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Abstract. In this paper we introduce a principled approach to modeling the im-
age brightness constraint for optical flow algorithms. Using a simple noise model,
we derive a probabilistic representation for optical flow. This representation sub-
sumes existing approaches to flow modeling, provides insights into the behaviour
and limitations of existing methods and leads to modified algorithms that out-
perform other approaches that use the brightness constraint. Based on this repre-
sentation we develop algorithms for flow estimation using different smoothness
assumptions, namely constant and affine flow. Experiments on standard data sets
demonstrate the superiority of our approach.

1 Introduction

Computing the optical flow field between images has been a central problem in com-
puter vision. Thanks to numerous investigations over the past two decades, both our
understanding of the problem and its algorithmic implementation have become increas-
ing sophisticated (see [1,1213,/4,15/|6] and references therein). Most flow algorithms are
based on the brightness constraint that is derived from an intensity conservation princi-
ple. Given two images taken at time-instants ¢ and ¢ + 1 and denoting the flow at pixel
(z,y) by (u,v), by conservation of intensity we have the relationship, I(x,y,t) =
I(x + u,y + v,t + 1). By expanding this function as a Taylor series we have a first-
order approximation I (x + u,y + v, ¢t + 1) ~ I(x,y,t) + giu + gév + ‘g{.l which
simplifies to I,u + Iyv + Iy = 0 where I, I, and I; are the derivatives in the x, y and
t dimensions respectively. This relationship is known as the brightness constraint and
can be interpreted as a line in the (u, v) flow space. Since the flow at a point consists of
two values, a single brightness constraint is insufficient, i.e. flow estimation is ill-posed.
Therefore, flow is estimated by imposing additional assumptions of smoothness on the
flow field.

There are three significant issues with using the brightness constraint that need to
be addressed simultaneously in any representation. Firstly, the brightness constraint is
derived using a first-order Taylor approximation implying that the flow magnitude is
assumed to be small. However many algorithms violate this underlying assumption and
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treat the brightness constraint as an algebraic line with infinite extenl]. Secondly, the in-
terpretation of the brightness constraint as a single line in the u — v space is based on the
assumption that the image derivatives observed are ‘true’ values. Thus the existence of
noise in the observed image data is not explicitly accounted for, leading to unprincipled
algorithms. Thirdly and most importantly, the derivation of the brightness constraint it-
self is based on an incorrect model where the temporal dimension is treated differently
from the spatial dimensions which introduces undesirable biases. Perhaps this derives
from the early methods which assumed that only two images were available, i.e. with
a time-step of 1. We shall demonstrate in this paper that the correct approach is to
model the spatio-temporal volume in a uniform and continuous manner and introduce
the specific discretisation of the spatio-temporal image data only as an algorithmic de-
tail. This approach immediately allows us to explain the behaviour of well-known flow
algorithms and also recast their assumptions into more accurate versions.

In this paper we simultaneously address all the three limitations mentioned above.
We systematically account for the data noise and also naturally allow for incorporation
of priors that agree with the small flow assumption. By treating the spatio-temporal
dimensions in a uniform framework, a key insight that arises is that the correct repre-
sentation for estimating image flow is not the two-dimensional vector field, but rather
its homogeneous counterpart, i.e. normalised volume-ﬂow@. We will also show that the
popular least-squares (i.e. Lucas-Kanade) and Total Least Squares (henceforth referred
to as TLS) methods for constant flow in a patch can both be seen as specific instances
of our model. We also emphasise that an optic flow estimator consists of two compo-
nents, namely the choice of data representation (brightness constraint in our case) and
the computational model used to solve the estimation problem. Recent advances in flow
estimation have been based on increasingly sophisticated computational approaches,
eg. [4.15L16L[7]]. In contrast this paper focuses on the choice of data representation and
not on the computational model. The representation proposed here can be incorporated
into any computational framework that uses the brightness constraint. We also point
out that important issues like robustness to data outliers and motion segmentation are
outside the scope of this paper.

2 Probabilistic Brightness Constraint

In this section we derive a probabilistic model for the image brightness constraint.
We develop our solution assuming a continuous space-time image volume. We re-
emphasise that a time-step of 1 is an artifact of image acquisition and should not in-
fluence our problem formulation. Thus, although the spatial and temporal resolutions
are different, we make an essential distinction between the model and its algorithmic

! While multi-scale techniques exist they are designed to reduce the magnitude of the true flow in
an image. This, in principle, does not impose any constraint on the magnitude of the estimated
flow.

% Volume-flow measures the flow field in the spatio-temporal volume and optical flow is its
projection onto the image plane. The unit-norm vector, normalised volume-flow is projectively
equivalent to optic flow and should not be confused with ‘normal flow” which represents the
projection of optical flow in a direction orthogonal to the brightness constraint line.
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utilisation. We develop our method for continuous data and at the appropriate juncture
replace the image derivatives involved by those calculated on discrete image data. This
model is at the heart of the subsequent algorithms that we shall develop using different
smoothness assumptions.

The estimated image derivatives are represented by Iy = (I, I, I]". We repre-
sent the error in the image derivatives usin7g an additive Gaussian noise model, i.e.
Iy = I + n, where Igo = [I0,1y0,1I:0]" is the true value of the derivatives and
n = [ng, ny,nt]T is the noise term. For the sake of simplicity of presentation, we
shall in the following assume that the noise is zero-mean, independent and identically
distributed, i.e. n ~ N(0,0%13) where I3 is the 3 x 3 identity matrix. However this
does not preclude the use of more general forms of noise covariance matrices since
the measurements can be whitened before applying our analysis. In general, it is re-
alistic to assume that the spatial and temporal derivatives have different covariances
due to the nature of sampling in space and time. We denote the three-dimensional
volume-flow at a point as F' = [U,V, W}T where U,V and W are the displacements
in the x, y and ¢ dimensions respectively. The two-dimensional optical flow is the pro-
jection of the volume-flow vector F' onto the x — y image plane and is denoted as
(u,v) where u = VI{/ and v = V“// It will be noted that normalised volume-flow f
is given by f = Hgll and is also projectively equivalent to the optical flow (u,v),
ie. [ x [u,v, l]T. Using the principle of image brightness conservation, we have
I(x +U,y+ V,t+ W) = I(z,y,t). By a Taylor series expansion around the point
(z,y,t) we have I(z,y,t) + 51U + gZIJV + 9TW = I(z,y,t) leading to

o1 o1 o1
8mU+8yv+8tW_0 @)
which is a brightness constraint equation in three-dimensions and can be simply ex-
pressed as I, L F = 0.1t will be immediately observed here that we have an unknown
scale factor for F, ie. [,/ F = I;" (aF) = 0, implying that we can only derive
F' upto a scale factor. Hence we fix the scale by using the normalised volume-flow
vector, f = IIIIZII' However, Eqn. [I] applies to the true image derivatives, whereas
we can only observe the estimated derivatives. Thus to define the conditional dis-
tribution of the flow given the observed image derivatives I; using the relationship,
I 'F=(I;— n)TF = 0, we apply the chain rule for conditional probabilities result-
ing in
P(FILD) = [ P(FILi)Punlla) dLi o)

From Eqn.[I] for the true image derivatives we note that the linear constraint implies that
only flow values that satisfy this equation are admissible. Thus the conditional probabil-
ity P(F|I4) is described by our brightness constraint and is equal to 6(I40” F') where
6(.) is the Delta Function. Also since the true derivatives are perturbed by Gaussian
noise to give the observed derivative estimates, we can represent the conditional proba-
bility P(I40|14) by using the Gaussian noise prior. This is true since we can equivalently

’”.T’”.
write Iq9 = Ig — n. Thus P(Iqo|lq) = €~ 202 where n = [ng,ny, nt]T represent the
noise in the image derivatives. Consequently
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P(F|I,) /6 IpoT ) 202 (M”13 4ne?) dngdnydn,
~ T ~ -

P(F|I4) P(Iaolla)

For, simplicity of presentation we ignore the normalisation required here to ensure that
the integral measure on the delta-function is equal to one. Expanding the constraint into
its respective terms we have Lio'F=1,"F - (ngU + ny,V + n,W). To solve for the
integral, we integrate out one variable (n; in this case) to derive the following

1 -1 7L2 e
P(F|Id):‘W|/e 202(-‘16"!‘ +

where ¢ = I,7 F. This is obtained by integrating out the constraint and substituting for
ny. After some simple algebra, we can rewrite the exponential term of Eqn. 3] as the
form

(7L$U+nyV 0)2

)dn,dn, 3)

(n— )" R(n — ) + po ©)
. Ul+w? Uv :
with R = V&Q [ UV V:iw? , o = (Lo g;{{,‘;jé{,‘;{/) Therefore ,
_ %‘02
20 1 T
P(F|I) = 6|W‘ /6*202 (n—u)" R(n—p) g1, 5)

The integral can be seen to be that of a Gaussian with a covariance of R~! implying

that the integral is equal to \R|7§‘ and is independent of the value of y. Now |R| =

2 2 2, .
v +¥V2+W , implying that

1 UgU+IyVHIw)?2
e 202 (U24+Vv24+w2)

P(F|I) «
U i sy e

As observed earlier, the optical flow (u,v) is independent of the magnitude of the
volume-flow vector F', hence we can set ||F|| = 1. This implies that for the homo-
geneous image flow f (or normalised volume-flow) we have

My
P(f|la) e 20 o7 (6)
where the 3 x 3 matrix M is given by
I, I 0y 11y, 1.1y
M= |1,| x [I,; I, It] = | L1, I,1, I,1; @)
It I:v-[t IyIt It-[t

An analysis of this distribution is instructive. If we consider a single pixel, we will
note that the probability value in Eqn. [6]is maximised when f is orthogonal to I, i.e.
I3 frnae = 0. Thus fima lies in the plane that is normal to I;. However since || f|| = 1,
we have f,,4, confined to the surface of a unit-sphere. Therefore, the locus of f,4; is a
great circle on the unit-sphere, see Fig.[Il(a). As f deviates from the great circle fqz,
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"

(a) Single pixel constraint (b) Probability form of (c) Projection of distribution
constraint on image plane

Fig. 1. Representations of a brightness constraint. (a) the brightness constraint plane intersects
with the unit-sphere resulting in a great circle which is equivalent to the conventional brightness
constraint line; (b) shows the probability distribution of normalised volume-flow for a single
pixel. (c) shows the projection of the distribution in (b) on the x — y image plane. Note the
‘fuzzy bow-tie’ form of the flow distribution. The maxima of this distribution is the conventional
brightness constraint line.

the magnitude of the probability distribution decreases according to Eqn. |6l Thus the
probability distribution of the normalised volume-flow vector for a single pixel is a
Gaussian-like distribution on the unit-sphere centered on the great circle f,,4, as seen
in Fig. [(b). The great circle and distribution in Fig. [[(b) can be seen to be the unit-
sphere equivalents of the brightness constraint line and a Gaussian distribution centered
on the line respectively.

However instead of considering a representation of f on the unit-sphere, the con-
ventional approach has been to use F' = [u, v, 1]. If we substitute this form in Eqn. [6]
(13;7J.+I7/7)+11;)2

(u?4v2+41)
TLS form used in [8,[9,[10]]. In turn the equivalent probability distribution for (u,v) is
shown in Fig. [I(c) and can be seen to have the so-called ‘fuzzy bow-tie’ form [11].
As is obvious from the above analysis and the distributions of f in Fig. [[l we note
that the fuzzy bow-tie form of the flow distribution is nothing but an artifact of using
a reduced representational space for the flow information. This arises from projecting
a Gaussian-like form on the unit-sphere onto the image plane, i.e. the fuzzy bow-tie
form in Fig.[Il(c) is the projection of the distribution of Fig.[[{b) onto the image plane.
Thus the fuzzy bow-tie distribution is not very illuminating and the probability form of
Eqn. [6lis desirable as it leads to more accurate flow estimates. We also point out that
our probability model is fundamentally different from that of [12] where a Gaussian
noise model is applied to the flow (instead of the image derivatives) and a Gaussian
distribution of flow on the image plane is derived. In our case the flow distribution in
Eqn. [6lis the natural representation of the information in the image derivatives and as
will be seen in the rest of the paper, this is a powerful, general representation that can
be applied to various smoothness assumptions. It is also germane to point out that in
this paper we are modeling the optic flow field based on image derivatives which should
not be confused with modeling the motion field which would depend on a taxonomy
of camera motions, zooming, rotating, translating etc. which results in specific types of
motion fields.

we see that the exponential term is equal to which is identical to the



182 V.M. Govindu

3 Optic Flow Algorithms

In Sec.[2l we derived a probability distribution for optical flow at a pixel given its corre-
sponding image derivatives. However, since the optical flow field consists of two values
at each pixel, the probability distribution derived from a single pixel is insufficient to
determine optical flow. In particular, matrix M in Eqn. [6lfor a single pixel can be seen
to be of rank one. In general, the ill-posedness of optical flow is addressed by making a
variety of smoothness assumptions on the flow field which allows us to estimate the flow
field using fewer parameters than the number of constraints available. The smoothness
assumptions can be broadly characterised as being implicitly due to a parametric model
or explicitly due to the use of a regularising smoothness term. Examples of the for-
mer are the constant flow assumption of Lucas and Kanade [3]], affine flow [13.[14}[15]],
whereas [2,|6] are examples of an explicit smoothing strategy. In all of these methods,
the estimation process is considerable affected by the assumption of a time-step of 1 in
the corresponding formulations resulting in bias or a greater error. By explicitly apply-
ing our probabilistic formulation to these smoothness assumptions we derive modified
algorithms that both clarify the behaviour of the conventional methods and significantly
improve their performance. In the remainder of this section we consider constant and
affine models and examine their implications for estimating optical flow.

3.1 Constant Flow

The simplest assumption for flow estimation is that of constant flow for an image patch
which is the basis for the famous Lucas-Kanade algorithm [3]]. Here the brightness
constraint is represented by I,u + Iyv + I; = 0 and for a patch, the residual error is
E = >, (I."u 4 I,"v + I,*)? where k denotes the index of individual pixels in the
patch. The minimiser of E is the Lucas-Kanade solution and is identical to the Ordinary
Least Squares (henceforth OLS) solution:

[u] B {Mm Imly]_l[—fwft} )
v 1.1, 1,1, —1I,I

where I, I, = >, L,"I.* etc. As had been noted in [16] this yields a linear, biased
estimate of the flow. The bias appears due to the implicit assumption that the temporal
derivatives are noise-free and the use of the TLS method has been suggested to over-
come this bias [8,9]]. This can also be explained using our probability distribution for
optical flow. For constant flow over a patch, using the conditional probability distrib-

ution of Eqn. 6 we have P(f|patch) = [[, P(f|Ls"). The flow can be estimated by
maximising the conditional probability distribution

max [ P(fIL") = min e sz /" (50 M)S o
f . ¥
The estimated flow is the smallest eigen-vector for matrix

N
1
M= > My = N | el Iuly Iy (10)
k=1 let Iylt Itlt
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where IV is the number of pixels in the patch. This is identical to the TLS solution.
However, it must be pointed out that the above derivation of the Maximum Likelihood
Estimate (MLE) of flow does not incorporate a prior distribution for the flow values. As
has been noted in Sec. [T} the brightness constraint is valid only for a small deviation
from the point around which the Taylor series expansion is made, i.e. flow cannot be
large. This implicit assumption cannot be captured by treating the brightness constraint
as an algebraic equation and is often ignored. In our case, since we represent the infor-
mation at a pixel as a conditional probability distribution we can incorporate the small
flow assumption as a prior on the flow field. For the flow values to be small, we note

that since (u,v) = (VZ{N V‘[/, ), we require the contribution of U and V' to the magnitude
of the volume-flow ||F'|| = ||(U, V, W)|| to be small. This notion can be captured by

using a Gaussian distribution on the relative magnitudes of U and V/, i.e. IIgII and H‘;II .
This leads to a distribution of the form

-1, 2U2+2V2 ) 1, tToy
T
P() — e 20pPURHVZHW2 T 20,2 Ty

where D is a diagonal matrix D = diag([1, 1,0]) and the variable o controls the
influence of the prior on the estimator. If we reintroduce this prior into Eqn.[2to weight
the o-function appropriately, our measurement matrix for flow estimation is modified
into a Maximum A Posteriori (MAP) Estimate. Thus instead of averaged matrix M of
Eqn.[10} the flow is seen to be the smallest eigen-vector of matrix M 4y, for

1 1
Mmap:0n2NM+0'f2D (11)
where N is the number of pixels in the patch and ,, and o are the priors for the image
derivative noise and flow magnitude respectively. It will be noted that the observation
matrix in Eqn. [[1] represents a regularised solution for the TLS problem [17]]. For the
sake of simplicity we reparametrise this matrix as M + AD where \ represents the
weight (influence) of the regularising term D. For a given value of J, the estimated

LEGEND °
Circle : True Flow

osL Star: TLS flow (A = 0)
Cross : Lucas-Kanade
°5- - Diamond : Origin (A = )

TN

~04 L L L L L L L
202 0 0.2 0.4 0.6 0.8 1 12 14

Fig. 2. Flow as a function of the regularisation term \. The least-squares solution (Lucas-Kanade)
lies on this curve. True flow and the TLS solution are also indicated. See Sec.[3.]for details.
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optical flow value is given by the smallest eigen-vector associated with the matrix M +
AD. The behaviour of this parametrised form is particularly illuminating as illustrated
in Fig. 2l In the case when A = 0, the regulariser has no influence on the estimate
and we get the TLS solution. When A = oo, the solution is determined solely by the
null-space of the regularising matrix D, i.e. [0,0,1]" equivalent to a flow of (0,0).
This is intuitively correct since here the flow is determined only by the prior which is a
Gaussian centered at the origin. As )\ varies from 0 to oo the estimated optic flow traces
a curve from the TLS solution to the origin. Of particular significance is the fact that
the Lucas-Kanade (or OLS) solution lies exactly on this parametrised curve, i.e. it is
identical to a regularised TLS solution of optical flow for a particular value of A! This
relationship is formally described by the following lemma.

Lemma 1. The Lucas-Kanade estimate of flow (i.e. OLS solution) is identical to the
TLS solution for the regularised observation matrix M + AD where A = J{, chv:l Ik

(IL."u 4 I,*v + I®), N is the number of pixels in the patch and (u,v) is the Lucas-
Kanade (or OLS) solution.

Proof: We represent the three-dimension homogeneous co-ordinates of the flow vec-

tor as [z,1]" = [u,v,1]". Further we partition the 3 x 3 observation matrix as M =
b7 i] . Since the regularising matrix D=diag([1,1,0]) we have M +\D = A Z_T/\I i

where [ is the 2 x 2 identity matrix. For the TLS solution of the regularised observation

matrix, we have
x| [A+AMb| x| T
aren [{] =[5 7] =e 7]
= A+ X))z +b=ax (12)

Here « is the eigen-value associated with the TLS solution for a given A. The lemma
can now be proved by examination. Let us assume that the flow estimate z is the OLS
solution o 5. By examining the observation matrix M of Eqn.[IQland the solution for
zors in Eqn. 8l we note that Azors + b = 0 which implies that for x = zops the
relationship in Eqn.[I2lis satisfied

(A4+M)zors +b=Arors + Azors + b= azors
~ ~ -
=0

implying that A = «. Thus the eigen-relationship for M + AD is satisfied for x =
xors which proves that the OLS flow (i.e. Lucas-Kanade) is also a solution for the
regularised TLS for A = «. The value of A can now be easily derived by noting the lower
relationship in Eqn.[12] i.e. a = A = bTzors + c. The terms b7 and ¢ are the third row
of the observation matrix M in Eqn.[0implying that A = & S0 | L*(LFu+ 1,0 +
Itk). The form of A is also intuitively satisfying. Informally speaking, it represents
a measure of ‘texturedness’ in the temporal direction implying that as the temporal
derivatives grow in magnitude, the Lucas-Kanade method introduces a greater amount
of bias. It is well known that while the TLS solution is unbiased, compared to the OLS
solution, the TLS has greater variance. In this context, the influence of the patch size
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on \ is informative. When the patch size (V) is small, A is large implying that our
solution introduces a bias to reduce the variance of the solution. Conversely, when the
patch size is large, A is small implying that our solution is closer to the TLS estimate as
desired. Thus our formulation can naturally capture the correct representation required
for accurate flow estimation and also explains the behaviour of Lucas-Kanade and TLS
algorithms.

3.2 Affine Flow

While the constant flow model is simple to implement, its accuracy is inherently lim-
ited as flow fields are seldom close to a piece-wise constant model. A more appropriate

assumption is that of an affine model. An affine flow field is described by [u U]T =

Alz y] Ty [te ty ] " where (u,v) is the flow at position (z,) and A is a 2 x 2 matrix.
The affine model has been used to estimate optical flow in [[13}14,[15]. While the TLS
estimator is unbiased it has a higher variance than the OLS solution. This implies that
for small image patches, with few equations the Lucas-Kanade solution is preferable to
the TLS solution. However as we noted in the previous subsection, when we have many
equations the TLS solution is preferable to the biased OLS estimate. In general, the
affine flow model is estimated for patches larger than those for constant flow since we
need many more equations to reliably estimate the six parameters of the affine model.
This implies that in our probabilistic model, the prior has little influence on affine es-
timation and can be neglected in our analysis here. By re-writing the optical flow in
homogeneous co-ordinates we have f = Pa, where P represents terms relating to pixel
position (x,y) and a is the vectorised representation for the affine parameters. Using
this form in the probability model of Eqn.[6l we have
1 fTMmyr

P(flow|patch) = max e 202 ¢Tr

1 (Pra)TaPya

= P(a|patch) = maxHef 202 (Ppa)TPja
a

TPkTMkPka

10
aTPkTPka ( )

k

. a

= a = arg IILIH Z
k

Thus the problem of estimating the affine parameters is reduced to the minimisation
of a sum of Rayleigh quotientsﬁ. This particular quotient form occurs frequently in
computer vision problems like ellipse fitting etc. and a significant body of work has
been devoted to its minimisation. In our solution for the affine parameters we use the
First-Order Renormalisation of [[19].

3.3 Performance of Affine Flow Estimation

In this subsection we evaluate our affine flow estimation scheme using the standard im-
age sequences of Barron et al [1]]. All experiments are performed with a fixed set of

3 In [18]), the authors use algebraic arguments to approximate the above objective function as a
single ratio of quadratic forms where the numerator is an average over the patch for the terms
P7 MP and the denominator is held to be PTP for a given pixel co-ordinates (x,y).
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parameters. Each image sequence is smoothed using a separable Gaussian kernel with
uniform spatial and temporal standard deviation of 1.4 pixels. The derivative filter is
the series-design filter used in [18]. Apart from the image derivative filter the patch
size is an important parameter that influences performance by determining the trade-off
between estimation accuracy (requiring large patches) and resolution (requiring small
patches). Throughout our experiments we use a constant patch size of 31 x 31 pixels
and estimate the affine flow for such patches with a shift of 5 pixels in each direction.
Thus each pixel is present in multiple patches and the flow estimate is the average over
all patch estimates. We tabulate our results in Tables[I} 4l The error measure is identical
to that of [1]] and can be seen to measure the angle between the normalised volume-flow
representations of the ground truth and the estimate. The error values for the first four
methods are taken from [1]. As can be easily observed, our algorithm performs very
well with respect to the other procedures. In particular, we point out that our accuracy
is achieved without the use of any adaptive schemes. Also the standard deviation of
our error values are significantly smaller compared to other methods. For the Yosemite
sequence, we note that in comparison with the adaptive scheme of [4], our estimator
has almost the same performance (error of 1.16° compared to 1.14°) whereas our stan-
dard deviation is significantly smaller (1.17° compared to 2.14°). While, the results
of S]] on the Yosemite sequence are superior to ours, we reiterate that our performance

Table 1. Sinusoid Sequence Results Table 2. Translating Tree Results
Method Error (in °) Density Method Error (in °) Density
I o I o
Lucas-Kanade 2.47 0.16 100 % Lucas-Kanade 0.66 0.67 39.8 %
Horn-Schunck 2.55 0.59 100 % Horn-Schunck 2.02 2.27 100 %
Fleet-Jepson  0.03 0.01 100 % Fleet-Jepson  0.32 0.38 74.5 %
Uras et al. 2.59 0.71 100 % Uras et al. 0.62 0.52 100 %
Farneback [20] 0.74 0.03 100 % Farneback [20] 0.62 1.99 100 %
Liuetal [18] 0.31 0.05 100 % Liuetal [18] 0.20 0.62 100 %
Our method 0.09 0.03 100 % Our method 0.15 0.10 100 %
Table 3. Diverging Tree Results Table 4. Yosemite Results (without clouds)
Method  Error (in °) Density Method Error (in °) Density
I o I o
Lucas-Kanade 1.94 2.06 48.2 % Lucas-Kanade (A2 > 1.0) 3.21 5.34 395 %
Horn-Schunck 2.55 3.67 100 % Horn-Schunck 3.68 490 100 %
Fleet-Jepson 0.99 0.78 61.0 % Uras et al. 6.47 9.48 84.6 %
Uras et al. 4.64 3.48 100 % Memin-Perez [7] 1.58 1.21 100 %
Farneback [20] 0.75 0.69 100 % Weickert et al. [6] 146 * 100 %
Liuetal [18] 0.65 1.73 100 % Liu ez al. [18] 1.39 2.83 100 %
Our method  0.51 0.21 100 % Farneback [20] 1.40 2.57 100 %
Farneback [4] 1.14 2.14 100 %
Papenberg et al. [3] 0.99 1.17 100 %

Our method 1.16 1.17 100 %
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is achieved by focusing on the representation of the brightness constraint and not on
sophisticated numerical minimisers. In summary, we note that our probability represen-
tation is powerful and even a straight-forward application of this model outperforms
almost all other flow estimators. Other refinements like robustness, adaptive patches,
and more accurate minimisers can be expected to further improve our results.

4 Conclusions

In this paper we have introduced a principled approach to modeling the brightness con-
straint. The resultant probabilistic model is shown to be powerful and can both explain
the behaviour of existing flow algorithms and significantly improve their performance.
Future work will address more sophisticated minimisation approaches and also the utili-
sation of our probabilistic model to solve for volume-flow in the spatio-temporal volume
of images and for direct motion estimation and segmentation.
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