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Abstract. Local appearance models in the neighborhood of salient im-
age features, together with local and/or global geometric constraints,
serve as the basis for several recent and effective approaches to 3D ob-
ject recognition from photographs. However, these techniques typically
either fail to explicitly account for the strong geometric constraints asso-
ciated with multiple images of the same 3D object, or require a large set
of training images with much overlap to construct relatively sparse ob-
ject models. This paper proposes a simple new method for automatically
constructing 3D object models consisting of dense assemblies of small
surface patches and affine-invariant descriptions of the corresponding
texture patterns from a few (7 to 12) stereo pairs. Similar constraints are
used to effectively identify instances of these models in highly cluttered
photographs taken from arbitrary and unknown viewpoints. Experiments
with a dataset consisting of 80 test images of 9 objects, including com-
parisons with a number of baseline algorithms, demonstrate the promise
of the proposed approach.

1 Introduction

This paper addresses the problem of recognizing three dimensional (3D) objects
in photographs taken from arbitrary viewpoints. Recently, object recognition
approaches based on local viewpoint invariant feature matching ([1], [2], [3], [4])
have become increasingly popular. The local nature of these features provides tol-
erance to occlusions and their viewpoint invariance provides tolerance to changes
in object pose. Most methods (for example [5],[6]) match each of the training im-
ages of the object to the test image independently and use the highest matching
score to detect the presence/absence of the object in the test image. This es-
sentially reduces object recognition to a wide-baseline stereo matching problem.
Ounly a few previous approaches ([2], [7], [8]) exploit the relationships among
the model views. Lowe [2] clusters the training images into model views and
links matching features in adjacent clusters. Each test image feature matched to
some feature f in a model view v votes for v and its neighbors linked to f. This
helps to model feature appearance variation since different model views provide
slightly different pictures of the features they share, yet features’ votes do not
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get dispersed among competing model views. Ferrari et al. [7] integrate the infor-
mation contained in successive images by constructing region tracks consisting
of the same region of the object seen in multiple views. They introduce the no-
tion of a group of aggregated matches (GAM) which is a collection of matched
regions on the same surface of the object. The region tracks are then used to
transfer matched GAMs from one model view to another, and their consistency
is checked using a heuristic test. The problem with this (as with all other meth-
ods that do not explicitly exploit 3D constraints) is that geometric consistency
can only be loosely enforced. Also, for both [2] and [7] there is no way to de-
termine consistency among matched regions which are not seen together in any
model view. Rothganger et al. [8] use multiple images to build a model encod-
ing the 3D structure of the object, and the much tighter constraints associated
with the 3D projection of the model patches are used to guide matching during
recognition. In this case, the 3D model explicitly integrates the various model
views, but the determination of the 3D position and orientation of a patch on
the object requires it to be visible in three or more training images [8], and hence
requires a large number of closely separated training images for modeling the
object. Also, [8] only makes use of patches centered at interest points, so the
model constructed is sparse and does not encode all the available information
in the training images. We tackle these issues by using calibrated stereo pairs to
construct partial 3D object models and then register these models together to
form a full model.' This allows the use of a sparse set of stereo training views
(7 to 12 pairs in our experiments) for the modeling. We also extend to 3D object
models the idea proposed in [6] in the image matching domain, and augment the
model patches associated with interest points of [8] (called primary patches from
now on) with more general secondary patches. This allows us to cover the object
densely, utilize all the available texture information in the training images, and
effectively handle clutter and occlusion in recognition tasks.

The paper is organized as follows. In section 2 we discuss the detection and
representation of affine invariant patches as well as give an overview of our
approach. The construction of the partial models and their inter-registration to
generate the full model is explained in section 3. The details of the recognition
phase of the algorithm are provided in section 4. In section 5 we show recognition
results using the proposed approach and summarize in section 6.

2 An Overview of Our Approach

We use an implementation of the affine region detector developed by Mikolajczyk
and Schmid [3] for low-level image description. The detector is initialized with the
Harris-Laplacian interest point detector and the Difference of Gaussian (DoG)
operator similar to [9]. The two detectors find complementary type of points. The
Harris-Laplacian detector tends to find corners and points at which significant
intensity changes occur while the DoG operator detects blob like features in
the image. The output of the interest point detection/rectification process is

! This is for modeling only of course; individual photographs are used for recognition.
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Fig. 1. Affine regions and inverse rectification

a set of parallelogram-shaped image patches together with the corresponding
affine rectifying transformations mapping these onto a square with edge length
2 centered at the origin. We represent each detected region by the 2 x 3 affine
transformation matrix S that maps the rectified texture patch back onto its
position in the image as shown in Fig. 1(b) (after [8]).

We use calibrated stereo for determining the 3D structure of the object and
building the model mentioned in the previous section. Potential primary matches
between the affine regions found in each stereo pair are first filtered using pho-
tometric and geometric consistency constraints, and then augmented with ad-
ditional secondary matches for dense coverage of the object, as proposed in [6]
in the 2D case. The 3D location and shape of the patches is determined using
standard stereo to generate partial models which are later combined to form a
complete model of the object. The 3D patches that correspond to primary (or
secondary) matches are called primary (or secondary) model patches.

A similar scheme is followed during recognition. First, the primary patches
in the model are matched to the affine regions found in the test image. These
primary patches are then used as guides for matching nearby secondary patches.
The object is recognized based on the number of matched patches.

3 Stereo Modeling

We start by acquiring a few (7 to 12) stereo pairs that are roughly equally spaced
around the equatorial ring of the object for modeling. The stereo views are taken
against a uniform background to allow for easy segmentation. Then, a standard
stereo matching algorithm that searches for matching patches along correspond-
ing epipolar lines is used to determine an initial set of tentative matches. We
use a combination of SIFT [5] and the color histogram descriptor described in
[10] to compute the initial matches. The matches are then refined to obtain the
correct alignment of the patches in the left and right images. Only matches with
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normalized correlation greater than a pre-refinement threshold (kept at 0.75) are
considered for the refinement step for efficiency reasons. The refinement process
employs nonlinear optimization to affinely deform the right image patch until
the correlation with its match in the left image is maximized. Matches with
normalized correlation greater than a post-refinement threshold (equal to 0.9 in
this paper) are kept for subsequent processing.

The matches are filtered by using a neighborhood constraint which removes
a match if its neighbors are not consistent with it. More precisely, for every
match m we look at its K closest neighbors in the left image (K = 5 in our
implementation) and, for every triple out of these, we calculate the barycentric
coordinates of the center of the left and right patches of m with respect to
the triangle formed by the centers of the patches of the triple in the left and
right images respectively. We then count the number of triples for which these
barycentric coordinates agree (the sum of squared differences is smaller than a
tolerance limit £ = 0.5). We repeat the process using the K closest neighbors
of m in the right image and add up both the counts. Finally, the matches with
a count smaller than a threshold T are dropped. Setting T = 2(K3_ 1) ensures
that a correct match with one bad nearby match out of the K still survives after
this test. This gives us a set I" of reliable matches. Note that these matches are
based only on the primary patches associated with salient affine regions detected
in the stereo training images and hence, only cover the object sparsely. To get
a dense coverage of the object we use an expansion technique similar to [6] to
spread these initial matches in I.

Expansion Technique

We use the fact that the training views are taken against a uniform background
to segment the object and cover it with a grid {2 of partially overlapping square-
shaped patches in the left image (Fig. 2(a)). For every match m; in I', we
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Fig. 2. (a) Left image in a stereo pair, covered with a grid of patches (three of the
overlapping patches are shown in black for clarity). (b) Partial model constructed from
primary matches before expansion. (c) Model constructed using only the secondary
patches found during expansion. (d) Model containing the primary patches after ex-
pansion. (e) Model containing all the patches after expansion.
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compute the affine transformation 7 = SRf,SE,L.l between the corresponding
patches L; and R; in the left and right images. Here Sp, and Sg, are the in-
verse rectification matrices for L; and R; respectively. We use 7 to predict the
location Sg, = 78y, of the right matches of the yet unmatched patches L; in
2 that are close to (within one side length of) the center of L;. Then, a refine-
ment process is used to align the predicted patch correctly in the right image.
Again, if the match has sufficient correlation after refinement, it is accepted as a
valid match and added to I'. Since the patches that form these matches are not
associated with interest points, we call these secondary matches. The expansion
process iterates by expanding around the newly added matches to I' until no
more matches can be added. This process usually covers the entire object sur-
face densely with matches. Figure 2(c) shows the secondary patches on a partial
model of the dragon constructed from a single stereo pair.

We then use the secondary matches to locate additional primary matches as-
sociated with salient affine regions. Even though the corresponding part of the
object surface may already be covered (with secondary matches), this is useful
because it is the primary matches that can be repeatably detected, and will later
be required for the initial matching to the test image as well as for the alignment
of the partial models. This is accomplished by finding unmatched affine regions
in the left (respectively right) image, and using close-by secondary matches to
predict the position of the corresponding patches in the right (respectively left)
image. Again, a refinement process is used to adjust the alignment of the right
(respectively left) image patch. If there is sufficient correlation (again 0.9) be-
tween the left and right patches, the match is added to I'. Figures 2(d) and 2(e)
respectively show the expanded primary patches and the union of the primary
and secondary patches in the partial model of the dragon.

Model Construction

The dense matches constructed as discussed above are used for building the
3D model. First, we solve for the patch centers in 3D by using standard cali-
brated stereo triangulation. Then, we reconstruct the edges of the corresponding
parallelograms using a first-order approximation to the perspective projection
equations in the vicinity of the patch centers as proposed by Rothganger [10].
This gives us a partial 3D model of the object for each stereo pair. The next
task is to combine these partial models into a complete model.

The first step in combining the models is to find appearance-based matches
between the primary model patches in adjacent partial models. Again, SIFT
and color histogram descriptors are used to facilitate the initial matching. Next,
a variant of the expansion scheme described earlier is used to propagate these
initial matches between 3D patches to neighboring model patches as follows
(Fig. 3). Let the two partial models being registered be Mp and Mg. For each
initial match M, between the 3D patches P; in Mp and Q; in Mg, we consider
the 2D patch p; (resp. ¢;) corresponding to P; (resp. Q;) in the left stereo image
of Mp (resp. Mg). We calculate the affine transformation 7 that maps the patch
p; onto ¢;. Then, we consider the yet unmatched patches P; in Mp whose 2D
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Fig. 3. Expansion during registration

projection p; in the left stereo image lies within a small distance limit of the
center of p;. These patches p; are then projected to g; in the left stereo image
of Mg using 7. A refinement process (similar to the one described earlier) is
then used to align the projected patch g; correctly. The match is removed from
consideration if the final correlation between p; and g¢;’s normalized representa-
tion is less than a threshold (again kept at 0.9). If the match passes this test we
find the patch Q) in Mg whose projection g into the left stereo image of M is
closest to g;’s center point. An estimate of the position of the 3D patch @; that
corresponds to the 2D patch g; can then be obtained, assuming that @Q; lies on
the same plane 7 as Q. An affine transformation S that maps the 2D patch g
to the 3D patch Q. on 7 is calculated and then @); is estimated by projecting
g; onto 7, using S. This new match between P; and @); is then added to the
set of matches and is used for finding other matches. This expansion step has
proven to be very useful while registering models with small overlap.

Finally, all the matches are filtered through a RANSAC procedure that finds
the matches consistent with a rigid transformation. This provides an estimate
of the pairwise rigid transformations. Since these pairwise estimates may not in
general be consistent with each other (the product of the rotations between the
consecutive models must be the identity), we use a process similar to [11] to find
a consistent solution: It is initialized using the pairwise transformation estimates
and these estimates are refined by looping through all the partial models and
updating the position of the current model to align it best with its neighbors.
More formally, we search for the rigid transformation that minimizes the sum
of squared distances between the centers of the matched patches in the current
model and its neighbors. The positions of these neighbors are kept fixed while
the position of the current partial model is calculated via linear least squares
[11]. The above process is iterated until a local minimum of the error is reached.
Figure 4(c) shows a plot of the mean squared error after each iteration of the
refinement process for three of the models used for experimentation. Finally the
rigid transformations estimated are used to bring all the partial models into a
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Fig. 4. Registration of partial models

common euclidean coordinate frame and a complete model is constructed by
taking the union of these transformed partial models. The partial models and
the complete model formed after registration for a teddy bear are shown in
Figs. 4(a) and 4(b) respectively.

4 Recognition

The recognition starts by matching the repeatable primary patches in the 3D
model to the interest points detected in the test image. Again, we use both SIFT
descriptors and color histograms to characterize the appearance of the patches
and compute the initial matches. The refinement process is then employed to
affinely deform the matched test image patch so as to maximize the its cor-
relation with its corresponding model patch. Matches with correlation smaller
than a threshold (again taken as 0.9) are dropped before further processing. The
remaining matches are used as seeds for the subsequent match expansion stage.

Expansion Process

This process is similar in spirit to the expansion technique used during the
initial modeling but the expansion here happens on the surface of the 3D model
instead of the stereo images. For this, we first preprocess the model M to build an
undirected graph Gjs that represents the adjacency information of the patches
in M. We add an edge e between two patches if their centers lie within a distance
limit of each other. This limit is set to be such that the average degree of a vertex
is around 20. We now spread the matches along the edges of this graph using
the following steps.

Expansion using images (Fig. 5(a)): This expansion step is similar to the
expansion during modeling. For each previously matched model patch P we
calculate the affine transformation S that maps its projection in the left training
image of the stereo pair from which it originates into the test image. Then we
look at every unmatched neighbor @ of P that is part of the same partial model
(and so shares the same left stereo image) and use S to predict its location in
the test image. This predicted position is then refined as before and the match is
accepted if the correlation is sufficiently large (again 0.9). This expansion scheme
does not allow expanding matches from one partial model to another.
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Fig. 5. Expansion during recognition

Geometric consistency test (Algorithm 1): A “greedy” RANSAC-like algo-
rithm is used to extract a set of geometrically consistent matches and estimate
the camera for the test image. The test image camera is modeled as a weak-
perspective camera with zero skew and square pixels.

Expansion using the camera (Fig. 5(b)): This step is used after the matches
have been filtered through the above geometric consistency test and the camera
A associated with the test image has been estimated. A is used to project a
base 3D patch P (which is already matched to a patch p in the test image) and
some adjacent patch @Q into the test image. Let the 2D projected patches be p’
and ¢’ respectively. A correcting affine transformation 7 is computed that aligns
the projection p’ of the base 3D match exactly with its correct location p. 7
is then applied to the projection ¢’ of the adjacent patch to obtain a corrected
prediction ¢ of its position. The prediction is then refined as before to maximize
the normalized correlation between the patches corresponding to the match and
accepted only if it has high correlation (greater than 0.9). This expansion step
allows for moving smoothly from one partial model to another and hence provides
an advantage over the pure 2D expansion technique of [6].

For extending matches to parts of the object that are not directly connected
to the initial matches in the test image (possibly due to occlusion) the recon-
structed test camera is used to project unmatched primary patches from the
model into the test image. Affine regions detected in the test image close to
these projected positions are then matched to the corresponding model patch.
Again, the refinement process is used to correctly align the patch in the
test image and the match is accepted if the correlation exceeds a threshold
(again, 0.9).

The two expansion steps also allow us to reject false matches by simply re-
moving those that do not have enough support. More precisely, if the expansion
step from a base match tries to expand to a large number of neighbors and none of



Modeling 3D Objects from Stereo Views 571

Input: A set M of possible matches.
Output: A set S of trusted matches, camera for the test image C
for i = 1 to numlter do
e Pick a match m; € M at random.
e Select the most compatible match mj; € M \ {m;} to m,.
e Initialize S; = {m;, m;} and C; to the camera estimated using S;.
e Select Mpest € M\ S; with minimum reprojection error Eyes: using Cj
while |S;| < K and &pest < 7 do
e S, =S, U {mbest}.
e Update C; with the camera estimated using S;
e Select Mpest € M\ S; with minimum reprojection error Eyes: using Cj
end while
e Add all matches m € M \ S; with reprojection error £, < 7 to S;.
end for
e Set S to the S; with the largest cardinality.
e Estimate the camera C for the test image using S.

Algorithm 1. Geometric consistency test

these succeeds in forming an acceptable match, the base match is removed. The
above cycle consisting of the two expansion steps and the geometric consistency
test is iterated until the number of matches does not increase any more. This
process usually takes only 3 iterations.

5 Results

We have evaluated the proposed method on a dataset consisting of 9 objects and
80 test images. The object models, constructed from 7 to 12 stereo views each,
are shown in Fig. 6. The objects vary from simple shapes (e.g., the salt container)
to quite complex ones (e.g., the two dragons and the chest buster model).

The test images contain the objects in different orientations and under vary-
ing amounts of occlusion and clutter. The total number of occurrences of the
objects in the test image dataset is 129 since some images contain more than one
object. Figure 7(a) shows the ROC plot between the true positive (detection)
rate and the false positive rate. To assess the value of the expansion step of our
approach, we have simply removed the secondary patches and the extra primary
patches added during this stage of modeling from our models, and used these
sparse models for recognition (this is similar in spirit to the algorithm proposed
by Rothganger et al. [§], but includes the expansion step during the recognition
phase which was absent in [8]). The corresponding recognition performance is
depicted by the blue ROC curve. Our experiments clearly demonstrate the bene-
fit of using dense models as opposed to sparse ones for our dataset. We have also
implemented recognition as wide-baseline stereo matching to assess the power
of using explicit 3D constraints as opposed to simple epipolar ones. Each test
image is matched to all the 168 training images (both left and right images for
each stereo pair) for every object separately, making a total of 168 x 80 = 13440
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Fig. 6. Object models. The number of stereo views used is given in parenthesis.
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Fig. 7. Comparison ROC plots

image pairs to be compared. The maximum number of matches corresponding to
each object is recorded and used to construct the ROC curve. As expected, our
method clearly outperforms this simple baseline approach. The detection rates
for zero false positives and the equal error rates for the different methods are
shown in Fig. 5.

The proposed approach also performs well on the highly complex geomet-
ric objects like the dragons and the chest buster model. Figure 7(b) shows the
comparison of the ROC plots on the dataset restricted to only these 3 models.
The variation in appearance of the features due to small viewpoint changes is
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Method Detection Rate (zero false positives)|Equal Error Rate
Proposed Approach 86.8% 89.1%
Primary patches only 69.8% 84.9%
Wide Baseline 58.1% 771.1%

Fig. 8. Error rate comparison

larger for these models since the surface of the models is not smooth. Because
the proposed approach combines the different views of the features together
(when the different partial models are merged) its performance is less severely
affected on the restricted dataset. On the other hand, the performance of the
wide-baseline matching scheme drops by a significant amount.

Finally, Fig. 9 gives a qualitative illustration of the performance of our algo-
rithm with a gallery of recognition results on some test images which contain
the objects under heavy occlusion, viewpoint and scale variation, as well as ex-
tensive clutter. The dataset used in this paper is available at the following URL:
http://www-cvr.ai.uiuc.edu/ponce grp/data/stereo recog dataset/

L w5l w5l &
| Iy Ky

V¥

;;..Sﬁzs.&g-*jl o DT B

Fig. 9. Results: test image (left), matched patches (center), predicted location (right)

6 Conclusions and Summary

We have proposed an approach to efficiently build dense 3D euclidean models
of objects from stereo views and use them for recognizing these objects in clut-
tered photographs taken from arbitrary viewpoints. At this point there are many
directions for future work.

— Extending the approach to handle non rigid deformations
— Recognizing objects in a cluttered scene using a pair of calibrated stereo
images of the scene.



574 A. Kushal and J. Ponce

Also, it would be desirable to do a comparison with the native implementa-
tions of other state-of-the-art recognition methods such as those proposed by
Ferrari et al. [7], Lowe [2], and Rothganger et al. [8].
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