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Abstract. Successful multi-target tracking requires solving two prob-
lems - localize the targets and label their identity. An isolated target’s
identity can be unambiguously preserved from one frame to the next.
However, for long sequences of many moving targets, like a football game,
grouping scenarios will occur in which identity labellings cannot be main-
tained reliably by using continuity of motion or appearance. This paper
describes how to match targets’ identities despite these interactions.

Trajectories of when a target is isolated are found. These trajectories
end when targets interact and their labellings cannot be maintained.
The interactions (merges and splits) of these trajectories form a graph
structure. Appropriate feature vectors summarizing particular qualities
of each trajectory are extracted. A clustering procedure based on these
feature vectors allows the identities of temporally separated trajectories
to be matched. Results are shown from a football match captured by a
wide screen system giving a full stationary view of the pitch.

1 Introduction

This paper addresses the problem of the surveillance and tracking of multiple
persons over a wide area. Typical scenarios involve following pedestrians in traffic
or other crowded environments such as airports and shopping malls. There is
also the more specialized problem of tracking players in team sports, such as
football or ice-hockey, which we specifically explore. The first challenge is defining
a multiple camera set-up that ensures all the target objects are visible, at a
required resolution, at all times. Such a camera set-up is shown in figure 2.
Over the last years, many algorithms and results have been presented [1, 2]
with regard to the problem of multiple object tracking. Prevalent are algorithms
based on kalman filtering [3,4] and advanced techniques of particle filtering
[5,6,7,8]. These works demonstrate that the tracking of individual players is
no problem as long as they are isolated. Situations of congestion and confusion
due to multiple players occluding each other are generally resolved by exploiting
continuity of motion, appearance and relative depth. However, these properties
cannot be used to reliably solve all congested situations, see fig. 1. It is clear even
extremely sophisticated trackers will eventually lose the identity of a track due
to the complex scenarios that arise during a soccer game lasting 90 minutes. A
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Fig. 1. All the players from one team have congregated into a small area to celebrate a
goal. In this situation the players’ identities cannot be maintained by using continuity
of motion, appearance or relative depth, irrespective of the camera viewpoint.

Fig. 2. Four cameras are on one side of the field. Each one looks at a portion of the pitch
and the images obtained are stitched together using the inter camera homographies.

system for the automatic tracking of players over a whole game must, therefore,
address the problem of automatic track label initialization and re-initialization.

With these observations in mind, consider the strategy put forward in this
paper. Periods and trajectories when players are isolated are identified, which we
term player tracks. The merge and splits between the player tracks are recorded
to form a giant graph summarizing the game. A feature vector for each track,
encoding a player’s relative spatial position wrt his team-mates, is defined. The
identity of the player tracks are then linked through analysis of the recorded
merge and splits and clustering of the feature vectors associated with each
track.

Paper Overview. The paper is organized as follows. Section 2 is devoted to
explaining the imaging set-up and image processing performed to get an ini-
tial estimate of the player/target positions. The machinery used to temporally
analyze these results is then introduced in addition to describing how a graph
summarizing the interaction of the targets is obtained. Section 4 is concerned
with resolving some of the split and merge situations that occur using the prop-
erties of continuity of motion, appearance and relative depth ordering. Finally a
clustering procedure is described that allows the identity of temporally separated
player trajectories to be linked. The paper ends with a discussion on the merits
of the ideas put forward here and future avenues of research. Throughout results
are displayed from analyzing 10 minutes of an international football match.
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2 Video Capture and Processing

One of the innovations of this paper is the use of wide-screen video in our track-
ing/labelling algorithm. This video allows a wide field of view to be monitored
at each time instant at a high resolution. This makes it possible to track simul-
taneously a large group of targets spread over a large area. This wide screen
video is obtained by mounting several cameras (in our case 4) on a tripod with
each camera directed towards a portion of the area of interest. As the optical
centres of the cameras are aligned a homography relates the images between
each camera. This imaging set-up allows us a full, stationary view of the area-of-
interest, an ideal environment to perform background subtraction given a back-
ground image model. The next subsection describes how to find this background
model.

2.1 Background Modelling

A probabilistic model for the image gradient of each pixel in the background is
obtained. Note that the image gradient is learnt as opposed to the rgb values, as
often a football team’s uniform contains white, the colour of the pitch markings.
Also using the image gradient increases robustness to changes in illumination.

Let g! denote the image gradient at pixel z in frame t. Each background
pixel’s image gradient, g’, is modelled by a bivariate normal distribution with
mean u, and diagonal covariance matrix .. The parameters of this distribution
are learnt in the manner of Stauffer and Grimson [9]. Except we consider it as a
batch process and learn the background for a time interval. The initial learning
algorithm produces, for each pixel x, a mixture of Gaussians distribution to
describe the values of g, over a set of training images.

3
g~ > B No(ul, 30 (1)
=1

with each 0 < 82 < 1 and the 3¢’s summing to one. It is assumed that at a given
location, z, the background is most commonly visible. To ensure this assumption

Fig. 3. The set of ellipses, &, the highlighted regions, found by background subtraction
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is true, as players frequently stand still for relatively lengthy periods of time, for
a given time window of length T" only every nth frame is used as input. Then set

(pa Z) = (i, 23) st B > B for j =1,2,3. (2)
For a frame in the time window a pixel, x, is considered a foreground pixel if:
(8 — 1a)" 2018 — Ha) 2 XFar O<a <1 (3)

Let F; (B:) be the set of foreground(background) pixels found at time ¢. Once
F; has been calculated, connected components are identified. A set & = {F}{}',
of ellipses is used to represent these components, see figure 3. We assume that
each ellipse corresponds to at least one whole player. The raw connected compo-
nents are processed by deleting small connected components or joining them to

neighbouring larger ones to ensure this assumption is for the most part upheld.

3 Constructing the Target Interaction Graph

This section is devoted to the temporal analysis of the &;’s - spotting the merging
and splitting of ellipses from one frame to the next. Detection of these splits and
merges allows for the identification of ellipses corresponding to individual and
multiple targets and then to the trajectories of individual players.

3.1 Finding Player Tracks

The first aim is to put the ellipse in & and ;41 in correspondence. This requires
the definition of a relation, ~, between ellipses in & and &;;1. Let ellipses F4
and F be an exact match if their size and orientation are sufficiently similar
and the displacement between their centres is sufficiently small. If 3E}, | € 41

s.t. B! and EJ +1 are an exact match then Ei ~ EJ 41- If no such exact match
exists for B} in &1 then Ej ~ E} | if
Area(E{ N E} ;) >0 & E],, has no exact match in &. (4)
Define a mapping F;, matching each ellipse in &; to its related ellipses in €11
F:Ty—{a:aC T} st jeR() = B ~El, (5)

where 7, = {1,--- ,n;} is the set of indices of the ellipses in & (see figure 4). A
mapping B, is then defined relating each ellipse in &; to a subset of &1,

Bt ZIt+1 — {a ra C It} s.t. ke Bt(l) = 1€ Ft(k) . (6)

With F; and By it is easy to define events that can happen or have happened
at each ellipse at each frame given the cardinality of F3(i) and B(i):

Signal Event Signal Event
|Fi(i)| > 1 split |B:(5)] >1  merge
|F:(7)] =0 disappear |B:(4)| =0  appear

|Fi(2)| = |Be(Fe(7))| = 1 stable




Tracking and Labelling of Interacting Multiple Targets 623

Fig. 4. The correspondences between the ellipses in one frame and those in the next

A maximal sequence of stable events sandwiched between non-stable events is
termed a track. Formally, it is a temporal sequence, starting at t of n ellipses
with indices k

T(tnk) = {B By B (7)
that unambiguously match to one another s.t. for i =0,--- ,n — 2
|Fiyi(k)| =1, Fipi(ki) = ki1, |Beyi(kip)| =1 (8)

and a non-stable event occurs to go from &_1 to Efo and from Ef_t;l_l to Etqn-
During a track there is no change in the identity or number of the subjects
represented by the ellipses concerned. It is clear, therefore, that if either of the
following sequence of events occurs

track — split or merge — track (9)

the involved track corresponds to multiple players. However, when the involved
track appears in the sequence

{split, appear} — track — {merge, disappear} (10)

it may correspond to exactly one player. If the track has long enough duration
and the size of the ellipses during the track is on average not too big then the
track is considered to be a player track. Each ellipse in a player track corresponds
to exactly one player and the identity of this player remains fixed over the track.

The application of this analysis results in a partition of all ellipses, found
from the background subtraction process, into player tracks or multiple player
tracks and the interactions of these tracks through merges and splits.

Modelling Player Appearance. Frequently in multi-target applications the
appearance of some or all of the targets will be distinctive. In a football game
there are two teams and officials with distinct uniforms. With a pdf for the rgb
values for each category it is possible to distinguish between them. These distri-
butions, pa,B,c, are learnt from a few labelled training examples. The likelihood
that ellipse Eg is team A is defined, naively, as:

p(E|A) = [] pa(y) (11)

t
wEE]



624

J. Sullivan and S. Carlsson

>

<

5

p

/

v

!
!
!
!

v f

Fig. 5. The player interaction graph. White/gray nodes correspond to team A /B player
tracks and black nodes to multiple player tracks. Edges indicate when tracks interact.
Shown is a small section of the ~ 5000 node graph describing the 10 minutes analyzed.

where I represents the rgb values of pixel x at time ¢. The ellipse is classi-
fied as the category with the maximal likelihood. Each ellipse in a player track,
7 (t,n,k), is classified accordingly. The label, A, of the track is set to the cate-
gory that occurs most frequently amongst its ellipses. All these ellipses are then
set to the track label. As player tracks are quite long there is sufficient tempo-
ral evidence to compensate for less than perfect appearance models. Given the
labelling of the tracks and their interactions through merging and splitting, the
game can be summarized by a graph structure, see figure 5.

4 Linking Player Tracks

By examining the player interaction graph it is possible to isolate situations
where n individual player tracks merge (potentially staggered over time) and
then split into n individual player tracks (potentially staggered over time). These
merge-split situations are resolved by finding the correct correspondence between
the input and output tracks. This can often be done by exploiting the continuity
of motion, appearance and/or relative depth ordering of the players involved.

4.1 Matching Input and Output Tracks

The set of input and output tracks with labels to be put in correspondence are:

Input: {7 (ts;, 15, k™), As; }i=; Output: {T(tfi 2y T fis kfi)u Afi i (12)

For brevity we refer to 7T (ts,,ns;, k%) as T;,. We wish to find the assignment,
M, of the inputs to the outputs. It is a bijective mapping M : {1,--- ,n} —
{1,---,n} st. M(i) = j implies that track 7;, and 7Ty, are the same player.
Not all assignments are physically possible, thus M is a valid assignment iff all
the input tracks and their matched output tracks have the same label and all
the input tracks finish before their matched output tracks begin. Finding the
correct assignment from the valid ones involves scoring each valid assignment
and choosing the most plausible one. Our score is computed as follows.
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For each valid assignment, M, we estimate the intermediate trajectories,
Ts,— fri(sy s between the matched player tracks 7, and 7y, ,,. There are numer-
ous reasonable ways in which each 7, . 7,,,, can be estimated. We return to this
issue later in the section. For now we continue with the discussion of finding the
correct valid assignment, assuming we have estimates for the 7, ¢, ’s. We
define a score based on these estimated trajectories.

n

Sem = Z(DiSt(ZinMm) + aPen(,Z;iﬂfM(i))) (13)
=1

where @ > 0 and has a large value. The first term Dist(7s, ., ) i3 a mea-
sure of the distance traveled by the player during the hypothesized trajectory,
measured using the estimated feet positions on the ground plane transformed
via a homography to a rectified version of the pitch. The second term indicates
whether the estimated trajectories are consistent with the image data:

(14)

1 if 7; not consistent with relevant F;’s
Pen(Z;) = {0 otherwise.

Due to space constraints we summarize in words our consistency measure. Its
definition is based on deciding whether a sufficient number of a trajectory’s
ellipses intersect with a sufficient number of the foreground pixels. Once these
scores have been calculated the valid assignment which does not incur the penalty
a and whose intermediary trajectories cover the least distance is chosen.

4.2 Estimating Intermediary Tracks

We now focus on the task of estimating the intermediary trajectories {7, r,,,, }-
We exploit the properties of maintaining continuity of motion and relative depth
ordering. At the first stage, we investigate if any of the intermediary tracks can

Data: A set of input and output player tracks as in eqn (12).
Algorithm:

1. Enumerate all the valid assignments {Mk}sz/l

2. For each M), estimate the intermediary trajectories {Tsi_,ka(i)} based solely

on linear interpolation. Score each assignment, eqn. (13), to obtain {Scas, }.

k' = arg min,Scar,,, if Scar,, < a set M = M, and go to step 6.

4. If Sca,, > a repeat the process of finding the intermediary trajectories, but
based on piecewise linear interpolation. Update the set of scores accordingly.

5. k' = arg min, Scar,, if Scu,, < o set M = M.

6. If M has been defined, for i = 1,--- ,n set

w

T, =T, VT, U /Z—flw(i)' (15)

=)

Update the interaction graph as the matched tracks have been concatenated.

Fig. 6. Algorithm for resolving merge-split scenarios in the player interaction graph
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Fig. 7. Examples of resolved merge and split situations. In each example the first row
shows the split and merge scenario and the bottom row the found intermediary tracks.

be adequately described by a constant velocity motion model. To do this we
linearly interpolate between the parameters of the last ellipse of 75, and the
first ellipse of 7y, . If there is sufficient image data evidence to support this
trajectory, that is Pen(Zs,—f,,, ) = 0, it is considered as feasible. Let Zys be
the set of the indices of the input tracks whose trajectory to its matched output
track cannot be modeled by a constant velocity trajectory.

The intermediate tracks for the elements of Z,; have to be estimated. It is at
this stage we impose maintaining relative depth ordering amongst players from
the same team. Every mth frame in the interval [tg,tF], the temporal extent of
the intermediate trajectories, is considered for analysis, with ¢, = tg + km. For
each t; let the subset Zﬁ C Zpr be the set of tracks that exists at this time
instant. Let EJF be the final ellipse in each trajectory 7;,j € Zy. Then define
the region Ry ({t;}) as the union of the ellipses ET',j € Z}; each displaced by
t;. The aim at each t;, is to find the t;’s to maximize the intersection of Ry ({t;})
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Fig. 8. The left graph shows the temporal extent of the player tracks (> 250 frames) for
team A players during the 10 minutes of the game examined. Events causing congestion
are marked by the gray strips. The right graph shows for each player the percentage of
time it has been assigned to a player track. For the remaining frames the players are
assigned to multiple player tracks or short player tracks.

with the foreground pixels and minimize its intersection with the background
pixels or mathematically to maximize wrt the t;’s:

a1 Area(Ry({t;}) N Fo, ) — (1 — a1) Area(Ry({t;}) N Be,) (16)

with a1 > 0, subject to the constraint that the depth ordering amongst players
from the same team in Z),is maintained from tg throughout the tx’s. Given the
translations at each tj the full trajectories {7, .y, }jez, are computed by
interpolating between the displaced ellipses found at the fixed times.

We approximate this global optimization in a greedy manner. We first find the
translation for the player closest to the camera by ensuring the displaced ellipse
explains the relevant foreground pixels closest to the camera. Then similarly the
translation for the player furthest away is found and then the inner players. It
should be noted that we only analyze cases with n < 5, this generally implies that
there are no more than 3 players from a single team are present. Figure 6 gives a
more detailed overview of the interaction between our trajectory estimation and
scoring. Throughout the sequence examined roughly 200 merge-split situations,
of varying complexity, are resolved. Figure 7 shows a few results obtained. Solving
these trajectories in this non-causal exhaustive manner proves to be very reliable.

Once all the possible simple merge and split situations have been solved, it
is interesting to see how frequently a player is assigned to a player track. Figure
8 gives an overview of this information for our football game clip. The tracks are
fairly evenly distributed throughout and are mainly only significantly interrupted
by the major congestion scenarios of corner kicks and goals. One player “Left
Midfield” is significantly less frequently in a player track. He is on the side of the
field furtherest from the camera. Thus we see the effect of our lack of resolution
on that side. It must be noted, though, that during the periods when a player is
not assigned to a player track, he is assigned to a multiple player track. Given
the interaction graph and player track identities, it is possible to ascertain the
identities of the players in a multiple player track. The next sections are devoted
to recreating the graph in figure 8(a) automatically.
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5 Clustering Player Tracks

At this stage we have resolved as many of the simple split and merge situations
as possible using continuity of appearance and motion of the player tracks. There
are, however, other features that can be used to associate the identity of player
tracks. For example in a football game, a player’s identity can be frequently
obtained by his relative position to his team-mates. The most obvious example
of this is the goal-keeper, who is behind all his teammates. This section describes
a feature vector built to encode this relative spatial information. A straight
forward clustering regime, based on this feature vector, is then explained. The
clustering aims to find clusters containing player tracks of the same identity.
This allows for the identity of temporally separated player tracks to be linked
and thus defines re-initialization points for each player throughout the game.

5.1 Player Track Feature Vector

The specific feature vector calculated to describe a player track is, of course,
biased by the application domain. What follows is a football dependent feature
vector. Though the same methodology could be applied to other applications.

Let 4X;, = {4x!}1L, be the z,y-coordinates of the team A players at frame ¢.
For each x! (dropping the A superscript for brevity) we construct a 4-dimensional
vector vi = (ri 1% fi bi) recording the number of players to the right, left,
in front and behind player ¢, subject to a margin € > 0. As there are eleven
players on each team 7{ + [ < 10 and f} + bi < 10. Thus there are 662 distinct
possible v?. To reduce this number the range from 0 to 10 is quantized into 6
bins {0,1},{2,3},---,{9,10}. This quantization results in 21? distinct v}. Each
vl is assigned an index, id(v}) between 0 and 440.

From the subset of ellipses of &, +; labelled as team A we can estimate 4, 4 ;.
These computations take place once the players’ feet positions from each ellipse
have been estimated and transformed to a rectified version of the pitch. Consider
the player track, 7; = 7 (t;,n;, k*). The relative spatial arrangement of this player
during the track is encoded by the v-vector for each of its ellipses:

i

N A ..
Vr, = (id(v;?),id(vy ), id(v, 1)) (17)
Histogram Vz, to define a feature vector fr, € [0, 1]**! with jth entry

1 &
(i) = — Q. 1
7.(J) n; Sz:;(sj,id(vf;) o

The distance between two tracks is then defined as D(7;,7;) = ||fr, — f7,||%.

5.2 Clustering Procedure

Let U = {7;}X| be the set of team A trajectories with length > 10 seconds.
This limit is chosen to ensure each trajectory has a reliably estimated feature
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vector. The goal is to partition ¢/ into L, 11 for football, clusters C = {C}} s.t.
each cluster corresponds exactly to one player. This partition is subject to the
condition that one person can only be in one place at one time. Thus temporally
overlapping trajectories cannot be assigned to the same cluster. An indicator
function v(7;, 7;) is set to 1 if 7; and 7; temporally overlap and 0 otherwise.

Cluster Initialization. We have no explicit model for each player. Therefore
we rely upon un-supervised clustering. This necessitates proceeding carefully,
especially initially. We want to ensure finding representative members for each
cluster from which we can grow. For football, the longer a trajectory the more
likely it is to incorporate the state of a player from several team formations. The
clustering thus occurs in two stages - initialize the clusters and then expand them.
The first stage initializes the clusters by examining only temporally very long
trajectories which are fortuitously nicely separated in our chosen feature space.
Explicit details of the algorithm are given in figure 9, essentially the algorithm
finds compact clusters starting from tracks of decreasing temporal length. The
results of applying this algorithm to the football data are displayed in figure 10.
Thirteen clusters are found and each cluster contains only tracks of one identity.

Cluster Growing. The second stage of the clustering process involves expand-
ing the initial clusters to include the other trajectories of non-trivial length and
merging clusters when possible and necessary to reach the expected number of
11. To adequately describe the secondary clustering procedure some notation
and concepts are now introduced. A temporally dependent subset, a C U, is a
subset in which every pair of member tracks temporally overlap. Then define
S(U) as the set containing all such subsets of U. An assignment, P,, from a set

Data: A set of player trajectories {7;; }f:Ol C U with temporal lengths n;; > 1000.

Constraints: All members of a cluster are within a distance € > 0 of each other.
No two members of a cluster can temporally overlap.

Algorithm: Let the set of clusters C = () and the set of unexplained trajectories
U ={1, }f:ol. Initialize the counter variables k = 0,1 = 0.
while k£ < Ko
1. Choose 7;, the longest track in Uu'.
2. Set C1 ={7;, }.
while |Cy] is increasing
— Find the longest track in ’Ej € U’ such that

Y(Ti;, Te) =0 & D(Ti;, Tx) < e VI € C.

3

— If such a ’Tij exists, set C; = C; U ’Tij.
en

3. SetC=CUC,U =U\Ci,l=1+1and k=k+|Ci.
end

Fig. 9. The initial clustering algorithm
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Fig. 10. (a) The distance between every pair of player tracks >40 sec is shown. Order-
ing is according to the clusters found by the initial clustering. Darker values indicate
smaller distances. (b) This graph displays the temporal extent and true identity of the
player tracks in each cluster. The legend shows the color and symbol representing each
identity. (¢) This confusion table summarizes the homogeneity of the identities for a
cluster’s temporal extent. Each entry is the sum of the temporal lengths of the player
tracks in a cluster of one identity, shown as a percentage of the total sequence time.

a € SU) is a one-to-one mapping P, : {1, ---,|a|]} — {1,---,L} s.t. the ith
track of a is assigned to cluster P,(i). P, is valid if for each 7,, € a

EI’]} S CPa(i) s.t. D(I]Z,I]:L) < €1 & 72 S CPa(i) = ’Y(I];HI]Z) =0 (19)
where €; > 0. The cost of such an assignment is

|al

Sc(P,) = Tle%i;l(')p(z?q;i). (20)
i=1 att

In essence the algorithm finds the valid assignments for temporally dependent
subsets and chooses the assignment with least cost. Finding the best fit with
respect to a temporal dependent subset offers greater robustness to using a
greedy algorithm on individual tracks and is still computational feasible.



Tracking and Labelling of Interacting Multiple Targets 631

Cluster 12 4 cluster 4 cluster
Cluster 11 eaed
Cluster 11 =% |l R Cluster 10 | D=5 PIBIPP—P—>>—> »
ng’:;:g ::: — '——:__:'—’ Cluster9 | #——t———#bok |k dkonk ok
Cluster 8 Cluster§
Custer? | vy vy Cluster7 | v vv vor—F¥v—vv—v w
o 5 5 |5 Cluster6 | *—dh————aAl KA * Ak ko k | kk
g::zz:z A& oa A—E‘:*—Ag % Cluster 5 A_A%’_Am—né—‘—A gﬂg Ad
Clusterd | +—+ +———+ [+4——+ +—+ +—+ Cluster 4 - S+
Cluster3 | %—oF | #————#——% *—% 5% Cluster3 | *—% *— 1 e
Cluster2 | m—a —a . Cluster2 | m—a
Cluster1 | ® ° o fime Cluster 1 | ® ° o time
! I I L) L I I L)
0 5000 10000 15000 0 5000 10000 15000
Identity Identity
Cluster gk 1b Ich rch rb Im lem rem rm sl s2 Cluster gk 1b Ich rch rb Im lem rem rm s1 s2
1 1000 0 00O 0 0 00O 1 1000 0 0 00O 0 0 00O
2 000 0770 0 0 00O 2 000 0800 0O 300
3 0006900 0 0 000 3 00076000 0 000
4 0 05 0000 0 000 4 0 0682 20 3 0 000
5 000 O0O0OO0OTO O 06800 5 000 O0O0DO0OTO 0O 07700
6 000 O0O0OO0OZ38 0 000 6 000002252 7 000
7 000 O0O0OO0TUO O 0470 7 000 O0O0ODO0OTU O 0 0510
8 050 00O0O0O 0O 00O0O0 8 0640 000 0 0 000
9 000 O0O0OO0OTU O 3 000 9 000 O0O0OO0OT 65000
10 000 O0O0O0TUO0 O 0042 10 000 O0O0OO0OT O 0 0053
11 000 O0O0O0TUO0OZ22 000 0300040 0 00O0G5
12 000 O0O0220 0 000
(a) Tracks > 750 frames (b) Tracks > 250 frames

Fig. 11. Cluster growing results. The graphs and tables have the same format as figure
10. Column (a) shows the results when tracks of length > 750 are added to the initial
clusters. In this case, homogeneity of identity in the clusters is maintained. However,
when tracks of shorter length are added errors begin to occur, see column (b). The
columns of the right confusion table sum to the percentages displayed in figure 8 (b).

Results of applying the clustering algorithm are shown in figure 11. The left
column shows the results of including the tracks with temporal lengths between
750 and 1000 frames and the right column the additional tracks over 250 frames.
Results are good. Errors in the clustering begin to appear with the addition of
the shorter length tracks. Most of the errors occur at the major events when the
team switches between different formations. This would indicate that our feature
vector should be extended to take the overall team formation into account.

6 Conclusions and Discussion

This paper presents an approach to multi-target tracking and labelling that is
viable on long sequences with many targets, assuming there are no real-time
constraints. At each stage the reliable information is extracted and built upon.
Initially we find the trajectories when players are isolated, extend and concate-
nate these trajectories when possible by resolving merge-split situations. From
these trajectories a large graph summarizing the player interactions throughout
the game is built. The identities of the found, but temporally spread, trajec-
tories are linked using a two-stage clustering scheme. This sets re-initialization
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points for a player’s identity throughout the sequence. In combination with our
interaction graph this gives us, potentially, an estimation of each player’s posi-
tion throughout the sequence, with a varying degree of accuracy depending on
whether at a time instant he is assigned to a player track or multiple player track.
The methods are scalable to a whole game. We anticipate similar results, if
not better, could be obtained with more data. The feature vector may require
updating to cope with the different possible team formations. The labelling of
the shorter tracks may also require greater sophistication, taking into account
the graph structure and ensuring there is a path between every member of a
cluster. One word of caution though is that a fairly robust background subtrac-
tion process underpins this work. This is made possible by our wide screen video
and sports environment. A more probabilistic approach to the extraction of the
initial trajectories may allow more cluttered environments to be considered.
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