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Abstract. In many applications it is necessary to track a moving and
deforming boundary on the plane from infrequent, sparse measurements.
For instance, each of a set of mobile observers may be able to tell the
position of a point on the boundary. Often boundary components split,
merge, appear, and disappear over time. Data are typically sparse and
noisy and the underlying dynamics is uncertain. To address these issues,
we use a particle filter to represent a distribution in the large space of all
plane curves and propose a full-fledged combination of level sets and par-
ticle filters. Our main contribution is in controlling the potentially high
expense of multiplying the cost of a level set representation of boundaries
by the number of particles needed. Experiments on tracking the bound-
ary of a colon in tomographic imagery from sparse edge measurements
show the promise of the approach.

1 Introduction

Many applications require tracking boundaries that move and deform over time,
whether these are the contours of an oil spill in the ocean, a plume of smoke,
a hurricane, a wildfire, the dividing cells under a microscope, a running crowd
of people, or the contours of an anatomical structure tracked across slices of
a volumetric medical image. With imagery, measurements of the boundary of
interest are typically dense and abundant. Even so, the presence of clutter often
requires estimating the boundaries stochastically, by letting a probability distri-
bution entertain multiple hypotheses about the boundary’s position and shape.
In other applications, observations are much more sparse and perhaps less fre-
quent: a small number of mobile observers may know their own location through
GPS, and perhaps measure their distance from the boundary of interest through
imaging, range finding, or other sensors.

These problems have a common abstraction: a temporally discrete, possibly
spatially sparse distribution of noisy point measurements is used to infer the
shape and position of a boundary that moves and deforms on the plane under
the influence of only partially understood causes.

Conceptually, the solution ingredients are known: a dynamic system models
the underlying evolution phenomenon; stochastic estimation addresses sparsity
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and uncertainty of the measurements; and level sets elegantly represent bound-
aries whose components merge, split, appear, and disappear. All these ingre-
dients have been used with success. Their full combination, however, has not,
because of its potentially high computational complexity: the high cost of level
sets is charged to each of a large number of particles needed to represent a proba-
bility distribution in the space of plane curves. The number of particles required
depends on how large the space of all possible plane curves is. With some as-
sumptions and prior knowledge about the plane curves such as smoothness and
initialization, the probability distribution of the plane curves can be represented
by a particle filter of applicable size. However, the complexity of combining level
sets and particle filter is still high.

In this paper we show a way to keep this complexity in check. This leads to a
tracking method of great generality and flexibility, based on the core concept of
level-set curve particles. This method capitalizes on the observation that many of
the curves that populate the boundary distribution being tracked are very similar
to each other. In our method, a number of base curves account for macroscopic
differences between boundaries. Each base curve is then deformed by P base
perturbations which provide an implicit representation of the 2P deformations
obtained by applying any subset of the P base perturbations to the base curve.
Through this device, an exponential number of curves can be propagated and
their likelihoods can be computed at linear cost in the framework of a particle
filter. Resampling has still an exponential cost. However, the per-curve cost of
resampling is trivial, while the per-curve cost of propagation is proportional to
the size of the data structure needed to represent an entire level set, and the
unit cost of likelihood estimation is proportional to the number of measurements.
Saving on propagation has a huge effect on running time, and saving on likelihood
computation has a significant effect when measurements are plentiful.

In the next Section, we review related work. Section 3 defines level-set curve
particles and shows the tracking algorithm. Section 4 presents the experimental
results and Section 5 concludes with a summary and plans for future work.

2 Related Work

Active contours [1, 2] are based on ideas developed initially for Brownian motion
[3, 4], and later incorporated into particle filters (see [5] for a recent overview).
These approaches capture the uncertain position of a boundary at time t by a
probability distribution represented by a random sample of boundaries (parti-
cles). Each boundary is represented explicitly, e.g. with splines [6] and propagated
forward in time through an assumed, uncertain motion model. Measurements up-
date the particles through resampling, which weighs each particle by its posterior
probability given the measurements. This is computed from the likelihood (con-
ditional probability density of a measurement given a boundary) through Bayes’
theorem. New particles are drawn from the posterior, and are ready for a new
step of propagation. This cycle is analogous to the estimation loop of a Kalman
filter [7], but maintains a multi-modal distribution rather than a Gaussian one.
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Level sets [8, 9, 10] describe a boundary as the zero crossing of a function
φ(x, t) of space and time. While many functions φ share the same zero-crossing
B, computational considerations (see [11]) suggest using the signed distance func-
tion of B, which is then maintained in a narrow band [12] around the boundary
B. The motion model is then a PDE for φ. The main strength of level sets is
that they account effortlessly for changes of boundary topology, as exemplified
in applications to image segmentation [13], object detection [14], tracking [15],
shape modeling [16] and medical image segmentation [17], among others.

Recently, several papers [14, 18, 19, 20, 21, 22] have combined active contours
and level sets. These papers create suitable artificial “forces” that draw an initial
boundary towards a boundary of interest. These approaches essentially seek a
new boundary in each frame, view a boundary as a deterministic object, and
do not incorporate prior knowledge of boundary motion. This holds also for
work based on “shape averages” [23, 22] where the deformation of a boundary
is decomposed into an average motion plus a set of local deformations. More
specifically, in [22] the propagation of the local deformations is still deterministic
for each particle, with no way to add “noise” to model the uncertainty of the
underlying dynamics.

In contrast, we combine active contours and level sets into a full-fledged
particle filter for boundaries. Our level-set curve particles marry the power of
stochastic estimation methods from active contours with the flexibility of non-
parametric level sets.

3 Approach

3.1 Problem Statement

A dynamic boundary B is a variable number of moving and deforming closed
curves on the plane. These curves may merge, split, appear, and disappear over
time. The boundaries B(1) and B(2) at initial times 1 and 2 are assumed to be
known. M mobile and controllable observers make noisy measurements of the
position of a point on the boundary B. The boundary tracking problem is to use
the observations {Q

(t)
m }M

m=1 made by the observers at times t = 3, 4, . . . to esti-
mate the posterior probability distribution of the boundary B(t) at these points
in time. The Maximum A Posteriori (MAP) boundary estimate may optionally
be computed when requested.

3.2 Level-Set Curve Particles

We use a set of P + 1 particles χt = {φ
(t)
p , w

(t)
p }P

p=0 to represent the probability
distribution of the boundary B(t). Each particle is a signed distance function
φ

(t)
p : R

2 → R whose zero level set denotes an estimate of the boundary B(t).
A weight w

(t)
p determined by the measurements is associated to each particle.

Since all the particles are estimates of the same boundary, it can be expected
that the signed distance function values are similar for most points on the plane.
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For efficiency, we represent particles as a multiple perturbation of a “mother”
particle φ

(t)
0 . The perturbations {φ

(t)
p }P

p=1 are “child” particles. For each p > 0,

define a function Δφ
(t)
p such that φ

(t)
p and φ

(t)
0 + Δφ

(t)
p share the same zero level

crossing and Δφ
(t)
p is nonzero only inside a small window W

(t)
p .

This construction yields P + 1 “explicit” particles. However, 2P of particles
can be obtained by combining the mother particle with subsets of the deforma-
tions Δφ

(t)
p for its children. For example, a particle φ

(t)
1,2 = φ

(t)
0 + Δφ

(t)
1 + Δφ

(t)
2

can be obtained that concurrently deforms the mother particle in the union of
the two windows W

(t)
1 and W

(t)
2 . More generally, given the set of child indices

X = {1, . . . , P}, for every set Z in the power set of X we can define a new
perturbation φ

(t)
Z = φ

(t)
0 +

∑
j∈Z Δφ

(t)
j of the mother particle φ

(t)
0 .

The probability distribution of the boundary B(t) is encoded by the set of pa-
rameters χt = {φ

(t)
0 , {W

(t)
p , Δφ

(t)
p }P

p=1, {w
(t)
p }P

p=0} which now represents a much
bigger sample. Of course, the challenge is to propagate, update, and resample
the 2P “implicit” particles by working only with the P + 1 “explicit” ones. The
next Sections show how to do this.

3.3 Tracking Algorithm

The outline of the proposed tracking method is Algorithm 1. Let Q
(t)
m denote

the estimate of a point on boundary B(t) returned by observer number m for
m = 1, . . . , M . Let χt be the level-set curve particle set at time step t. Since
B(1) and B(2) are known, the corresponding signed-distance functions φ(1) and
φ(2) can be computed. Tracking then starts from t = 3. The main parts of this
algorithm are discussed next.

Algorithm 1. Tracking algorithm
INPUT: χt−1 (t > 2)
OUTPUT: χt.
(1) Propagate χt−1 to χ̄t;
(2) Observers take measurements {Q

(t)
m }M

m=1;
(3) Update χ̄t;
(4) Resample and generate χt.

Initialization. Algorithm 1 must be initialized with an initial particle set χ2

that is, with a set of functions {φ
(2)
p }P

p=0 each of which is a random perturbation
of a given initial boundary estimate B(2). All functions are given the same weight.
To define perturbations, we need a notion of “closeness” between boundaries.
Given ε > 0 and a boundary B, the neighborhood of B within distance ε is
defined as Nε(B) = {B′ : D(B, B′) < ε} where D(B, B′) is the symmetric set
difference between the areas enclosed by B and B′ normalized by the area of B.

We perturb B(2) by adding a function δ to φ(2). Then the zero crossing of
φ′ = φ(2) + δ is the perturbed boundary B′. To make B′ continuous and within
Nε(B(2)) for a given small ε > 0, the function δ should be continuous and its
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(a) (b) (c) (d)

Fig. 1. (a) The signed distance function φ of a boundary B. (b) The perturbed function
φ′. (c) The initial boundary B. (d) The perturbed boundary B′ (dark).

values should be small. We choose δ(x) = αG2(x, y, Σ), the product of a scalar
α and a 2D Gaussian function G2(x, y, Σ) with mean y and diagonal covariance
matrix Σ. The vector y determines the center of the perturbation, Σ controls its
extent, and α determines the amount of perturbation. All of these parameters
are generated randomly. y is usually chosen close to B(2), and α and Σ are
chosen to satisfy B′ ∈ Nε(B(2)). A sample perturbation is shown in Fig. 1.

With this method we generate P boundaries B′
p(p = 1, . . . , P ) that perturb

B(2). From these, we compute P signed-distance functions φ′
p = γ(φ(2) + δp)

where γ(φ) denotes the signed distance function of the zero level set of φ. To
construct the initial particle set χ2, we define the mother particle φ

(2)
0 = φ(2).

The difference between each φ′
p and φ

(2)
0 is Δφ

(2)
p = φ′

p − φ
(2)
0 . Each window

W
(2)
p is defined as the smallest rectangle which includes all the points x such that

|Δφ
(2)
p (x)| is not trivial and |φ′

p(x)| is below a small positive threshold dependent
on both the width of the narrow band and the dynamics of the boundary1.
The perturbations Δφ

(2)
p (x) are then truncated to zero for x outside W

(2)
p . All

particles are given the same initial weight w
(2)
p = 1/(P + 1). Given the initial

particle set χ2, we maintain the particle set χt over time through Algorithm 1.

Propagation. Suppose that the velocity of each point on the plane at time t
is given as v(x). We wish to move all the points on the surface φ(t−1) to φ̄(t) as
φ(t−1)(x) = φ̄(t)(x + v(x)). Assume that mother particle φ

(t−1)
0 is propagated

to φ̄
(t)
0 , φ

(t−1)
0 (x) = φ̄

(t)
0 (x + v(x)). Similarly, the difference between mother

and child particles is propagated to Δφ̄
(t)
p . According to the above equation,

φ̄
(t)
Z (x + v(x)) = φ

(t−1)
Z (x) = φ

(t−1)
0 (x) + Σj∈ZΔφ

(t−1)
j (x) = φ̄

(t)
0 (x + v(x)) +

Σj∈ZΔφ̄
(t)
j (x + v(x)). Therefore, we can define φ̄

(t)
Z = φ̄

(t)
0 + Σj∈ZΔφ̄

(t)
j if x →

x + v(x) is a one-to-one mapping, which implies that all “implicit” particles
can be propagated by only explicitly propagating the mother particle and the
differences between mother and child particles.

The windows W
(t−1)
p are propagated by modifying them to W

(t)
p so as to

properly enclose nonzero values of Δφ̄
(t)
p . The propagated particle set is now

1 W
(2)
p should be large enough to include all possible boundary points at the next time

step. Derivation details for this threshold are omitted for lack of space.
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represented by χ̄t = {φ̄
(t)
0 , {Δφ̄

(t)
p , W

(t)
p }P

p=1, {w
(t−1)
p }P

p=0}. During propagation,

the particle weights w
(t−1)
p do not change. In our experiments, v(x) at each time

step t is generated from the difference between the maximum-likelihood particles
of the previous two time steps t−1 and t−2. However, in some applications, v(x)
might be measured separately. For numerical purposes, we enforce propagated
mother particle and child particles to be signed distance functions.

Update. After propagation, each observer returns a noisy measurement Q
(t)
m

of a point on the boundary. One simple likelihood function of a particle φ is
Λt(φ) =

∏M
m=1 G(φ(Q(t)

m )) where G is a Gaussian function whose standard de-
viation ζ depends on the noise statistics of the measurements, assumed to be
mutually independent. And φ(Q(t)

m ) denotes the function value of φ at point Q
(t)
m .

If |φ(Q(t)
m )| is large, Q

(t)
m is far away from the zero level set of φ and therefore

the likelihood that the zero crossing of φ passes through point Q
(t)
m is small. On

the other hand, if φ(Q(t)
m ) = 0, Q

(t)
m lies exactly on the zero crossing of φ. Given

Λt(φ), we can update the weight of each particle as w̄
(t)
p = w

(t−1)
p · Λt(φ̄

(t)
p ).

Since each child particle p only differs from the mother particle inside window

W
(t)
p , the ratio H

(t)
p =

Λt(φ̄(t)
p )

Λt(φ̄
(t)
0 )

depends only on the difference between function

values of φ̄
(t)
0 and φ̄

(t)
p at the measurement points Q

(t)
m inside window W

(t)
p . So

we can first calculate the likelihood Λt(φ̄
(t)
0 ) for the mother particle and then

check for each child particle p whether there are any Q
(t)
m inside W

(t)
p . If not,

the likelihoods of the mother and the child are same. Otherwise, calculate H
(t)
p

and get Λt(φ̄
(t)
p ) by the above ratio equation. After update, the particle set χ̄t

becomes {φ̄
(t)
0 , {Δφ̄

(t)
p , W

(t)
p }P

p=1, {w̄
(t)
p }P

p=0}.

Resampling. In a standard particle filter, resampling is drawing (with replace-
ment) from the set of particles with probabilities proportional to their weights.
In our method, P +1 “explicit” particles represent 2P “implicit” particles. From
χ̄t, only the weights of the “explicit” particles {w̄

(t)
p }P

p=0 are known. So we need
to evaluate the weights of the “implicit” particles before resampling. First define

K
(t)
p = w(t)

p

w
(t)
0

and similarly K̄
(t)
p = w̄(t)

p

w̄
(t)
0

for each p > 0. We consider two cases:

Disjoint Windows. Assume W
(t)
i ∩ W

(t)
j = ∅ for i �= j, i, j = 1, . . . , P and for

all t. For this case, we can draw the following conclusion:

Lemma 1. Given Z ⊆ X = {1, . . . , P}, let w(φ(t−1)
Z ) = w

(t−1)
0 ·

∏
j∈Z K

(t−1)
j be

the weight of the “implicit” particle φ
(t)
Z . After propagation, if the corresponding

windows {W
(t)
j }j∈Z are disjoint, the weight of φ̄

(t)
Z is w(φ̄(t)

Z ) = w̄
(t)
0 ·

∏
j∈Z K̄

(t)
j .

The proof is omitted here due to space limits. However, the result stands to rea-
son because measurements in each window contribute independently to w(φ(t)

Z ).
From Lemma 1, we see that if the condition w(φ(t−1)

Z ) = w
(t−1)
0 ·

∏
j∈Z K

(t−1)
j

is satisfied before propagation at time step t, the evaluation of w(φ̄(t)
Z ) is just the
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product of the weight of mother particle and K̄
(t)
j of each child particle in Z. This

condition is iteratively satisfied if the windows are always disjoint. In this case,
resampling can be done as follows. Let particle i correspond to an “implicit” par-
ticle φZi where Zi ⊆ X , (1 ≤ i ≤ 2P ). Let wi = w̄

(t)
0 ·

∏
j∈Zi

K̄
(t)
j be the weight

for particle i and πi = wi

Σ2P
i=1wi

be the normalized weight for particle i. We can

draw with replacement from the 2P particles with probabilities proportional to
πi. Suppose the newly generated weight for each particle is μi which might be dif-
ferent from πi due to the limited number of samples. Since we only maintain the
weights for P + 1 “explicit” particles instead of 2P “implicit” particles , it is de-
sirable to represent μi by a new set of Kp, i.e., each μi could be approximated
as Πj∈Zi

Kj

Σ2P
i=1Πj∈Zi

Kj

. Thus, the goal of resampling “implicit” particles is achieved by

changing the weight of “explicit” particles. This leads to minimizing2 the func-
tion F (K1, K2, . . . , KP ) =

∑2P

i=1(μi −
Πj∈Zi

Kj

Σ2P
i=1Πj∈Zi

Kj

)2 by which we can find a new

set of Kp to replace K̄
(t)
p . Then the weight of each child particle is updated as

w
(t)
p = w̄

(t)
0 · Kp while the weight of the mother particle does not change. After re-

sampling, a new particle set χt={φ
(t)
0 , {Δφ

(t)
p , W

(t)
p }P

p=1, {w
(t)
p }P

p=0} is generated.

Remark. Two special cases need to be handled. If Kp = 0, the weight of parti-
cle p is very small and discarded. If Kp is very large, this perturbation will be
generated with high probability, so it should be incorporated into the mother
particle. In both cases, we need generate new particles to replace the ones that
are eliminated. During resampling, we can also optionally find the particle with
the maximum weight and return its zero level set as the MAP estimate of B(t).

Intersecting Windows. Since windows move, even windows that are initially
disjoint may eventually intersect. Now consider the case in which any two win-
dows can intersect. Formally, ∃j �= k, s. t. W

(t)
j ∩ W

(t)
k �= ∅, j, k = 1, . . . , P . In

this case, we need additional information to maintain the weights of the “im-
plicit” particles. Specifically, at each time step t, given χt, define {S

(t)
jk } as a

set of
(
P
2

)
real numbers s.t. ∀Z ⊆ X , w(φ(t)

Z ) = w
(t)
0

∏
p∈Z K

(t)
p

∏
j,k∈Z,j �=k S

(t)
jk .

Then we have the following conclusion similar to Lemma 1:

Lemma 2. Given Z ⊆ X = {1, . . . , P}, suppose the combined particle φ
(t)
Z has

weight w(φ(t−1)
Z ) = w

(t−1)
0 ·

∏
p∈Z K

(t−1)
p

∏
j,k∈Z,j �=k S

(t−1)
jk before propagation.

After propagation, the weight of φ̄
(t)
Z is w(φ̄(t)

Z ) = w̄
(t)
0 ·

∏
p∈Z K̄

(t)
p

∏
j,k∈Z,j �=k S̄

(t)
jk

where S̄
(t)
jk =S

(t−1)
jk ·I(t)

jk and I
(t)
jk = exp(

∑
Q

(t)
m ∈W

(t)
j

�
W

(t)
k

−2Δφ̄
(t)
j (Q(t)

m )Δφ̄
(t)
k (Q(t)

m )
ζ2 ).

This lemma tells us that if intersections between windows are allowed, in addition
to maintaining χt, it is also necessary to maintain an intersection factor set {S

(t)
jk }

2 Minimizing F (K1, K2, . . . , KP ) is an approximation. If we can draw unlimited sam-
ples, μi will be equal to πi and therefore K̄

(t)
p = Kp. When the number of samples

is limited, {K̄
(t)
p } is a good starting point to find {Kp}, so convergence to a correct

minimum is likely. We do not yet have a proof for this conjecture.
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for every pair of child particles over time. S
(t)
jk is updated as S̄

(t)
jk = S

(t−1)
jk ·

I
(t)
jk . With S̄

(t)
jk , we could approximately optimize {K̄

(t)
p } by minimizing function

F ′(K1, K2, . . . , KP ) which is defined similarly to F except that the products
of intersection factors are added as constants in F ′. The cost of maintaining
intersection factors {S

(t)
jk } is O(MP 2).

New Component. If some measurement Q
(t)
m is far away from the zero level

sets of the current (implicit) particles, it is possible that a new component of the
dynamic boundary has appeared. To account for cases like this, we randomly
generate a small boundary component near Q

(t)
m and add it to the mother par-

ticle, so that all child particles inherit this component automatically. Results of
adding new components are shown in Section 4.

Efficiency. We now analyze the computation cost of the proposed method.
Assume that all level set functions are defined on a grid of size N . The com-
putation cost of the signed-distance function γ is O(N). For initialization, we
generate P child particles based on the given mother particle. For each child
particle, we randomly generate a 2D Gaussian perturbation, at a cost O(N).
Propagation advances P + 1 particles by the motion field, at a cost O(PN). For
each “explicit” particle, evaluating the weight according to M measurements
will takes O(PM) at worst. Resampling evaluates the weights for all 2P “im-
plicit” particles and then resamples 2P numbers to generate the new μi, so the
cost of this stage is O(2P ). Note however that this computation occurs on num-
bers instead of functions. So the constant factor that multiplies 2P is small. For
the case of intersecting windows, the cost of maintaining intersection factors
{S

(t)
jk } is O(MP 2). Optimization of function F or F ′ is fast practically because

{K̄
(t)
p } is very close to {Kp}. The generation of new components takes at most

O(MN) time. From this analysis, the total complexity for our tracking algo-
rithm is O(2P + PN + PM + MN + MP 2). If we had used a standard particle
filter with 2P “explicit” particles the cost for propagation and update would be
O(2P (N + M)) which is much higher than that for the proposed approach.

4 Experiments

Experimentation with our proposed framework runs apparently into two con-
flicting requirements: On one hand, we want to demonstrate the performance of
our tracker when the set of available measurements is sparse, because sparseness
is one of the main challenges of this problem. On the other hand, we need refer-
ence ground truth against which we can measure performance, and this requires
dense information about the true location of the boundary. In order to meet both
requirements, we have tracked the boundaries in a data set where we have dense
information, but where we simulate sparseness by withholding that information
from our algorithm. Specifically, we have obtained a sequence of 355 slices from
a Computerized Axial Tomography (CAT) scan of a human colon. The bound-
aries in this data are very complex (see Fig. 3(d)): the colon tube is convoluted,
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and its frequent turns make boundaries appear and disappear as we progress
from one slice to the next. In our experiments, we detected each boundary with
a standard edge detector. In Fig. 3(a)-(c), these “true” boundaries are drawn
in red. These are our ground truth, to which the tracker has no direct access.
Instead, the tracker obtains limited information through a set of observers, the
green marks in the figure, and generates the “cyan” tracking results. Only 10
child particles are used in this experiment.

Fig. 2 illustrates the variety that 1 mother and 5 child particles can make.
There are 32 combinations created some of which are very different from both
mother and child particles. Fig. 3(a) shows tracking details during frames 7-10.
The yellow window indicates the position where a new component is about to ap-
pear. The four small figures shows what happens inside the yellow window dur-
ing frames 7-10. In particular, in frame 8 a cyan curve is generated close to the
red (true) component because some measurement point reports that it is possible
that a new boundary component has appeared there. Fig. 3(b) shows a connected
component inside the yellow window splitting during frames 52-55. The tracking
algorithm captures the topological change. Conversely, Fig. 3(c) shows two com-

1 2

4

3

5

M

Fig. 2. A set of 32 “implicit” particles generated by one mother particle (top left) and
5 “child” particles (marked)
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(a)

(b)

(c)

(d)

Fig. 3. (a) A new component appears in the yellow window (left figure) which is de-
tected in frame 7 (top middle) and tracked from then on (see frames 8-10). Red is
ground truth from edge detection, cyan is the maximum-likelihood particle. The cyan
boundary will split in later frames (see figure (b)). The number inside each figure de-
notes the frame index. (b) The component in the yellow window splits in two between
frames 52 and 55. (c) The two components in the yellow window merge into one be-
tween frames 111 and 114. (d) 3D reconstruction of the entire colon boundary. The left
figure is based on the tracking result and the right is the ground truth.
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ponents merging together during frames 111-114. The tracker, again, complies.
Finally, Fig. 3(d) displays the 3D reconstruction from all the tracking results for
355 slices in the frame sequence and compares it to the ground truth obtained from
edge detection. We use 100 measurement points in each slice, so the total number
of measurements for the sequence is 100 × 353 = 35, 300. The entire boundary
has 363,069 points at pixel resolution, so the ratio between reconstructed points
and measurements is about 10. The total tracking time for the sequence is 7121s,
that is, about two hours for the sequence, or 20 seconds per frame. We are still
far from real time performance. However, the code runs in Matlab and has sev-
eral nested loops, so a substantial speedup is likely just by code optimization in C.
Parallel implementation is of course trivially possible in obvious ways for particle
filters. Now that preliminary experiments have shown the conceptual validity of
our approach, we plan to turn some of our efforts to increasing efficiency through
appropriate data structures and approximation algorithms as well.

5 Conclusions and Future Work

To our knowledge this is the first full-fledged formulation of particle filters for
level sets. In our method, resampling has a cost proportional to the number of
particles, but very small constant factors. The propagation cost is proportional
to the logarithm of the number of particles, because P explicit particles repre-
sent 2P particles implicitly. This is crucial, because the propagation cost per
(explicit) particle is high for level sets. Preliminary experiments on tomographic
imagery have shown the practicality of the approach by reconstructing a surface
of 363, 000 points from only 35, 300 image measurements.

Immediate targets for future work are the improvement on the cost of main-
taining the intersection factors for intersections windows and the use of multi-
ple mother particles to represent macroscopic differences between particles. A
multi-resolution hierarchy of overlapping particles is our ultimate goal in this
respect. Now we are working on a finite-element perturbation strategy to make
the tracking process more efficient. Incidentally, the approximation error for Fi-
nite Element Method is inherently better understood than that of mixture of
Gaussian functions. Other plans for future work focus on the further reduction
of constant factors and on the design of strategies for dispatching travelling
observers as the boundaries move. Our experiments suggest in particular con-
centrating more observers close to high-curvature points on the boundary. This
will make it possible, for instance, to send robots to autonomously track the
moving boundary of an oil spill, wildfire, or cloud of pollutant. We intend to
investigate the application of our methods to other domains as well.
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