas.
upenn.edu/~timothee/software ncut/software.html
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Fig. 1. Three scenarios we use to demonstrate the power of combining 3D motion information
and 2D affinities. We compare the EM algorithm proposed in this paper with [1]],[11]] and [4]] on
clean and noisy (o = 0.5 and ¢ = 10) input for scenes where (a) objects are spatially separable
(and have different motions), (b) motion is the only cue for separation and (c) information from
both sources is available, and in the noisy case required for separation. results are reported in
table 1.

Table 1. Numbers of points that were misclassified by each of the algorithms for scenes from
figure[Tl These examples demonstrate the additional power of combining motion and non-motion
information and the robustness of EM.

Scene Properties Costeira- NCut NCut  Motion-Only Spatially-
Kanade [T] [1I] Motion+2D EM [4] Coherent EM

Clean, Spatially separated 0 0 0 0 0
Noisy (o = 0.5), Spatially separated 26 0 0 0 0
Noisy (o = 10), Spatially separated 34 0 0 9 0
Clean, Coaxial 0 22 23 0 0
Noisy (o = 0.5), Coaxial 14 22 25 1 0
Noisy (¢ = 10), Coaxial 46 29 28 33 31
Clean, Near by 0 25 24 0 0
Noisy (o = 0.5), Near by 8 25 24 3 1
Noisy (o = 10), Near by 48 35 27 27 1

Can Book Tea Tins

Fig.2. The first image from the sequences: Can Book, Tea Tins and 3-Cars used for comparing
the proposed EM algorithm and [3]]. Results of this comparison are summarized in table 2.

both versions of the EM algorithm did not change. When a significant amount of noise
was added, all algorithms failed because there was not enough information neither in
the 3D motion nor in the spatial proximity.
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Table 2. Misclassification error of segmentation using PowerFactorization and GPCA ([5]) and
the algorithm proposed in this paper (EM) for the inputs from [5]

Sequence Points Frames Motions GPCA [5] EM

Can Book 170 3 2 1.18% 0.00%
TeaTins 84 3 1.19% 0.00%
3-Cars 173 15 4.62% 0.00%
Puma 64 16 0.00% 0.00%
Castle 56 11 0.00% 0.00%

NN W N

In the last scenario we tested what do we gain from the combination of 2D spatial
coherence information and 3D motion information. Although objects were not coaxial
as in the previous scenario, they were not separated spatially well enough and both
versions of Normalized Cut failed in both the noise free and noisy scenarios. As in
previous cases CK found perfect segmentation when there was no noise, but failed in the
noisy case. In the presence of significant amount of noise, we see that spatially coherent
EM utilizes spatial information if it exists, and outperforms motion-only based EM.

4.2 Experiments with Real Data

We compared our algorithm to GPCA [5] by using 5 sequences that appeared in [5].
These sequences contain degenerate and non-degenerate motions, some contain only 3
frames. In this experiment, the maximal number of initializations of EM was 5, and the
results of GPCA were taken from [5]. The results are presented in table 2: EM shows
perfect results on all these input sequences, even when the number of frames is small
(3) or when the motions matrix, M, is rank deficient.

Next, we checked the performance of spatially coherent EM on the sequence used
in [4] and compared it to the motion based only EM algorithm from [4]. The input
sequence consists of two cans rotating horizontally around parallel different axes in
different angular velocities. 149 feature points were tracked along 20 frames, from
which 93 are from one can, and 56 are from the other. Some of the feature points
were occluded in part of the sequence, due to the rotation. Using motion-only based

(b)

Fig.3. (a) A sequence of two cans rotating around different parallel axes. Spatial coherent EM
succeeds to find correct segmentation and 3D structure up to 2 segmentation errors, comparing
to 8 of motion-only EM and a failure of other methods. (b) First out of 13 frames taken from
“Matrix Reloaded”. 6 points were misclassified comparing to 14 by motion-only EM.
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EM 8 points were misclassified. With the addition of spatial coherence, only 2 points
were misclassified and the 3D was correctly reconstructed. Figure B(a) shows the first
frame of the sequence and the tracks superimposed. For comparison, Costeira-Kanade
(using the maximal full submatrix of the measurements matrix) resulted in 30 misclas-
sified points and a failure in 3D structure reconstruction.

Our last input sequence is taken from the film “Matrix Reloaded”. In this experi-
ment 69 points were tracked along 13 frames: 28 on the car rotating in the air and 41
points were tracked on the front car approaching on the left (see figure 3(b)). On each
object, points were selected from to be roughly in the same depth to avoid projective
effects. Spatially coherent EM misclassified 6 points comparing to 14 points that were
misclassified by motion-only EM and 19 points that were misclassified by Ncut.

5 Discussion

In this paper we presented an algorithm for incorporating 2D non-motion affinities into
3D motion segmentation using the EM algorithm. We showed that using a coherence
prior on the segmentation is easily implemented and gives rise to better segmentation
results. In the E step, the mean and covariance of the 3D motions are calculated using
matrix operations, and in the M step the structure and the segmentation are calculated
by performing energy minimization.

With the EM framework, missing data and directional uncertainty are easily han-
dled. Placing meaningful priors and imposing constraints on the desired factorization
greatly increase the robustness of the algorithm.

Future work includes incorporation of other sources of information, for examples
other principles of perceptual organization suggested by the Gestalt psychologists. An-
other direction for future work is to place the spatial coherence prior directly on the 3D
of the points: solving together for structure and segmentation, where the prior on the
segmentation depends directly on the reconstructed 3D structure.
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