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Abstract. We propose a homography estimation method from the
contours of planar regions. Standard projective invariants such as cross
ratios or canonical frames based on hot points obtained from local dif-
ferential properties are extremely unstable in real images suffering from
pixelization, thresholding artifacts, and other noise sources. We explore
alternative constructions based on global convexity properties of the con-
tour such as discrete tangents and concavities. We show that a projec-
tive frame can be robustly extracted from arbitrary shapes with at least
one appreciable concavity. Algorithmic complexity and stability are the-
oretically discussed and experimentally evaluated in a number of real
applications including projective shape matching, alignment and pose
estimation. We conclude that the procedure is computationally efficient
and notably robust given the ill-conditioned nature of the problem.

1 Introduction

The homography relating two perspective views of a plane is a fundamental
geometric entity in many computer vision applications. Instead of conventional
estimation methods based on explicit point or line correspondences, we are in-
terested in robust and efficient homography estimation from the contours of two
views of a given planar region with arbitrary shape. Using this transformation
we can solve several related problems including shape recognition and matching,
object alignment, spatial pose location (given additional information about the
camera parameters), robot guidance from conventional signs (e.g. arrows), image
rectification and camera calibration.

For instance, Figs.[Ila-b show two views of a well-known geographical feature.
Using the homography relating the two views we could verify that the aerial
image effectively corresponds to the lake in the map, the cities in the map can be
located on the image, and we can even compute the 3D position and orientation
of the camera in the reference frame induced by the map.

These natural shapes lack distinguished points or lines; at a given resolu-
tion they can be considered just as irregular silhouettes in which small details
are neither reliable nor relevant. Furthermore, contours extracted from real im-
ages suffer from pixelization, thresholding artifacts, and other unavoidable noise
sources, specially in low resolution views with large slant (Fig. [lc).
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Fig. 1. Real world shapes. (a-b) Two views of Lake Geneva. (¢) Noisy contours of
traffic plate symbols extracted from a video sequence.

In noisy contours the differential properties of curves (required for computa-
tion of lines, inflection points, cusps, and other local projective invariants) are
destroyed. Cross-ratio constructions are also very sensitive to noise and must
be used with caution. Contour smoothing and noise filtering do not completely
solve this problem: noise is inhomogeneously transmitted in different regions of
the contour due to the nonlinear effects of perspective imaging. Analytical mod-
els (e.g. polygonal approximations, implicit polynomials, snakes, etc.) may even
destroy valuable features for contour alignment. Certain modeling techniques
may be adequate for specific shapes (e.g. straight line approximations for essen-
tially polygonal contours, etc.), but contour recognition in general conditions is
precisely one of our main goals. In consequence, in this paper all contours will be
represented and manipulated in its “raw” form as closed and possibly irregularly
spaced polylines without self-intersections.

Some of the first approaches to shape recognition under perspective imaging
conditions were based on more or less ad hoc constructions [I]. Later, the appli-
cation of projective geometry [2,[3L[4] to computer vision clarified enormously the
field, but the emphasis was mainly in estimation of 3D structure from explicit
point or line correspondences in multiple images.

Projective contour analysis under real world, noisy conditions has received
comparably less attention. Most of the proposed solutions for curve matching are
based on differential properties [5,6][7,[8,9] or in specific contour models [T0,[TT],
which cannot be directly used over low quality images The projective geometry
of multiple views of curves has been studied in [I2]. Invariant signatures based on
rays have been proposed in [I3] to retrieve shapes in a database of trademarks.
Application of contour matching to visual servoing using snakes is described
in [14], where weak perspective estimates, point redistribution, and projective
correction steps are iterated until convergence. An approach based on image
moments is reported in [T5]. A curious and completely different idea is proposed
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in [I6], where a linear program can be established on the homography entries,
with constraints given by region bounds. This method admits partial occlusions
but requires at least two contours to avoid trivial solutions. In addition to shape
recognition, contour alignment has been used in other applications including
camera calibration [I7] and structure and motion recovery [I8]19].

Contour matching under similar or affine transformations (e.g. weak perspec-
tive) is a notably easier problem [20}21122]. For instance, robust affine alignment
can be based on shape covariance equalization and Fourier analysis. Unfortu-
nately, this kind of approaches cannot be directly extended to full perspective
images due to the essentially nonlinear laws of image formation. While small
shapes can frequently be acceptably modeled by affine transformations, such
kind of weak perspective approximation is only valid for shape recognition. Ac-
curate alignment and pose estimation can only be achieved from true projective
homographies containing information about both the focal length and the dis-
tance to the object.

Our goal is a simple, efficient, and robust method for homography estimation
from arbitrary contours. In the rest of the paper we will discuss a number of
geometric constructions, essentially based on convexity, which can be used to
compute a projectively invariant reference frame.

2 Robust Projective Invariants

The homography relating two projective views of a plane is completely charac-
terized by at least four corresponding points (or lines) [2]. However, two corre-
sponding contours only impose (if differential or local properties are discarded)
an ordering on the possible point correspondences. Distances between points
along the contour may drastically expand or shrink in different views. We are
interested in a projective reference frame that can be constructed using ‘global’
invariant geometric properties of the curve, avoiding local properties. The con-
struction must be tolerant to a reasonable amount of noise in the curve locations.

A promising property is convexity. The convex hull of a figure is preserved
under projective transformations if the whole shape is in front of the camera
(otherwise objects are split across the horizon; we consider quasi-affine transfor-
mations [2, ch. 21], [23]). In this work we assume that the admissible contours
are completely contained in the image, without occlusions. In such conditions,
and in contrast with curvature-based invariants, the global convexity properties
of a figure can only be destroyed by large amounts of noise. This kind of region

Fig. 2. The discrete tangent with respect to a external point (but not the point of
contact) is reasonably robust against contour perturbations



110 A. Ruiz, P.E. Lépez de Teruel, and L. Ferndandez

convexity invariance seems to be a minimal and reasonable requirement. If ‘large’
concavities disappear contour matching becomes unsolvable in practice.

Closely related to convexity, tangency is also projectively preserved. While
ordinary curve tangents, based on differential properties, are not robust, ‘dis-
crete’ tangency with respect to external points or regions is a much more stable
geometric construction (Fig. ). Note that the specific point of contact is not a
robust projective invariant (it may slide along the tangent line).

2.1 Polygon Tangency and Convex Hull Computation

The points of contact of the tangents to a polygon are contained in its convex
hull, which can be efficiently computed using Melkman’s algorithm for polylines
with no self-intersections [24]. This method sequentially processes each of the
polyline vertices. At each stage, the algorithm determines and stores on a double-
ended queue those vertices that form the ordered hull for all polyline vertices
considered so far. Each new vertex satisfies one of two conditions (Fig. B): either
(1) it is inside the currently constructed hull, and can be ignored; or (2) it
is outside the current hull, and becomes a new hull vertex extending the old

Fig. 3. Illustration of one step in Melkman’s convex hull algorithm

hull. However, in case (2), vertices that are on the list for the old hull, may
become interior to the new hull, and need to be discarded before adding the
new vertex to the new list. Each vertex can be inserted on the deque at most
twice (once at each end) and the elements on the deque can be removed at
most once. Each of these events has constant time, providing a linear execution
order.

2.2 Contour Pairs

To illustrate a simple example of convexity based invariants we will consider
first the easiest situation. Given a pair of closed, disjoint coplanar contours, the
four tangent lines to both contours is an eight d.o.f. projective invariant which
completely determines the homography relating two views (Fig. [).

This idea can be immediately applied to planar objects with at least two
holes (e.g. the shape “B”), but obviously we are actually interested in the more
general case of simple contours without holes. In principle, this method could be
applied to figures with at least two clear concavities (which, together with the
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Fig. 4. Four invariant lines from a contour pair
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Fig. 5. Alignment using a pair of concavities

convex hull, are also projectively invariant). For example, Fig. [l illustrates this
idea for projective alignment of signs in a robot guidance application [25] [,

Alignment is acceptable despite the bad quality of the signals, which are
loosely glued to the wall. As shown in the last row, alignment quality strongly
depends on the chosen pair of concavities: we must try all combinations and
return the best match. Homography computation from the corresponding lines
becomes ill conditioned if the contours in the pair are too close, or too separated,
or their sizes are disparate.

In any case, this method is in general not robust since concavities are actually
defined by open contours with extremes that may slide along the convex hull. The
bitangent contact points induced by the concavities, which could in principle be
used to define a projective reference frame, are also unstable. In the next section
we propose a more robust and general alignment method.

3 Single Concavity

Under ideal conditions a smooth concavity defines at least four invariant points
(Fig.[Bla) which specify a projective reference frame [5,[6] (the points supporting

! In this particular example polygonal models could directly provide candidate lines
or vertices for matching. However, the proposed model is completely general and
only the raw contours are required for alignment.
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the concavity base line (bitangent) and the inflection points or the points of
contact of tangents). However, these points are not stable in most real, noisy
situations, and may even be not defined (Fig. Glb).

() L Q (b)

Fig. 6. Invariant points specified by a concavity

Consider instead projective frames defined essentially by discrete tangents.
Disregarding local curvature, a convex shape can only reduce the 8 degrees of
freedom of an arbitrary homography to 4, namely the angle/position of contact
of four lines enclosing the shape (Fig.[d (left)). Therefore, a smooth convex shape
can robustly specify neither projective nor affine (6 d.o.f.) reference frames.

Fig. 7. Using only tangencies a convex shape can only fix 4 d.o.f. in a homography
(left). Projective frame completely fixed using 4 (center) and 2 concavities (right).

We need some appreciable concavities (or straight line fragments) in the shape
in order to constrain the remaining degrees of freedom of the projectivity with
additional tangencies. The bitangent of a concavity is a robust invariant in the
sense of Sect. [ (clearly, its stability increases with the distance between the
contact points). A convex shape with four or more concavities trivially defines
one or more projective frames (Fig. [0 (center)). The bitangents are efficiently
computed as a side effect of the convex hull algorithm. Interestingly, taking ad-
vantage of tangents to the concavities and intersections with the convex hull only
two of them are actually required to define a projective frame (Fig. [l (right)). Of
course, many other alternative constructions can be conceived; practical consid-
erations suggest that the most stable one (following the ideas exposed in Section
@) should be used in each situation.

We are interested in the minimal requirements in a smooth shape for robust
estimation of a projective transformation. It can be easily proved that a single
concavity is sufficient. The idea is to set up a projective frame with one side on
the bitangent, the other three sides tangent to the convex hull of the figure, and
with both diagonals tangent to the concavity (Fig. [|]).
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Fig. 8. Projective frame from a single concavity. (a) and (b) are the contours of the
two views of the lake in Fig.[Il (c) and (d) illustrate the dependence of the construction
on the desired cross ratio of the intersections of the diagonal (c) = 0.36, (d)=0.01.

3.1 Existence and Uniqueness of the Construction

We outline an informal existence argument. Given the convex hull of the shape
and the convex hull of the concavity we can set an ‘initial’, extremely distorted
projective frame with diagonals ‘including’, but not touching, the concavity
(Fig. @a), with two points extremely close and three sides nearly collinear. If
the base extremes move closer to the shape, the diagonals will eventually touch
the concavity, since we can always set up another extremely distorted frame
intersecting the concavity (Fig. [@b). Note that to achieve the desired double
tangency the positions of the extremes are not independent from each other;
there is a one-parameter family of solutions.

(a) (b)

Fig. 9. The diagonals of a projective frame can always be tangent to a concavity

The bitangent fixes one d.o.f. in the projective frame in addition to the previ-
ous four shown in Fig.[] (left), and two more d.o.f.’s can be fixed by making the
two diagonals of the projective frame tangent to the concavity. Uniqueness can
be achieved by eliminating the remaining d.o.f. with a predetermined cross-ratio
in the intersections of one diagonal and the convex hull (Fig. Blc-d)

3.2 Algorithmic Complexity

In contrast with the two (or more) concavities case, where the projective ref-
erence frame can be directly constructed from the immediately available bitan-
gents, working with a single concavity requires some search. We recommend the
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following algorithm. From an arbitrary starting point & in the bitangent (Fig.
[I0) we compute the tangent ¢ to the concavity and the intersections a and b. The
chosen cross-ratio fixes the opposite corner ¢ in the framd?. From the tangents
from ¢ to the convex hull we obtain the intersections ¢ and d.

Fig. 10. Projective frame construction (see text)

Now we have only two possibilities: either the diagonal cd crosses the concav-
ity, or not (the case shown in the figure). Given a ky;gn: close enough to the left
contact point of the bitangent (remember that the exact location of this point is
not reliable) this diagonal will intersect the concavity (Fig. [Tla). Alternatively
a ki p¢ sufficiently far from the shape induces a diagonal that will not touch the
concavity (Fig. [Ilb). From the starting kicf+ and k;gn: positions we perform a
binary search for the solution k* with a cd diagonal tangent to the concavity (in
practice, tangency can be acceptable if the diagonal intersects the convex-hull
of the concavity in two points sufficiently close).

(a) kright (b) kleft

Fig. 11. The two cases in the binary search of the concavity double tangency (see text)

In our experiments the projective frame is computed in a search process taking
about 10 steps. Each tentative frame construction takes linear time with respect
to polyline size and no polyline transformation, smoothing or preprocessing must
be performed in the search, so the algorithm is extremely efficient. The overall
computation time is negligible in relation to the image processing tasks required
to extract the contours.

The construction becomes ill-conditioned when the contact points of the bi-
tangent are very close (the concavity is nearly a hole) and when the concavity
is too deep or too flat (three points in the reference become nearly collinear). In
this paper we focus on constructions using a single concavity, even if the shapes
have more than one, in order to evaluate the most adverse situation.

2 We must check that ¢ is in the correct side (the horizon is not ‘crossed’), since some
extreme k positions are incompatible with a frontal view.
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3.3 Shape Similarity

A planar curve can be described by a continuous function f : (0,1) € R — C.
A reasonable similarity measure for closed contours is the mean squared dis-
tance between ‘homologous points’: d(f,g) = fol(\f(t) — g(t)]?dt. From the
Parseval theorem this can be immediately computed in the frequency domain
provided that the parameterization of both curves is consistent (normaliza-
tion of the starting point involves a simple modification of the phase of the
spectral coordinates). The desired Fourier coefficients of a closed polyline with
arbitrarily spaced knots can be efficiently computed without need of resam-
pling using the technique proposed in [20, Appendix]. The canonical version
of a shape (projectively normalized by transforming the reference frame to
the unit square) can be characterized by its low frequency coordinates. How-
ever, precise error alignment must be computed in the reference frame of the
views.

4 Robustness Analysis

The proposed projective frame is built using only global properties of the shape.
Local projective invariants, extremely sensitive to noise, are avoided. Therefore,
it is expected that homography estimations based on it are robust against moder-
ated amounts of noise. In this section we suggest a theoretical, rigorous approach
to the study of the stability of the above construction and also describe a more
practical stability assessment method used in our experiments.

For simplicity we quantify the level of noise in the imaging process (includ-
ing acquisition, color thresholding or edge extraction and linking) by a single
magnitude € defined as the maximum distance from a true point in the ‘ideal’
contour and the corresponding ‘corrupt’ point (e.g., in certain cases e could
be related to pixel size). Therefore, the true shape lies inside a tolerance band
around the observed contour. From this band we can compute the extreme con-
structions and report the worst case alignment situation for a given level of noise

(Fig [I2)).

Fig. 12. Possible constructions induced by noise level € (only a few points are shown)

An alternative, empirical approach is based on repeated computation of the
projective frame from contour perturbations of at most size ¢ and report the
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distribution of alignment errors. Stability can be also assessed by alignment of
the shape with a perturbed version of itself. Since we must go (loosely speak-
ing) through the canonical frame and return, this kind of self alignment error is
related to the quality of the shape for homography estimation.

A more practical stability measure can be directly derived from the own
structure of the construction. The vertices of the projective frame are inter-
sections of discrete tangent lines whose points of contact have error as large as €
(Fig. I3)). Even if the rest of the construction is noiseless, a certain intersection
x will have an uncertainty Az = Se, where S = pzx/pc.

Fig. 13. Stability of a polygon tangent

The overall stability of the frame is in some sense dominated by the worst
ingredient in the construction, so, for instance, an approximate unstability mea-
sure is the maximum ‘error amplification’ ratio S of all tangents.

5 Experiments

Fig. [[4] shows the quality of the alignment of the lake contours, including the
alignment error F (measured in normalized MSE distance x1000), and the sim-
ple unstability measure S (x10) of the constructions explained above. Observe
that shape (a) is less stable (S = 7.9) than (b) (S = 4.4), as intuitively ex-
pected from the lengths and angles of the constructed frames. Even though the
contours have been extracted with low precision and from completely unrelated
sources, the proposed global procedure is still able to satisfactorily align both
shapes directly from the raw available polylines. Note that alternative methods
based on identification of homologous points or lines would require some kind of
intelligent interpretation of the shape.

Fig. 14. Alignment of the lake shapes in Fig[Il
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Fig. 15. Some frames in real-time alignment of a smooth shape (see text)

Fig. shows real time alignment of a smooth, handwritten ‘B’ shape in a
video sequence taken by a camera which moves freely in space. The first frame
is the target and the rest are some illustrative views, most of them specifically
selected with perturbations in the contour to demonstrate the robustness of the
method. The full video sequence and additional demonstrations can be down-
loaded from the web page http://ditec.um.es/contour. Alignment is also
acceptable on significantly reduced polylines (Fig. [I6]).
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Fig. 16. Alignment on reduced polylines

Fig. 17. Symbol recognition

Fig. M shows some examples of traffic plate symbol recognition for increasing
noise levels, caused again by the tolerance in polyline reduction. (In this case an
affine model is sufficient for shape recognition in views with small slant.)
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Finally, Fig.[I§illustrates the estimation of camera pose [2] in a video sequence
using the alignment homographies obtained from a smooth contour. We assume
that the camera parameters are known.

P Y Y

Fig. 18. Estimated 3D camera trajectory

6 Conclusions and Future Work

This paper proposes a novel projectively invariant representation of planar con-
tours based on global convexity properties. We have shown that a canonical frame
can be efficiently extracted from shapes with at least one appreciable concavity,
using a remarkably simple geometric construction working from raw, irregularly
sampled polylines. The stability of the reference frame has been formally studied
and the maximum error amplification ratio has been proposed as a pragmatic
measure of shape quality for projective alignment. Our experiments indicate that
the homographies estimated by this method are surprisingly accurate even for
considerable noise levels. In such extreme conditions alternative methods based
on finding correspondences of local properties such as hot points, straight lines
or conic approximations produce unacceptable results.

The method can be applied to image-model homography estimation, shape
normalization and recognition, and even pose localization (given some knowl-
edge of camera parameters). All these tasks can be performed in real time: the
construction has linear algorithmic complexity with respect to the number of
polyline knots, so the computational effort required by homography estimation
is negligible in relation to the rest of low-level image processing stages.

This work can be extended in several directions. First, self-consistency tests
must be implemented to avoid ill-conditioned configurations (for instance, con-
tours with very small concavities). Alignments produced by extreme projective
transformations should also be automatically detected and rejected. Second, a
characterization of admissible occlusions (those which do not disturb the con-
struction of the projective frame) would be very attractive for applications in
cluttered environments. Finally, a theoretical model of alignment degradation
should be rigorously developed in terms of noise level and some appropriate
stability measure of the projective frame.
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