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Abstract. Figure/ground assignment is a key step in perceptual or-
ganization which assigns contours to one of the two abutting regions,
providing information about occlusion and allowing high-level process-
ing to focus on non-accidental shapes of figural regions. In this paper,
we develop a computational model for figure/ground assignment in com-
plex natural scenes. We utilize a large dataset of images annotated with
human-marked segmentations and figure/ground labels for training and
quantitative evaluation.

We operationalize the concept of familiar configuration by construct-
ing prototypical local shapes, i.e. shapemes, from image data. Shapemes
automatically encode mid-level visual cues to figure/ground assignment
such as convexity and parallelism. Based on the shapeme representation,
we train a logistic classifier to locally predict figure/ground labels. We
also consider a global model using a conditional random field (CRF) to
enforce global figure/ground consistency at T-junctions. We use loopy
belief propagation to perform approximate inference on this model and
learn maximum likelihood parameters from ground-truth labels.

We find that the local shapeme model achieves an accuracy of 64%
in predicting the correct figural assignment. This compares favorably to
previous studies using classical figure/ground cues [1]. We evaluate the
global model using either a set of contours extracted from a low-level
edge detector or the set of contours given by human segmentations. The
global CRF model significantly improves the performance over the lo-
cal model, most notably when using human-marked boundaries (78%).
These promising experimental results show that this is a feasible ap-
proach to bottom-up figure/ground assignment in natural images.

1 Introduction

Figure/ground organization, as pioneered by Edgar Rubin [2], is a step of
perceptual organization which assigns a contour to one of the two abutting re-
gions. It is commonly thought to follow region segmentation, it is an essential
step in forming our perception of surfaces, shapes and objects, as vividly demon-
strated by the pictures in Figure 1. These pictures are highly ambiguous and we
may perceive either side as the figure and “see” its shape. We always perceive
the ground side as being shapeless and extended behind the figure, never seeing
both shapes simultaneously.

Figure/ground organization is a classical topic in Gestalt psychology, and over
the years many factors have been discovered which play a role in determining
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Fig. 1. The figure/ground assignment problem. We perceive that each boundary be-
longs to one, but not both, of the two abutting regions. The figure side has a “shape”
and the ground side is “shapeless”, extending behind the figure.

what regions are seen as figural [3]. The most important of these factors include
size, convexity, symmetry, parallelism, surroundedness and lower-region as well
as familiar configuration. Recent studies in psychophysics show that familiar
configurations of contours provide a powerful cue for figure/ground [4], which
often dominates more generic cues.

In computer vision, partly due to its lack of immediate applications,
figure/ground organization has received little attention. Nevertheless, a few in-
fluential studies on figure/ground persist: many focusing on modeling and ex-
ploiting global structure such as T-junctions (e.g. [5, 6, 7, 8, 9]), others studying
the use of local cues such as convexity (e.g. [10]). Typically such approaches have
only been demonstrated on a limited set of images, mostly synthetic.

Fig. 2. Examples from the figure/ground dataset of natural scenes. Each image is first
segmented by a human subject; then two human subjects assign figure/ground labels
to each boundary in the segmentation. Here the white boundary indicates the figure
side and black the ground side. Blue boundaries indicate contours labeled by subjects
as not having a clear figure/ground assignment (e.g. surface markings).

In this work we utilize a large dataset of natural images where human
subjects provide segmentations as well as figure/ground labels (the Berkeley
Figure/Ground Dataset [1]). Figure 2 shows a few images from this dataset,
each annotated with a segmentation and corresponding figure/ground labels.
The purpose of this work is to address the challenges of figure/ground assign-
ment in such complex natural scenes, in the presence of hierarchical object struc-
ture, arbitrary occlusion and texture as well as background clutter and imaging
noise.

We propose a two-step approach: a local model using prototypical local shapes
to represent context; and a global model using a random field to enforce consis-
tency along contours and junctions. We train both models with human-marked
groundtruth data and quantitatively evaluate their performance.
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2 Figure/Ground Assignment in Natural Images

A standard view in perceptual organization is that images are first grouped into
smooth contours, regions and junctions. Then each contour is assigned to one of
the two abutting regions, after which shape analysis and object recognition hap-
pen. Recently this theory of sequential processing has been brought into question.
Psychophysical experiments suggest that recognition of familiar contour config-
urations is a powerful figure/ground cue and may occur prior to figure/ground
assignment [4]. On the other hand, studies from neurophysiology indicate that
figure/ground organization may occur early in the visual pathway [11, 12], long
before grouping is completed.

There is, of course, nothing contradictory between these findings and the tra-
ditional Gestalt emphasis on global processing. It could well be that informative
cues (including familiar shape) are available in the local context of each contour
independently extracted quite early. After this initial step, more global struc-
ture, such as T-junctions, may be constructed and used to enforce consistency
between local figure/ground assignments.

This is the philosophy behind our approach, which is outlined in Figure 3.
Starting from an image, first we compute its edge map using the Pb (Prob-
ability of Boundary) operator [13]. Then we use Geometric Blur [14], a local
shape descriptor, to represent the local context around each image location. The
representation is in terms of its similarity to set of prototypical local shapes, or
shapemes, that we find in advance from clustering training data. These similar-
ity terms are then combined using a linear classifier to predict the figure/ground
label at each image location. We show that the shapeme-based classifier performs
much better than a baseline model using size/convexity.

Next we develop a global figure/ground model which enforces labeling consis-
tency at junctions. First we integrate local figure/ground cues over continuous

Fig. 3. Summary of our two-stage approach. First we use the Pb operator [13] to com-
pute a soft edge map. The Pb map is used to compute local shape descriptors using
Geometric Blur [14]. These shape descriptors are clustered into prototypical shapes, or
shapemes, which encode rich mid-level visual information. Our local figure/ground
model is a logistic classifier based on the shapeme representation. Our global fig-
ure/ground model uses a conditional random field to enforce global consistency by
learning junction frequency and continuity. It operates either on a human-marked seg-
mentation or thresholded Pb boundaries.
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contour segments. We consider the following two cases separately: (1) if we as-
sume that a segmentation is available, we obtain a contour/junction structure
from a human-marked segmentation; or (2) if we don’t assume to have a seg-
mentation, a contour/junction structure is constructed from bottom-up based
on thresholded Pb edges.

We use a conditional random field model [15, 16] to build a joint probabilistic
model over the figure/ground labels on the complete set of contours segments.
Empirical frequencies of junction types (such as valid or invalid T-junction la-
bels), along with continuity of foreground contours, are exploited to correct
locally ambiguous labelings. Inference is done with loopy belief propagation. We
learn maximum likelihood model parameters with gradient descent.

We quantify the performance of our models by testing them against
groundtruth labels. In the case of using human segmentations, each pixel on
a human-marked boundary has a figure/ground label, and we count the percent-
age of figure/ground labels correctly predicted. In the case of bottom-up contour
detection, we use the Canny’s hysteresis to threshold Pb boundaries and apply
a bipartite matching process to “assign” groundtruth labels to each pixel on
the Pb boundaries. We then count the percentage of correct predictions of our
models on these transferred labels.

3 Local Figure/Ground Model with Shapemes

Many of the classical figure/ground cues are mid-level cues. Unlike edge detec-
tion, which measures contrast at a point, visual cues such as convexity, paral-
lelism and symmetry are about the relations between points or elements. On the
other hand, these cues can still be estimated within a moderately sized neigh-
borhood, without requiring a complete segmentation or recognition of objects.

Such mid-level cues are not trivial to operationalize. Parallelism, symme-
try and convexity have precise mathematical definitions but models constructed
from mathematical/geometric analysis are seldom flexible enough to cope with
the variety of natural phenomenon including noise, texture and clutter. Another
challenge with natural scenes is that they often contain multiple objects/parts
and hence have a complex junction structure which is impossible to reliably
detect using local operators[17].

3.1 Shapemes: Prototypical Shapes

Instead of seeking a mathematical definition for every local figure/ground cue, we
take an empirical approach, using a generic shape descriptor to discover shape-
mes, or prototypical shapes, from data. This is in the spirit of Wertheimer’s fa-
miliar configuration and Brunswik’s ecological theory of Gestalt principles.

We use the Geometric Blur operator [14] to describe local shape. Let I be
an input image and E an edge map. The geometric blur centered at location x,
GBx(y), is a linear operator applied to E whose value is another image given by
the “convolution” of E with a spatially varying Gaussian. GBx has the property
that points farther away from x are more blurred, making the descriptor robust
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93.84% 89.59% 66.52%

49.80% 11.69% 4.98%

Fig. 4. Shapemes, or clusters of local shapes from a set of human-marked boundaries
of baseball players. Shown here are the average shapes in each cluster. We find that
shapemes encode rich contextual information, such as parallelism (row 1, col 1), con-
vexity (row 1, col 2), sharp corners (row 2, col 3) or straight lines (row 2, col 5). On
the right we show a few shapemes and the percentage of the shapes in each cluster
that have the left side as figure. Empirical data confirm that mid-level cues such as
parallelism or convexity are very useful for figure/ground assignment; figure/ground
labelings are heavily biased in such cases.

to affine distortions. The value GBx(y) is the inner product of E with a Gaussian
centered at y whose standard deviation is α|y − x|. We rotate the blurred image
GBx so that the locally estimated contour orientation at x is always vertical.
We choose α = 0.5 and sample the blurred and rotated image GBx at 4 different
radii (increasing by a factor of

√
2) and 12 orientations, to obtain a feature vector

of length 48.
We then cluster these Geometric Blur descriptors to find prototypical shapes,

or shapemes. The use of shapemes was first introduced in [18] as a means to
efficiently index and retrieve object specific shapes. Here we use shapemes in
a rather different way, as a representation derived from data to capture mid-
level cues. Our shapemes also differ in that they are orientation-independent,
as we align them to local boundary orientations. This allows us to encode rich
contextual information with a small set of shapemes.

To illustrate the concept, Figure 4 visualizes 32 shapemes constructed (us-
ing k-means) from a simpler database containing silhouettes of baseball player
photos [19]. We find that mid-level cues such as convexity and parallelism are
implicitly captured in the shapemes, making it an appealing representation for
figure/ground organization.

For experiments on the more complex Berkeley Figure/Ground Dataset, we
use 64 shapemes constructed from Pb edge maps and modeled as a mixture of
Gaussians. For each local shape, we use the mixture of Gaussian to obtain a
feature vector f of dimension 64, which is the log posterior probability of each
component mixture. We use these features to predict a binary label Y ∈ {−1, 1}
indicating which side is figure and which side is ground, a binary classification
problem. A logistic classifier is fit to the human-marked labels using standard
iteratively re-weighted least squares.
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4 Global Figure/Ground Model with Conditional
Random Fields

Although local shape is quite informative, figure/ground organization is not a lo-
cal phenomenon. Contour form parts of object boundaries in the scene, and they
interact through junctions and regions. One classical problem in the early days
of computer vision is the labeling of line drawings. There, T-junctions are prob-
ably the most important cue in interpreting objects and scenes. Following this
tradition, many previous studies focus on the global inference of figure/ground
relations through junctions [5, 6, 7, 8, 9].

In the previous section we have shown that shapemes encode rich mid-level
cues and can be used to construct a local model for figure/ground organization.
To combine local cues and enforce global consistency, we assume that we have
a discrete graph structure of the image, as shown in Figure 5(a), where edge
pixels form contours and contours join to form junctions. This structure may
either come from a human-marked segmentation or, as we will show in the next
section, from a thresholded edge map.

(a) (b)

Fig. 5. Global inference of figure/ground assignments. Suppose we have a discrete con-
tour/junction structure as in (a), which comes either from a human-marked segmenta-
tion or from thresholded Pb edge maps. We use a conditional random field to enforce
global consistency of the figure/ground labels on individual edges. (b) shows the factor
graph of our probabilistic model corresponding to the edge structure in (a). Edge poten-
tials combine evidence from the local figure/ground model. Junction potentials ensure
that the figure/ground labels are consistent with one another, forming valid junctions.

We use a conditional random field (CRF) model for global figure/ground infer-
ence on this discrete structure. Conditional random fields were first introduced
by [15] for natural language processing, and have been shown to outperform tra-
ditional Markov Random Fields in many domains. It has been previously applied
to image labeling [20, 21], as well as contour completion [16].

For every contour e in the image, the local model provides us with an estimate
pe, the probability that the “left” side of e is figure (averaged over all pixels on
e). We associate with e a ternary variable Xe, where Xe = 1 if the “left” side of e
is figure, Xe = −1 if the “right” side is figure, or Xe = 0 if neither (e.g. a surface
marking). Let XV be the collection of variables for all contours which join at
a junction V in the graph. We consider an exponential family distribution over
the collection of edges of the form
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P (X |I, Θ) =
1

Z(I, Θ)
exp

{∑
e

φ(Xe|I, Θ) +
∑
V

ψ(XV |I, Θ)

}
(1)

where φ is a unary potential function on each contour e, ψ a potential function
on each junction XV , and Θ is the collection of model parameters. An example
factor graph, showing the conditional independence structure of our CRF model,
is illustrated in Figure 5(b).

The contour potential φ incorporates local figure/ground evidence, defined as
φ(Xe) = βXelog( pe

1−pe
), where pe is the local estimate that the “left” side of e

is figure.
The junction potential ψ assigns a weight to each distinctive “junction type”.

Suppose a junction V contains k contours {e1, · · · , ek}, sorted in a clock-wise
way, with a figure/ground label assignment XV (we do not consider any contour
with a label Xe = 0). The type of the junction V can be represented by a vector
of dimension k: T (XV ) = {Xe1 , · · · , Xek

}. We define

ψ(XV ) =
∑
t∈Ta

αt · 1{T (XV )=t} +
∑
t∈Tc

γ · θ(XV ) · 1{T (XV )=t} (2)

where Ta is the set of all possible junction types, and Tc is a subset of junction
types on which a continuity term θ may be defined (explained below).

Figure 6 shows a few examples of junction types. Intuitively, junction types (a)
and (d) are sensible junction labelings, (a) being a continuation of contours, and
(d) being a classical T-junction; while junction types (b) and (c) seem highly
unlikely. We can count the empirical frequencies of these junction types; and
indeed we find that type (a) and (d) are much more common than (b) and (c).

In order to analyze junctions, we need to know the geometric configuration
in addition to its type. For example, in a T-junction, we need to know which
two contours form the “top” of the “T”. This is accomplished by defining a
continuity term between a pair of contours. For junction type (d), we know from
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(a): type (1,-1),
frequency 0.126,

weight 0.185

(b): type (-1,-1),
frequency 0.039,
weight −0.611

(c): type (-1,-1,-1),
frequency 0.006,
weight −0.857

(d): type (1,-1,-1),
frequency 0.086,

weight 0.428

Fig. 6. A number of junction types, red indicating the figure side and blue the ground.
Each type is represented by its set of figure/ground labels collected in a clockwise way.
The empirical frequencies of these junction types confirm that type (a) and (d) are
common junction labelings but (b) and (c) are uncommon. This is encoded into the
CRF model parameters by maximum likelihood learning. For type (a) and (d), we may
define a continuity term θ, which is the angle between the two contours that belong to
the foreground.
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the figure/ground labels that the contours 1 and 3 form the boundary of the
foreground object, while the contour 2 is an occluded contour in the background.
Therefore the continuity of this junction is the angle between the contours 1
and 3. We also use continuity in junction type (a) by measuring the angle between
the two contours.

Because the contour/junction graph typically contains many loops, exact in-
ference on the CRF model is intractable. We perform approximate inference
using loopy belief propagation to estimate marginal posterior distributions of
the figure/ground labels Xe. We then assign a binary figure/ground label to
a contour e (hence all the pixels on e), the figure being on its “left” side if
P (Xe = 1) > P (Xe = −1), or otherwise the “right” side. In our experiments, we
find loopy belief propagation converges quickly (< 10 iterations) to a reasonable
solution.

We fit the model parameters Θ = {α, β, γ} using maximum likelihood crite-
rion. The partial derivatives of the log-likelihood take on a simple form as the
difference between two expectations. For example,

∂

∂αt
log

(
1

Z(I, Θ)
exp

{∑
e

φ(Xe|I, Θ) +
∑
V

ψ(XV |I, Θ)

})

=
∑
V

1{T (XV )=t} −
〈∑

V

1{T (XV )=t}

〉
P (X|I,Θ)

where the first term is the empirical frequency of junction type t, and the sec-
ond term is the frequency of type t under the current parameter setting. Learning
parameters with simple gradient descent converges quickly (< 500 iterations).

5 Figure/Ground Assignment Without Segmentation

The figure/ground models we have introduced are based on the assumption that
figure/ground organization occurs after region grouping. Using human-marked
segmentations, these models provide valuable insights into the figure/ground
process, such as relative powers of the local and global cues involved. To utilize
these cues in a practical algorithm, however, we need to compute a segmentation
first. Unfortunately, segmentation is a hard problem itself and requires the use
of all available visual information, potentially including figure/ground cues.

In this section we replace the human segmentation with a bottom-up grouping
process based directly on edge detection. There are two main questions that need
to be addressed:

1. The groundtruth labels in the dataset are all given on human-marked bound-
aries. How do we transfer these labels to a set of (potentially mislocalized)
edges, so that we may train and test our models as before?

2. The global conditional random field model requires a discrete contour/
junction graph structure. How do we construct such a structure from the
image?
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To transfer groundtruth labels, we run a bipartite matching between pixels on
human-marked boundaries and pixels on Pb edge maps, illustrated in Figure 7
(a). For each Pb edge pixel, we have an estimate of the local orientation at
that location. We then look at the matched pixel on human-marked boundary,
compute its figure/ground label at that particular orientation, and transfer it to
the Pb pixel. Figure 7(b) shows a few examples from this matching process.

F G

Groundtruth Boundary

Pb Pixels

(a) (b)

Fig. 7. Transferring groundtruth labels to Pb edge maps. (a) a bipartite matching es-
tablishes the correspondence between thresholded Pb edges and human-marked bound-
aries. This correspondence determines the figure/ground label on each Pb pixel, at its
local orientation. (b) examples of the transferred groundtruth labels. White indicates
that “left” is the figure side, black the ground side; blue pixels are either not matched,
or matched to a boundary with no figure/ground labels (not used in evaluation).

To construct a discrete junction structure on which our conditional random
field model can be applied, we use Canny’s hysteresis thresholding to trace salient
contours in Pb edge maps. Junctions are discovered during the process when two
or more contours join. A heuristic is used which merges two vertices when they
are sufficiently close to each other.

Pb edge maps have nice non-maximum suppression properties so a naive con-
tour tracing approach suffices most of the time. Figure 8 shows an example of
the resulting contour/junction graph, alongside the human-marked segmenta-
tion. Our conditional random field model can directly apply to either of these
discrete structures.

(a) (b) (c) (d)

Fig. 8. Constructing contour/junction structure (c) from thresholded Pb edge maps
(b). Contours are marked in black and junctions in red. Such a discrete structure allows
global inference on junction consistencies. However, bottom-up contours are much more
fragmented and not nearly as clean (and useful) as the human-marked boundaries (d).
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6 Experimental Results

The figure/ground dataset we use for both training and testing include 200
Corel images of size 321 × 481. Human subjects provide one segmentation for
each image as well as two sets of figure/ground labels. We use 100 images for
training and 100 for testing.

We test the performance of four models: a baseline size/convexity model, the
local shapeme model, the local shapeme model averaged on continuous contours,
and the global conditional random field model. Each model provides a binary
figure/ground label on boundary pixels, and we count the percentage of correct
predictions. Surface markings are excluded in these experiments. The models
are evaluated in two cases, with or without using human-marked segmentations.
Chance is 50%. Since each image is labeled by multiple human subjects, we can
measure the labeling consistency between human subjects. For this dataset the
self-consistency is 88%.

The baseline size/convexity model is constructed in the following way. Given
a segmentation, suppose p is a pixel on a contour c between two segments S1
and S2. Let D be a disk around p with a radius r. We can measure the area of
overlap A1 = |D ∩ S1| and A2 = |D ∩ S2|: if the area A1 < A2, then we label S1

Table 1. Performance evaluation based on human-marked segmentations. The baseline
size/convexity model has difficulties around junctions. Its performance slowly increases
with scale/radius, capped at 55.6%. The shapeme model, incorporating convexity, par-
allelism and textureness, performs much better than the baseline. Averaging local cues
over human-marked boundaries proves to suppress noise and significantly increase the
performance. The global CRF model, by enforcing labeling consistency at T-junctions,
performs the best, achieving 78.3% accuracy.

Chance Size/
Convexity

Local
Shapeme

Averaging Shapemes
on Contours

Global CRF
Dataset

Consistency
50% 55.6% 64.8% 72.0% 78.3% 88%

Table 2. Performance evaluation based on Pb boundaries. Without the knowledge of a
segmentation, the baseline size/convexity model cannot be applied. The local shapeme
model, based solely on local image-based descriptors, performs as good as in the case
with human-marked boundaries. The global models, however, are severely handicapped
without a perfect segmentation. The contour/junction structure constructed from edge
maps is useful at enforcing global consistencies (4% improvement); but as it is much
more fragmented and noisy than the set of human-marked boundaries, the benefit
of global integration is much smaller. Clearly, a more sophisticated contour/region
grouping algorithm is needed here to produce better junction structures.

Chance Size/
Convexity

Local
Shapeme

Averaging Shapemes
on Contours

Global CRF
Dataset

Consistency
50% n/a 64.9% 66.5% 68.9% 88%
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Fig. 9. Results based on human-marked boundaries. Shown here are the images,
the groundtruth labels (white being the figure, black the ground, blue neither),
figure/ground labels from the local shapeme model (white being correct, black incor-
rect; average accuracy 64.8%), and labels from the global CRF model (average accuracy
78.3%). The global model performs well in most cases, suggesting that figure/ground
assignment in natural images is a feasible problem, if a good segmentation is available.
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Fig. 10. Results based on Pb boundaries. Shown here are the images, the Pb edge
map, figure/ground labels from the local shapeme model (average accuracy 64.9%), and
labels from the global CRF model (average accuracy 68.9%). Without using human-
marked segmentations, the results are more noisy and less consistent. Nevertheless the
local shapeme model applies without any difficulty, and global inference on a bottom-up
contour/junction structure still significantly improves performance.
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as figure, and vice versa. This simple size cue is closely correlated with convexity
(convex regions typically have a smaller size, if the boundary is smooth enough)
and has been shown to perform well on this dataset without interference with
junctions [1]. This cue, however, relies on the availability of a segmentation and
performs poorly near junctions.

Table 1 lists the average labeling accuracy for the case of using human-marked
segmentations. Table 2 lists the results in the case of bottom-up contour detec-
tion. We find that the local shapeme model performs well in both cases, achiev-
ing an accuracy of 64.8%, much higher than the baseline size/convexity model.
Enforcing global consistency improves performance in both cases, most no-
tably when using human-marked segmentations. Sample results can be found in
Figure 9 and Figure 10.

7 Conclusion

In this work we have developed a model for figure/ground assignment in natural
images using shapemes to represent context and a conditional random field to
enforce labeling consistency at junctions. We train and test our models on a large
dataset of natural images with human-marked groundtruth data, using either a
high-quality segmentation or a bottom-up edge detector to determine junction
structure.

The local figure/ground prediction based on shapemes performs well in both
cases, comparing favorably to previous studies using classical Gestalt figure/
ground cues. Shapemes automatically discover contextual cues such as paral-
lelism or convexity, and are robust to complex variability in natural images.
The global CRF model significantly improves the performance, most notably
when using human-marked boundaries. Experimental results suggest that
figure/ground assignment in natural images is a feasible problem and a good
segmentation algorithm would greatly facilitate figure/ground organization.

References

1. Fowlkes, C., Martin, D., Malik, J.: On measuring the ecological validity of local
figure/ground cues. In: ECVP. (2003)

2. Rubin, E.: Visuell wahrgenommene figuren. In: Kobenhaven: Glydenalske boghan-
del. (1921)

3. Palmer, S.: Vision Science: Photons to Phenomenology. MIT Press (1999)
4. Peterson, M.A., Gibson, B.S.: Must figure-ground organization precede object

recognition? an assumption in peril. Psychological Science 5 (1994) 253–259
5. Kienker, P.K., Sejnowski, T.J., Hinton, G.E., Schumacher, L.E.: Separating figure

from ground with a parallel network. Perception 15 (1986) 197–216
6. Heitger, F., von der Heydt, R.: A computational model of neural contour process-

ing: figure-ground segregation and illusory contours. In: ICCV, Berlin, Germany
(1993) 32–40

7. Geiger, D., Kumaran, K., Parida, L.: Visual organization for figure/ground sepa-
ration. In: CVPR. (1996) 155–160



Figure/Ground Assignment in Natural Images 627

8. Saund, E.: Perceptual organization of occluding contours of opaque surfaces. CVIU
Special Issue on Perceptual Organization (1999) 70–82

9. S. Yu, T.L., Kanade, T.: A hierarchical markov random field model for figure-
ground segregation. In: EMM CVPR 01. (2001) 118–133

10. Pao, H.K., Geiger, D., Rubin, N.: Measuring convexity for figure/ground separa-
tion. In: ICCV. (1999) 948–955

11. Lamme, V.A.F.: The neurophysiology of figure-ground segregation in primary
visual cortex. Journal of Neuroscience 15 (1995) 1605–1615

12. Zhou, H., Friedman, H.S., von der Heydt, R.: Coding border ownership in monkey
visual cortex. Journal of Neuroscience 20 (2000) 6594–6611

13. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries us-
ing brightness and texture. In: Advances in Neural Information Processing Systems
15. (2002)

14. Berg, A., Malik, J.: Geometric blur for template matching. In: CVPR. (2001)
15. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. In: Proc. 18th International
Conf. on Machine Learning. (2001)

16. Ren, X., Fowlkes, C., Malik, J.: Scale-invariant contour completion using condi-
tional random fields. In: ICCV. (2005)

17. McDermott, J.: Psychophysics with junctions in real images. Perception 33 (2004)
1101–1127

18. Mori, G., Belongie, S., Malik, J.: Shape contexts enable efficient retrieval of similar
shapes. In: CVPR. Volume 1. (2001) 723–730

19. Mori, G., Ren, X., Efros, A., Malik, J.: Recovering human body configurations:
Combining segmentation and recognition. In: CVPR. Volume 2. (2004) 326–333

20. Kumar, S., Hebert, M.: Discriminative random fields: A discriminative framework
for contextual interaction in classification. In: ICCV. (2003) 1150–1159

21. He, X., Zemel, R., Carreira-Perpinan, M.: Multiscale conditional random fields for
image labelling. In: CVPR. Volume 2. (2004) 695–702


	Introduction
	Figure/Ground Assignment in Natural Images
	Local Figure/Ground Model with Shapemes
	Shapemes: Prototypical Shapes

	Global Figure/Ground Model with Conditional Random Fields
	Figure/Ground Assignment Without Segmentation
	Experimental Results
	Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


