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Abstract. In recent years, nonlinear dimensionality reduction (NLDR)
techniques have attracted much attention in visual perception and many
other areas of science. We propose an efficient algorithm called Rie-
mannian manifold learning (RML). A Riemannian manifold can be con-
structed in the form of a simplicial complex, and thus its intrinsic
dimension can be reliably estimated. Then the NLDR problem is solved
by constructing Riemannian normal coordinates (RNC). Experimental
results demonstrate that our algorithm can learn the data’s intrinsic
geometric structure, yielding uniformly distributed and well organized
low-dimensional embedding data.

1 Introduction

In visual perception, a human face image of size of 64 x 64 pixels is often repre-
sented by a vector in a 4096-dimensional space. Obviously, the 4096-dimensional
vector space is too large to allow any efficient image processing. A typical way to
avoid this ”curse of dimensionality” problem [I] is to use dimensionality reduc-
tion techniques. Classical linear methods, such as Principal Component Analysis
(PCA) [2] and Multidimensional Scaling (MDS) [3], can only see flat Euclidean
structures, and fail to discover the curved and nonlinear structures of the in-
put data. Previous nonlinear extensions of PCA and MDS, including Autoen-
coder Neural Networks [4], SOM [5], Elastic Nets [6], GTM [7], and Principal
Curves [§], suffer from the difficulties in designing cost functions and training
too many free parameters, or are limited in low-dimensional data sets. In re-
cent years some nonlinear manifold learning techniques have been developed,
such as Isomap [9,[10], LLE [11]], Laplacian Eigenmaps [12}13], Hessian Eigen-
maps [14], SDE [15], manifold charting [16], LTSA [17], diffusion maps [1§]. Due
to their nonlinear nature, geometric intuition and computational practicability,
these nonlinear manifold learning techniques have attracted extensive attention
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of the researchers from different disciplines. The basic assumption is that the
input data lie on or close to a smooth low-dimensional manifold [19].

Each manifold learning algorithm attempts to preserve a different geometrical
property of the underlying manifold. Local approaches (e.g. LLE [I1], Laplacian
Eigenmaps [12], LTSA [I7]) aim to preserve the local geometry of the data. They
are also called spectral methods, since the low dimensional embedding task is
reduced to solving a sparse eigenvalue problem under the unit covariance con-
straint. However, due to this imposed constraint, the aspect ratio is lost and
the global shape of the embedding data can not reflect the underlying mani-
fold. In contrast, global approaches like Isomap [9] attempt to preserve metrics
at all scales and therefore give a more faithful embedding. However, Isomap, or
isometric mapping, can be only applied to intrinsically flat manifolds, e.g. 2D de-
velopable surfaces (cylinders, cones, and tangent surfaces). Conformal mapping
[10,20] appears to be a promising direction.

We propose a general framework called Riemannian manifold learning (RML).
The problem is formulated as constructing local coordinate charts for a Rieman-
nian manifold. The most widely used is the Riemannian normal coordinates
(RNC) chart. In [2I] Brun et al. presented a method for manifold learning di-
rectly based on the concept of RNC. In order to calculate the geodesic directions,
high sampling density is required and the second order polynomial interpolation
is computationally expensive. In this paper, we propose a more efficient method
to calculate RNC. The basic idea is to preserve geodesic distances and directions
only in a local neighborhood. We also describe a novel method for estimating
intrinsic dimension of a Riemannian manifold. Our method is derived by recon-
structing the manifold in the form of an simplicial complex, whose dimension is
determined as the maximal dimension of its simplices.

2 Mathematical Preliminaries

In this section we briefly review some basic concepts of Riemannian geometry
[22]. A bijective map is called a homeomorphism if it is continuous in both
directions. A (topological) manifold M of dimension m is a Hausdorff space
for which every point has a neighborhood U homeomorphic to an open set V'
of R™ with ¢ : U — V C R™. (U, ¢) is called a local coordinate chart. An
atlas for M means a collection of charts {(Uq, o)l € J} such that {Uy|a €
J} is an open cover of M. A manifold M is called a differential manifold if
there is an atlas of M, {(Ua, ¢on)|a € J}, such that for any o, € J, the
composite ¢a¢51 1 p3(UaNUg) — R™ is differentiable of class C*°. A differential
manifold M endowed with a smooth inner product (called Riemannian metric)
g(u,v) or (u,v) on each tangent space T,M is called a Riemannian manifold
(M, g).

An exponential map exp,(v) is a transform from a tangent vector v € T, M
into a point ¢ € v C M such that dist(p,q) = |[v|]| = (v,v)'/2, where 7 is
the unique geodesic traveling through p such that its tangent vector at p is v. A
geodesic is a smooth curve which locally join their points along the shortest path.
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All the geodesics passing through p are called radial geodesics. The local coordi-
nates defined by the chart (U, exp, ') are called Riemannian Normal Coordinates
(RNC) with center p. Note that the RNC mapping preserves the distances on ra-
dial geodesics. A simple example is paring an orange, which maps a sphere onto a
plane, while the distances on the great circles of the sphere are preserved.

3 Manifold Assumption

Most manifold learning algorithms [0L[TT,[19] assume that a set of image data
may generate a low-dimensional manifold in a high-dimensional image space.
Here we present a simple geometric imaging model (shown in Fig. 1) for human
face images to clarify this assumption. Varying poses and lighting conditions are
considered in this model, as they are two important factors in face detection
and recognition. The model may be adapted to image data of other objects (e.g.
cars), if similar imaging conditions are encountered.

Light Snu@
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- /.-"
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Camnera ﬁ
Fig. 1. A geometric imaging model for human face images

We model the head of a human as a unit sphere S2, where the frontal hemi-
sphere is the human face. Different poses are obtained by moving the camera,
as the human face is kept in stationary. The focal length is assumed to be un-
changed in the imaging process. We also assume that the distance from the
camera to the face is fixed, so the face images have similar scales. Commonly,
the center axis of the camera is set to passing through the center of the sphere.
The camera is allowed to have some degree of planar rotations. The lighting is
simply modeled with a point light source far away from the sphere. Under these
variations, this set of face images generates a 5-dimensional manifold, which is
homeomorphic to

M = {PQe|P € S*,Q c S* ec S'},

where P and Q are two intersection points on S? by the center axis of the camera
and the lighting ray, and e is a unit vector to show the planar rotation angle
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of the camera. This representation is just a simple extension of the parametric
representation of a surface, r = r(u, v), where (u, v) are two varying parameters.
If the lighting variation is ignored, a 3-dimensional manifold may be generated:

M’ = {Pe|P € S e c S'}.

This is called a circle bundle on a sphere, which is one of the simplest tangent
bundles. This manifold can be visualized as the earth running in its circular orbit
in the 4-dimensional space-time.

4 Manifold Reconstruction

The m-manifold M generated from a set of data points in R™ is modeled with an
approximating simplicial complex, whose dimension serves as a reliable estima-
tion of the intrinsic dimension of M. Our manifold reconstruction is a simplified
version of Freedman’s method [23], which involves a computationally expensive
optimization for convex hulls.

The key to the reconstruction problem from unstructured sample points is
to recover the edge connections within a local neighborhood. The neighborhood
of one point p € M, denoted NBD(p), is defined as the K nearest points to
p. K is often set as ¢ x m/, where ¢ is a constant number between 2 and 5,
and m’ is an initial estimation of the intrinsic dimension m. Then we select k
(1 < k < K) edge points from the K neighbors, such that the edge connections
are built between p and each edge point. Note that the number of edge points,
k, is varying with p. A point ¢ is said to be an edge point of p if no other point
r separates p and ¢ by the normal plane passing through r and perpendicular to
the line (p,r). Formally, the edge point set of point p is defined as

EP(p)={q€ NBD(p) | (p—r,q—r) >0, any r € NBD(p)}.

It is easy to show that by this definition, the angle between any two adja-
cent edges is acute or right, while obtuse angles are prohibited. This property
guarantees to yield well-shaped simplices, which are basic building blocks to
construct the target simplicial complex. The underlying reason for this property
is explained by a simple example shown in Fig. 2. It is often believed that the
1D reconstruction in (b) is much better than the 2D reconstruction in (c¢). These
points are more likely to be sampled from a 1D curve, rather than a 2D surface.
The width of the 2D complex in (c) is too small and thus can be ignored. In fact,
any thin rope in the physical world can be modeled as a 1D curve by ignoring its
radius. This definition of an edge point permits edge connections like (b) while
(c) is prohibited.

Simplices in each dimension are constructed by grouping adjacent edges. For
example, if (p,q) is an edge and r is any other point, a triangle (p,q,r) is gen-
erated when there are two edges (p,r) and (g, 7). This procedure repeats from
low-dimensional to high-dimensional, until there are no new simplices generated.
The target simplicial complex is composed of all the simplices. The dimension
of the complex is a good estimate of the intrinsic dimension of M.
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Fig. 2. Reconstruction of five points sampled from a curve. (a) Unorganized points.
(b) 1D reconstruction. (c) 2D reconstruction.

5 DManifold Charting

Manifold charting consists of two steps: (1) Compute the tangent space and set
up a Cartesian coordinate system; (2) Use Dijkstra’s algorithm to find single-
source shortest paths, and calculate the Riemannian Normal Coordinates (RNC)
for each end point of the shortest paths.

In principle, the base point p for a RNC chart may be freely selected. Here we
choose the base point close to the center of the input data. For each candidate
point, the maximal geodesic distance (called geodesic radius) is computed using
Dijkstra’s algorithm. One point with the minimal geodesic radius is the optimal
base point.

A local coordinate chart is set up by computing the tangent space T,,M:

xo + span{zy — Tg, ..., Tm — Lo},

where {zg,21,...,2n} are (m + 1) geometrically independent edge points (or
nearest neighbors) of p. Any point on the tangent space can be represented as

xo + Z /\z(xz — 330).
=1

An orthonormal frame, denoted (p ;ex,...,em), is computed from the vectors
{z1 — zo,...,2m — xo} by using the Gram-Schmidt orthogonalization.

Then the Dijkstra’s algorithm [24] is exploited to find single-source shortest
paths in the graph determined by the simplicial complex. Each time a new
shortest path is found, we compute the RNC of the end point on this path. If
the end point ¢ is an edge point of p, we directly compute the projection of g,
denoted ¢’ € R™, onto the tangent space frame (p ;e1,...,€m) by solving the
following least squares problem

m
i _ e )12
Juin g @+22L%W,

where X = (x1,x9,...,%,) are the projection coordinates of ¢’ in the tangent
space. The RNC of ¢ is given by

lg — pll g~
X,
||X||Rm
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Fig. 3. An example illustrating how to compute the RNC of ¢. In this case, ¢ is not
an edge point of the base point p.

since the RNC preserves the distances on each radial geodesic, which is approx-
imated by the corresponding shortest path.

If the end point ¢ € M C R"™ is not an edge point of p, the RNC of ¢
(denoted ¢') is computed by solving a quadratically constrained linear least
squares problem. Let point r be the previous point on the shortest path from p
to q. Let {r1,...,7} be the edge points (or nearest neighbors if needed) of r,
whose RNCs have been computed. The number of these points, k, is required to
be larger than or equal to m in order to guarantee the constrained least squares
problem to be correctly solved. (One exception may occur at the beginning of
the Dijkstra’s algorithm, when k is less than m. In this case, point ¢ is treated
as an edge point of p to compute its RNC.) Fig. 3 shows such an example with
k = 3. The basic idea is that we want to preserve the angles in the neighborhood
of r, while keeping the geodesic distance from ¢ to r» unchanged. This leads to
the following linear least squares problem
(g—ryri—1) ~ cosd — ¢ —7r",rl—1")

cosf =
lg =l - llri =7 g =+ - || — |

i=1,2,...,k

with a quadratic constraint
la =7l =lld" =l

where ¢/, r’, and r} are the RNCs of ¢, r, and r;. Our goal is to compute ¢’ € R™.
We get the following linear least squares problem with quadratic constraints
[25]:

min || AgxmTmx1 — bex1]|® subject to ||zmx1||? = o? (k > m).
reER™

This problem can be solved by the following Lagrange multipliers optimization
oz, \) = ||b— Az|* + M(||z||* — a?) = (b7 — 2T AT) (b — Az) + MzTz — o?).

Setting the gradient of this function with respect to x (and not \) equal to zero
yields the equation

d¢

= 24Tb+ 24T Az 42Xz =0,
ox
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which has the solution
T = (ATA + /\I)_lATb

provided the inverse of (AT A + AI) exists. Substituting this result into the con-
straint ||z)|? = o2, we have

Y(\) = bTAAT A+ A 2ATh - o? = 0.

Let A= UXVT be the singular value decomposition of A. Then our constraint
equation becomes

Y\ =0=0"UXVI(VETUTUSVT + A2V ETUTH — o?
=pUxvT(V(ETS + XDV 2V ETUTh — o?
=pTUSVT(V(ETS + XD)VTV(ETZ + AV vETUTh — o
=bUDETE+ AN T2ETUTD - o,

v
v
Letting 8 = UTbh, we get

It is easy to verify that ¥()\) decrease from oo to —a? as A goes from —a?2, to

oo. We can use Newton’s method to find the root A. A good initial value for A
is zero, and the objective function vanishes to zero very fast.

Notice that the RNC of one data point can be efficiently computed in a local
neighborhood, not involving any global optimization.

6 Experimental Results

First we test our dimension estimation method on four data sets [9,11]: Swiss roll
data, Isomap face data, LLE face data, and ORL face data. The number of the
nearest neighbors, K, is set to 7, 8, 12, and 12, respectively. Table 1 shows the
numbers of simplices in each dimension. Recall that the dimension of a complex
is the maximal dimension of its simplices. For instance, the complex generated
from Swiss roll data is composed of 1357 2D simplices, while no 3D simplices
are contained in this complex. Therefore, the estimated dimension for Swiss roll

Table 1. Numbers of simplices in each dimension

Dim. 0 1 2 3 4 5 6 7 8 9 10

Swiss roll 1000 1800 1357 0

Isomap 698 2337 5072 3782 751 O

LLE 1965 6177 22082 40500 40384 19726 2820 O

ORL 400 3011 11048 30602 91575 304923 932544 2261383 3674580 2835000 0
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Fig. 9. Comparison results of LLE face data
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is 2. Notice that our estimation for the Isomap face dataset is 4, though it is
rendered with 3 parameters (one for lighting and two for pose). Several other
methods [26] reported similar estimates of about 4 dimension.

Second, four sets of synthetic data from the MANI demo (http://www.math.
umn.edu/~wittman/mani/) and the above three sets of face data are used to
illustrate the behavior of our manifold learning algorithm RML. For synthetic
data, several other competing algorithms (PCA, Isomap, LLE, HLLE, Laplacian
Eigenmaps, Diffusion maps, LTSA) are compared and the results are shown in
Fig. 4-7. RML outperforms other algorithms by correctly learning the nonlinear
geometry of each data set. Both RML and Isomap have metric-preserving prop-
erties, e.g. intrinsically mapping Swiss Roll data onto a 2D Rectangle region.
However, Isomap fails on Swiss Hole. In general, LTSA and HLLE consistently
perform better than other spectral methods, though they cannot preserve the
original metrics of each data set. The running speed of RML is less than one
second, which is comparable to that of LLE, Laplacian Eigenmaps, and LTSA.
Often HLLE and Diffusion maps spend several seconds, while Isomap needs one
minute. Fig. 8-9 show the embedding results of three sets of face data. In con-
trast to LLE [I1] and Laplacian Eigenmaps [13], RML yields embedding results
that are uniformly distributed and well organized.

7 Conclusion

We presented a RNC-based manifold learning method for nonlinear dimension-
ality reduction, which can learn intrinsic geometry of the underlying manifold
with metric-preserving properties. Experimental results demonstrate the excel-
lent performance of our algorithm on synthetic and real data sets. The algorithm
should find a wide variety of potential applications, such as data analysis, visu-
alization, and classification.
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