Hyperfeatures — Multilevel Local Coding
for Visual Recognition

Ankur Agarwal and Bill Triggs

GRAVIR-INRIA-CNRS, 655 Avenue de I’Europe, Montbonnot 38330, France
{Ankur.Agarwal, Bill.Triggs}@inrialpes.fr
http://www.inrialpes.fr/lear/people/{agarwal, triggs}

Abstract. Histograms of local appearance descriptors are a popular representa-
tion for visual recognition. They are highly discriminant and have good resistance
to local occlusions and to geometric and photometric variations, but they are not
able to exploit spatial co-occurrence statistics at scales larger than their local input
patches. We present a new multilevel visual representation, ‘hyperfeatures’, that
is designed to remedy this. The starting point is the familiar notion that to detect
object parts, in practice it often suffices to detect co-occurrences of more local
object fragments — a process that can be formalized as comparison (e.g. vector
quantization) of image patches against a codebook of known fragments, followed
by local aggregation of the resulting codebook membership vectors to detect co-
occurrences. This process converts local collections of image descriptor vectors
into somewhat less local histogram vectors — higher-level but spatially coarser
descriptors. We observe that as the output is again a local descriptor vector, the
process can be iterated, and that doing so captures and codes ever larger assem-
blies of object parts and increasingly abstract or ‘semantic’ image properties.
We formulate the hyperfeatures model and study its performance under several
different image coding methods including clustering based Vector Quantization,
Gaussian Mixtures, and combinations of these with Latent Dirichlet Allocation.
We find that the resulting high-level features provide improved performance in
several object image and texture image classification tasks.

1 Introduction

Local codings of image appearance based on invariant descriptors are a popular rep-
resentation for visual recognition [40,[39}13,[30L12,126,27,11,36,22L[13]. The image is
treated as a loose collection of quasi-independent local patches, robust visual descrip-
tors are extracted from these, and a statistical summarization or aggregation process is
used to capture the statistics of the resulting set of descriptor vectors and hence quan-
tify the image appearance. There are many variants. Patches can be selected at one or at
many scales, and either densely, at random, or sparsely according to local informative-
ness criteria [19,23]]. There are many kinds of local descriptors, which can incorporate
various degrees of resistance to common perturbations such as viewpoint changes, geo-
metric deformations, and photometric transformations [43,130./39.132,133]]. Aggregation
can be done in different ways, either over local regions to make higher-level local de-
scriptors, or globally to make whole-image descriptors.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 30-43] 2006.
(© Springer-Verlag Berlin Heidelberg 2006

Hyperfeatures — Multilevel Local Coding for Visual Recognition 31

The simplest example is the ‘texton’ or ‘bag-of-features’ approach. This was initially
developed for texture analysis (e.g. [31,29]), but turns out to give surprisingly good
performance in many image classification and object recognition tasks [44, 12, 11, 36,
22, 13]. Local image patches or their feature vectors are coded using vector quantization
against a fixed codebook, and the votes for each codebook centre are tallied to produce
a histogram characterizing the distribution of patches over the image or local region.
Codebooks are typically constructed by running clustering algorithms such as k-means
over large sets of training patches. Soft voting into several nearby centres can be used to
reduce aliasing effects. More generally, EM can be used to learn a mixture distribution
or a deeper latent model in descriptor space, coding each patch by its vector of posterior
mixture-component membership probabilities or latent variable values.

1.1 Hyperfeatures

The main limitation of local coding approaches is that they capture only the first or-
der statistics of the set of patches (within-patch statistics and their aggregates such as
means, histograms, etc.), thus ignoring the fact that inter-patch statistics such as co-
occurrences are important for many recognition tasks. To alleviate this, several authors
have proposed methods for incorporating an additional level of representation that cap-
tures pairwise or neighbourhood co-occurrences of coded patches [37,14 1,142} |3, 26]].
This paper takes the notion of an additional level of representation one step further,
generalizing it to a generic method for creating multi-level hierarchical codings. The ba-
sic intuition is that image content should be coded at several levels of abstraction, with
the higher levels being spatially coarser but (hopefully) semantically more informative.
Our approach is based on the local histogram model (e.g. [37,42]]). At each level, the
image is divided into local regions with each region being characterized by a descriptor
vector. The base level contains raw image descriptors. At higher levels, each vector is
produced by coding (e.g. vector quantizing) and locally pooling the finer-grained de-
scriptor vectors from the preceding level. For instance, suppose that the regions at a
particular level consist of a regular grid of overlapping patches that uniformly cover the
image. Given an input descriptor vector for each member of this grid, the descriptors
are vector quantized and their resulting codes are used to build local histograms of code
values over (say) 5 x b blocks of input patches. These histograms are evaluated at each
point on a coarser grid, so the resulting upper level output is again a grid of descriptor
vectors (local histograms). The same process can be repeated at higher levels, at each
stage taking a local set of descriptor vectors from the preceding level and returning its
coded local histogram vector. We call the resulting higher-level features hyperfeatures.
The codebooks are learned in the usual way, using the descriptor vectors of the corre-
sponding level from a set of training images. To promote scale-invariant recognition,
the whole process also runs at each layer of a conventional multi-scale image pyra-
mid, so there is actually a pyramid, not a grid of descriptor vectors at each level of the
hyperfeature hierarchyl]. The hyperfeature construction process is illustrated in fig. [Il

! Terminology: ‘layer’ denotes a standard image pyramid layer, i.e. the same image at a coarser
scale; ‘level’ denotes the number of folds of hyperfeature (quantize-and-histogram) local cod-
ing that have been applied, with each transformation producing a different, higher-level ‘im-
age’ or ‘pyramid’.

32 A. Agarwal and B. Triggs

global histogram

—

local histograms

global histogram

L I local histograms

global histogram
(bag of features)

Hyperfeature stack Output features

Fig. 1. Constructing a hyperfeature stack. The ‘level 0’ (base feature) pyramid is constructed by
calculating a local image descriptor vector for each patch in a multiscale pyramid of overlapping
image patches. These vectors are vector quantized according to the level O codebook, and local
histograms of codebook memberships are accumulated over local position-scale neighbourhoods
(the smaller darkened regions) to make the level 1 feature vectors. The process simply repeats
itself at higher levels. The level [to [41 coding is also used to generate the level [output vectors
— global histograms over the whole level-/ pyramid. The collected output features are fed to a
learning machine and used to classify the (local or global) image region.

Our main claim is that hyperfeature based coding is a natural feature extraction
framework for visual recognition. In particular, the use of vector quantization coding
followed by local histogramming of membership votes provides an effective means of
integrating higher order spatial relationships into texton style image representations.
The resulting spatial model is somewhat ‘loose’ — it only codes nearby co-occurrences
rather than precise geometry — but for this reason it is robust to spatial misalignments
and deformations and to partial occlusions, and it fits well with the “spatially weak /
strong in appearance” philosophy of texton representations. The basic intuition is that
despite their geometric weakness, in practice simple co-occurrences of characteristic
object fragments are often sufficient cues to deduce the presence of larger object parts,
so that as one moves up the hyperfeature hierarchy, larger and larger assemblies of parts
are coded until ultimately one codes the entire object. Owing to their loose, agglomera-
tive nature, hyperfeature stacks are naturally robust to occlusions and feature extraction
failures. Even when the top level object is not coded successfully, substantial parts of it
are captured by the lower levels of the hierarchy and the system can still cue recognition
on these.

1.2 Previous Work

The hyperfeature representation has several precursors. Classical ‘texton’ or ‘bag of fea-
tures’ representations are global histograms over quantized image descriptors — ‘level
0’ of the hyperfeature representation [31,[29]. Histograms of quantized ‘level 1’ fea-

Hyperfeatures — Multilevel Local Coding for Visual Recognition 33

tures have also been used to classify textures and to recognize regularly textured objects
[37,/42] and a hierarchical feature-matching framework for simple second level features
has been developed [25].

Hyperfeature stacks also have analogies with multilevel neural models such as the
neocognitron [[18], Convolutional Neural Networks (CNN) [28]] and HMAX [38]. These
are all multilayer networks with alternating stages of linear filtering (banks of learned
convolution filters for CNN’s and of learned ‘simple cells’ for HMAX and the neocog-
nitron) and nonlinear rectify-and-pool operations. The neocognitron activates a higher
level cell if atleast one associated lower level cell is active. In CNN’s the rectified signals
are pooled linearly, while in HMAX a max-like operation (‘complex cell’) is used so
that only the dominant input is passed through to the next stage. The neocognitron and
HMAX lay claims to biological plausibility whereas CNN is more of an engineering so-
lution, but all are convolution based and typically trained discriminatively. In contrast,
although hyperfeatures are still bottom-up, they are essentially a descriptive statistics
model not a discriminative one: training is completely unsupervised and there are no
convolution weights to learn for hyperfeature extraction, although the object classes
can still influence the coding indirectly via the choice of codebook. The basic nonlin-
earity is also different: exemplar comparison by nearest neighbour lookup — or more
generally nonlinear codings based on membership probabilities of latent patch classes
— followed by a comparatively linear accumulate-and-normalize process for hyperfea-
tures, versus linear convolution filtering followed by simple rectification for the neural
models.

The term ‘hyperfeatures’ itself has been used to describe combinations of feature
position with appearance [14]]. This is very different from its meaning here.

2 Base Features and Image Coding

The hyperfeature framework can be used with a large class of underlying image coding
schemes. This section discusses the schemes that we have tested so far. For simplicity
we describe them in the context of the base level (level 0).

2.1 Image Features

The ‘level 0’ input to the hyperfeature coder is a base set of local image descriptors.
In our case these are computed on a dense grid — in fact a multiscale pyramid — of
image patches. As patch descriptors we use SIFT-like gradient orientation histograms,
computed in a manner similar to [30] but using a normalization that is more resistant
to image noise in nearly empty patches. (SIFT was not originally designed to handle
patches that may be empty). The normalization provides good resistance to photometric
transformations, and the spatial quantization within SIFT provides a pixel or two of
robustness to spatial shifts. The input to the hyperfeature coder is thus a pyramid of
128-D SIFT descriptor vectors. But other descriptors could also be used (e.g. [34,4]).

Hyperfeature models based on sparse (e.g. keypoint based [[12}/11,[26133]) feature
sets would also be possible but they are not considered here, in part for simplicity and
space reasons and in part because recent work (e.g. [22]]) suggests that dense represen-
tations will outperform sparse ones.

34 A. Agarwal and B. Triggs

2.2 Vector Quantization and Gaussian Mixtures

Vector quantization is a simple and widely-used method of characterizing the content
of image patches [29]. Each patch is coded by finding the most similar patch in a dic-
tionary of reference patches and using the index of this patch as a label. Here we use
nearest neighbour coding based on Euclidean distance between SIFT descriptors, with
a vocabulary learned from a training set using a clustering algorithm similar to the
mean shift based on-line clusterer of [22]. The histograms have a bin for each centre
(dictionary element) that counts the number of patches assigned to the centre. In the
implementation, a sparse vector representation is used for efficiency.

Although vector quantization turns out to be very effective, abrupt quantization into
discrete bins does cause some aliasing. This can be reduced by soft vector quanti-
zation — softly voting into the centers that lie close to the patch, e.g. with Gaussian
weights. Taking this one step further, we can fit a probabilistic mixture model to the
distribution of training patches in descriptor space, subsequently coding new patches by
their vectors of posterior mixture-component membership probabilities. In §4] we test
hard vector quantization (VQ) and diagonal-covariance Gaussian mixtures (GM) fitted
using Expectation-Maximization. The GM codings turn out to be more effective.

2.3 Latent Dirichlet Allocation

VQ and mixture models are flexible coding methods, but capturing fine distinctions of-
ten requires a great many centres. This brings the risk of fragmentation, with the patches
of an object class becoming scattered over so many label classes that it is difficult to
learn an effective recognition model for it. ‘Bag of words’ text representations face the
same problem — there are many ways to express a given underlying ‘meaning’ in ei-
ther words or images. To counter this, one can attempt to learn deeper latent structure
models that capture the underlying semantic “topics” that generated the text or image
elements. This improves learning because each topic label summarizes the ‘meaning’
of many different ‘word’ labels.

The simplest latent model is Principal Components Analysis (‘Latent Semantic Anal-
ysis’ i.e. linear factor analysis), but in practice statistically-motivated nonlinear appro-
aches such as Probabilistic Latent Semantic Analysis (pLSA) [20] perform better. There
are many variants on pLSA, typically adding further layers of latent structure and/or spar-
sifying priors that ensure crisper distinctions [89}24.[7]. Here we use Latent Dirichlet
Allocation (LDA) [5]. LDA models document words as samples from sparse mixtures
of topics, where each topic is a mixture over word classes. More precisely: the gamut of
possible topics is characterized by a learned matrix 3 of probabilities for each topic to
generate each word class; for each new document a palette of topics (a sparse multino-
mial distribution) is generated from a Dirichlet prior; and for each word in the document
a topic is sampled from the palette and a word class is sampled from the topic. Giving
each word its own topic allows more variety than sharing a single fixed mixture of topics
across all words would, while still maintaining the underlying coherence of the topic-
based structure. In practice the learned values of the Dirichlet parameter o are small,
ensuring that the sampled topic palette is sparse for most documents.

In our case — both during learning and use — the visual ‘words’ are represented by
VQ or GM code vectors and LDA functions essentially as a locally adaptive nonlinear

Hyperfeatures — Multilevel Local Coding for Visual Recognition 35

dimensionality reduction method, re-coding each word (VQ or GM vector) as a vector
of posterior latent topic probabilities, conditioned on the local ‘document” model (topic
palette). The LDA ‘documents’ can be either complete images or the local regions over
which hyperfeature coding is occurring. Below we use local regions, which is slower but
more discriminant. Henceforth, “coding” refers to either VQ or GM coding, optionally
followed by LDA reduction.

3 Constructing Hyperfeatures

The hyperfeature construction process is illustrated in figure [Il At level 0, the image
(more precisely the image pyramid) is divided into overlapping local neighbourhoods,
with each neighbourhood containing a number of image patches. The co-occurrence
statistics within each local neighbourhood A are captured by vector quantizing or oth-
erwise nonlinearly coding its patches and histogramming the results over the neigh-
bourhood. This process converts local patch-level descriptor vectors (image features)
to spatially coarser but higher-level neighbourhood-level descriptor vectors (local his-
tograms). It works for any kind of descriptor vector. In particular, it can be repeated
recursively over higher and higher order neighbourhoods to obtain a series of increas-
ingly high level but spatially coarse descriptor vectors.

Let F() denote the hyperfeature pyramid at level I, (x,y, s) denote position-scale
coordinates within a feature pyramid, dV) denote the feature or codebook/histogram

dimension at a level [/, and]—'Z(i)yg denote the level-! descriptor vector at (x,y,s) in
image ¢. During training, a codebook or coding model is learned from all features (all
i,x,y,s) at level [. In use, the level-/ codebook is used to code the level-l features in

some image i, and these are pooled spatially over local neighbourhoods A/(+1) (z,y,s)
FU+D

to make the hyperfeatures 7, -

is summarized in figure 2l

For vector quantization, coding involves a single global clustering for learning, fol-
lowed by local histogramming of class labels within each neighbourhood for use. For
GM, a global mixture model is learned using EM, and in use the mixture component
membership probability vectors of the neighbourhood’s patches are summed to get the
code vector. If LDA is used, its parameters «, 3 are estimated once over all training im-

. The complete algorithm for VQ coding on N levels

1. V(i,z,y,s),]—‘S;S «— base feature at point (z, y), scale s in image 4.
2. Forl=0,...,N:
— If learning, cluster {Fi(iLS |V(i,x,v,5)} to obtain a codebook of d") centres in this
feature space.
- Vi:
e If I < N, V(z,y,s) calculate ffi;l) as a d¥ dimensional local histogram by

accumulating votes from ffi),y,s, over neighbourhood NUHD (:r, Y, s).

o [f global descriptors need to be output, code _7:1'(_1?_ as a d¥ dimensional histogram
HE” by globally accumulating votes for the d¥) centers from all (z,9, s).
3. Return {H" | Vi, 1}.

Fig. 2. The hyperfeature coding algorithm

36 A. Agarwal and B. Triggs

ages, and then used to infer topic distributions over each neighbourhood independently,
i.e. each neighbourhood is a separate ‘document’ with its own LDA context.

In all of these schemes, the histogram dimension is the size of the codebook or
GM/LDA basis. The neighbourhoods are implemented as small trapezoids in scale
space, as shown in figure [l This shape maintains scale invariance and helps to mini-
mize boundary losses, which cause the pyramids to shrink in size with increasing level.
The size of the pooling region at each level is a parameter. The effective region size
should grow with the level — otherwise the same information is re-encoded each time,
which tends to cause rapid saturation and suboptimal performance.

4 Experiments on Image Classification

To illustrate the discriminative capabilities of hyperfeatures, we present image classifi-
cation experiments on three datasets: a 4 class object dataset based on the “Caltech 7”
[L3)] and “Graz” [35] datasets that was used for the European network PASCAL’s “Vi-
sual Object Classes Challenge” [[10]; the 10 class KTH-TIPS texture dataset [[16]; and
the CRL-IPNP dataset of line sketches used for picture naming in language research
[1]. The PASCAL dataset contains 684 training and 689 test images, which we scale
to a maximum resolution of 320240 pixels. The texture dataset contains 450 training
and 360 test images over 10 texture classes, mostly 200x200 pixels. The CRL-IPNP
dataset consists of 360 images of 300x300 pixels which we divide into two classes,
images of people and others. As base level features we used the underlying descriptor
of Lowe’s SIFT method — local histograms of oriented image gradients calculated over
4x4 blocks of 4 x4 pixel cells [30. The input pyramid had a scale range of 8:1 with a
spacing of 1/3 octave and patches sampled at 8 pixel intervals, giving a total of 2500-
3000 descriptors per image. For the pooling neighbourhoods N, we took volumes of
3x3x3 patches in (x, y, s) by default, increasing these in effective size by a factor of
21/3 (one pyramid layer) at each hyperfeature level.

The final image classifications were produced by training soft linear one-against-all
SVM classifiers independently for each class over the global output histograms col-
lected from the active hyperfeature levels, using SVM-light [21] with default settings.

Effect of multiple levels. Figure 3] presents DETH curves showing the influence of hy-
perfeature levels on classification performance for the PASCAL dataset. We used GM
coding with a 200 center codebook at the base level and 100 center ones at higher levels.
Including higher levels gives significant gains for ‘cars’ and especially ‘motorbikes’, but
little improvement for ‘bicycles’ and ‘people’. The results improve up to level 3 (i.e. using
the hyperfeatures from all levels 0-3 for classification), except for ‘people’ where level 1
is best. Beyond this there is overfitting — subsequent levels introduce more noise than in-
formation. We believe that the difference in behaviour between classes can be attributed
to their differing amounts of structure. The large appearance variations in the ‘person’

2 But note that this is tiled densely over the image with no orientation normalization, not applied
sparsely at keypoints and rotated to the dominant local orientation as in [30].

3 DET curves plot miss rate vs. false positive rate on a log-log scale — the same information as a
ROC curve in more visible form. Lower values are better.

Hyperfeatures — Multilevel Local Coding for Visual Recognition 37

(a) Motorbikes (b) Cars (c) Bicycles (d) People
10 T 10° - 10° 10°
i‘“t—'— PR
e ‘\
= | B, 3
o Ty , o o B, o 2
g i L e g . B g
310 410 410 310 1
s ‘x\ . = = s i
~~=Upto level 0] . % ~=-Upto level 0| ~=-Upto level 0] & ~-~Upto level 0
Upto level 1}, 7 % Upto level 1 Uptolevel 1| 1:T: Upto level 1]~
—Upto level 2]'r1 4 — Upto level 2 —Uptolevel 2| Ll —Upto level 2||
i Uplo level 3 1[i Upto level 3} i Upto level 3} ; i Upto level 3]l L
107 o 107 , 107 107 o
10 10 10 10 10 10 10 10

False p‘cgr\t‘we rate False pg:we rate False pg:we rate False p‘cgr\t‘we rate
Fig. 3. Detection Error Trade-oftf curves for the classes of the PASCAL dataset. Up to a certain
level, including additional levels of hyperfeatures improves the classification performance. For
the motorbike, car and bicycle classes the best performance is at level 3, while for the person
class it is at level 1 (one level above the base features). The large gain on the motorbike (a 5x
reduction in false positives at fixed miss rate) and car classes suggests that local co-occurrence

structure is quite informative, and is captured well by hyperfeatures.

(a) Aluminium foil (b) Cracker (c) Orange peel (d) Sponge
10° =+ 10" 10° peeey - 10°
: L e ks
L R Nt
K bLL'—| i 2 2 b K b
s 3 s [H s 1 R
2 10 :‘ 2 10 2 10 + v 2 10 o
s 15 s H i H H 1t
L H H |
- = -Upto level 0| - = -Upto level 0] H == =Upto level 0] ==-Upto level 0]
Upto level 1 Upto level 1 B Upto level 1| Upto level 1
—Upto level 2| —Upto level 2 —Upto level 2 — Upto level 2
) Upto level 3 i Upto level 3 . Upto level 3 . Upto level 3
107) o 107 -y o 107 -y o 1075 o
10 10 10 10 10 10 10

107 107 107 10’
False positive rate False positive rate False positive rate False positive rate

Al. foil|Bread|Corduroy |Cotton|Cracker|Linen|Orange peel|Sandpaper|Sponge|Styrofoam
VQ| 97.2 | 88.1 100 86.1 | 944 |77.8 94.4 83.3 91.7 88.9
GM| 100 | 88.9 100 88.9 | 91.6 |86.1 94.4 83.3 91.7 91.7

Fig. 4. Top: Detection Error Trade-off curves for 4 of the 10 classes from the KTH-TIPS dataset,
using a mixture of 100 Gaussians at each level. Including hyperfeatures improves the classifi-
cation performance for every texture that is poorly classified at level 0, without hurting that for
well-classified textures. The aluminium and sponge classes are best classified by including 3
levels of hyperfeatures, and cracker and orange peel by using 2 levels. Bottom: One-vs-rest clas-
sification performance (hit rate) at the equal error point for the 10 classes of this dataset, using
hard vector quantization (VQ) and a diagonal Gaussian mixture model learned by EM (GM).
Each class uses its optimal number of hyperfeature levels. GM performs best on average.

class leave little in the way of regular co-occurrence statistics for the hyperfeature cod-
ing to key on, whereas the more regular geometries of cars and motorbikes are captured
well, as seen in figure[3(a) and (b). Different coding methods and codebook sizes have
qualitatively similar evolutions the absolute numbers can be quite different (see below).

The results on the KTH-TIPS texture dataset in fig. 4l (top) lead to similar conclu-
sions. For 4 of the 10 classes the level 0 performance is already near perfect and adding
hyperfeatures makes little difference, while for the remaining 6 there are gains (often
substantial ones) up to hyperfeature level 3. The texture classification performance at

38 A. Agarwal and B. Triggs

AUC(%) s

Fig. 5. Left: Sample positive (people) and negative (object/scene) pictures from the CRL-IPNP
dataset. Right: Average miss rates on the positive class for different pooling neighbourhood sizes
and different numbers of hyperfeature levels. For a 3x3x3 neighbourhood (in z, y, s), 5 levels of
hyperfeatures are best, but the best overall performance is achieved by 7x7x3 neighbourhoods
with 3 levels of hyperfeatures.

equal error rates for Vdﬂ and GM coding is shown in fig. 4 (bottom). GM is better
on average. Overall, its mean hit rate of 91.7% at equal error is slightly better than
the 90.6% achieved by the bank of filters approach in [[17] — a good result consider-
ing that in these experiments relatively few centres, widely spaced samples and only
a linear SVM were used. (Performance improves systematically with each of these
factors).

On the CRL-IPNP dataset, we find that 4 or 5 levels of hyperfeatures give the best
performance, depending on the size of the pooling regions used. See fig.

Coding methods and hyperfeatures. Fig. [0 (left half) shows average miss rates (1 —
Area Under ROC Curve) on the PASCAL dataset, for different coding methods and
numbers of centers. The overall performance depends considerably on both the coding
method used and the codebook size (number of clusters / mixture components / latent
topics), with GM coding dominating VQ, the addition of LDA always improving the
results, and performance increasing whenever the codebook at any level is expanded.
On the negative side, learning large codebooks is computationally expensive, especially
for GM and LDA. GM gives much smoother codings than VQ as there are no aliasing
artifacts, and its partition of the descriptor space is also qualitatively very different —
the Gaussians overlap heavily and inter-component differences are determined more
by covariance differences than by centre differences. LDA seems to be able to capture
canonical neighbourhood structures more crisply than VQ or GM, presumably because
it codes them by selecting a sparse palette of topics rather than an arbitrary vector of
codes. If used to reduce dimensionality, LDA may also help simply by reducing noise
or overfitting associated with large VQ or GM codebooks, but this can not be the whole

4 At the base level of the texture dataset, we needed to make a manual correction to the SIFT vVQ
codebook to work around a weakness of codebook creation. Certain textures are homogeneous
enough to cause all bins of the SIFT descriptor to fire about equally, giving rise to a very
heavily populated “uniform noise” centre in the middle of SIFT space. For some textures this
centre receives nearly all of the votes, significantly weakening the base level coding and thus
damaging the performance at all levels. The issue can be resolved by simply deleting the rogue
centre (stop word removal). It does not occur either at higher levels or for GM coding.

Hyperfeatures — Multilevel Local Coding for Visual Recognition 39

SN s o x D

AUC(%) AUC(%) s

0

30/30/30/30 noLDA
50/50/50/50 0.2K -
100/50/50/50 : 6 2]
100/100/100/100 Centres per level # Topics . # Words (K)
200/100/100/100 K 600

GM+LDA

centers, levels 0-1-2-3 VQ VQ+LDA GM GM+LDA
030-030-030-030 10.49 8.78 7.19 6.29 # centers, levels 0-1-2-3 Train Test

050-050-050-050 8.29 826 639 3.90 600-000-000-000 7.46 8.35
100-050-050-050 7.78 7.83 591 4.69 300-300-000-000 530 7.77
100-100-100-100 7.70 755 532 407 400-200-000-000 4.06 7.41
200-100-100-100 6.82 682 464 370 200-200-200-000 424 6.57
200-200-200-200 6.55 621 471 - 150-150-150-150 4.35 7.30

500-100-100-100 6.73 576 5.75 -

Fig. 6. Average miss rates on the PASCAL objects test set. Left (plot and table): Miss rates for
different codebook sizes and coding methods. Larger codebooks always give better performance.
GM coding outperforms VQ coding even with significantly fewer centres, and adding LDA con-
sistently improves the results. The LDA experiments use the same number of topics as VQ/GM
codebook centres, so they do not change the dimensionality of the code, but they do make it
sparser. Top right: For the LDA method, performance improves systematically as both code cen-
tres (here VQ) and LDA topics are added. Bottom right: For a fixed total number of centers
(here VQ ones), performance improves if they are distributed relatively evenly across several
levels (here 3 levels, with the inclusion of a 4" reducing the performance): adding higher level
information is more useful than adding finer-grained low level information.

story as LDA performance continues to improve even when there are more topics than
input centres. (c.f. fig.[6ltop right.)

Given that performance always improves with codebook size, one could argue that
rather than adding hyperfeature levels, it may be better to include additional base level
features. To study this we fixed the total coding complexity at 600 centres and dis-
tributed the centres in different ways across levels. Fig. [6] (bottom right) shows that
spreading centres relatively evenly across levels (here up to level 3) improves the re-
sults, confirming the importance of higher levels of abstraction.

5 Object Localization

One advantage of hyperfeatures is that they offer a controllable tradeoff between local-
ity and level of abstraction: higher level features accumulate information from larger
image regions and thus have less locality but potentially more representational power.
However, even quite high-level hyperfeatures are still local enough to provide useful
object-region level image labeling. Here we use this for bottom-up localization of pos-
sible objects of interest. The image pyramid is tiled with regions and in each region
we build a “mini-pyramid” containing the region’s hyperfeatures (i.e. the hyperfeatures

40 A. Agarwal and B. Triggs

Fig. 7. Object localization in the PASCAL dataset [[10] by classifying local image regions using
hyperfeatures. Each row shows examples of results using one of the four independent classifiers,
each being trained to classify foreground regions of its own class against the combined set of
all other regions — background regions and foregrounds from other classes. An image region is
labeled as belonging to the object class if the corresponding SVM returns a positive score. Each
region is classified independently — there is no attempt to enforce spatial coherence.

of all levels, positions and scales whose support lies entirely within the region). The
resulting region-level hyperfeature histograms are then used to learn a local region-
level classifier for each class of interest. Our goal here is simply to demonstrate the
representational power of hyperfeatures, not to build a complete framework for object
recognition, so the experiments below classify regions individually without any attempt
to include top-down or spatial contiguity information.

The experiments shown here use the bounding boxes provided with the PASCAL
dataset as object masks for foreground labeling]. The foreground labels are used to
train linear SVM classifiers over the region histograms, one for each class with all back-
ground and other-class regions being treated as negatives. Fig.[7lshows results obtained
by using these one-against-all classifiers individually on the test images. Even though

5 This labeling is not perfect. For many training objects, the bounding rectangles contain sub-
stantial areas of background, which are thus effectively labeled as foreground. Objects of one
class also occur unlabeled in the backgrounds of other classes and, e.g., instances of peo-
ple sitting on motorbikes are labeled as ‘motorbike’ not ‘person’. In the experiments, these
imperfections lead to some visible ‘leakage’ of labels. We would expect a more consistent
foreground labeling to reduce this significantly.

Hyperfeatures — Multilevel Local Coding for Visual Recognition 41

true \ estimated motorbike cycle person car background e \ est. motorbike cycle person car

motorbike 41.02 17.58 10.03 18.02 13.34 motorbike 69.34 45.17 19.79 35.76
cycle 20.17 42.21 14.66 6.51 16.45 cycle 49.82 63.56 26.08 14.43
person 9.81 13.67 55.71 6.43 14.39 person 27.01 3537 65.84 19.54
car 18.32 456 6.19 63.00 7.93 car 5243 1243 10.39 77.30
background 7.48 13.66 1599 19.09 43.78 background 16.36 19.81 19.46 23.46
true proportion 20.62 950 352 471 61.65 negative 2298 2581 19.74 25.07

Fig. 8. Confusion matrices for region level labeling. Four two-class linear SVM region classifiers
are trained independently, each treating regions from the background and from other classes as
negatives. Left: A classical confusion matrix for the classifiers in winner-takes-all mode with
negative best scores counting as background. The final row gives the population proportions, i.e.
the score for a random classifier. Right: Each column gives entries from the pairwise confusion
matrix of the corresponding classifier used alone (independently of the others), with the negative
true-class scores (final row) broken down into scores on each other class and on the background.
(NB: in this mode, the assigned class labels are not mutually exclusive).

each patch is treated independently, the final labellings are coherent enough to allow
the objects to be loosely localized in the images. The average accuracy in classifying
local regions over all classes is 69%. This is significantly lower than the performance
for classifying images as a whole, but still good enough to be useful as a bottom-up
input to higher-level visual routines. Hyperfeatures again add discriminative power to
the base level features, giving an average gain of 4-5% in classification performance.
Figure [§] shows the key entries of the combined and the two-class confusion matrices,
with negatives being further broken down into true background patches and patches
from the three remaining classes.

6 Conclusions and Future Work

We have introduced ‘hyperfeatures’, a new multilevel nonlinear image coding mecha-
nism that generalizes — or more precisely, iterates — the quantize-and-vote process used
to create local histograms in texton / bag-of-feature style approaches. Unlike previous
multilevel representations such as convolutional neural networks and HMAX, hyper-
features are optimized for capturing and coding local appearance patches and their co-
occurrence statistics. Our experiments show that the introduction of one or more levels
of hyperfeatures improves the performance in many classification tasks, especially for
object classes that have distinctive geometric or co-occurrence structures.

Future work. The hyperfeature idea is applicable to a wide range of problems involving
part-based representations. In this paper the hyperfeature codebooks have been trained
bottom-up by unsupervised clustering, but more discriminative training methods should
be a fruitful area for future investigation. For example image class labels could usefully
be incorporated into the learning of latent topics. We also plan to investigate more gen-
eral LDA like methods that use local context while training. One way to do this is to
formally introduce a “region” (or “subdocument”) level in the word—topic—document
hierarchy. Such models should allow us to model contextual information at several dif-
ferent levels of support, which may be useful for object detection.

42

A. Agarwal and B. Triggs

Acknowledgments

We would like to thank the European projects LAVA and PASCAL for financial sup-
port, and Diane Larlus, Frederic Jurie, Gyuri Dorko and Navneet Dalal for comments
and code. We are also thankful to Andrew Zisserman and Jitendra Malik for providing
feedback on this work. Our experiments make use of code derived from C. Bouman’s
Cluster [6] for fitting Gaussian mixtures, D. Blei’s implementation of LDA [5], and
T. Joachim’s SVM-Light [21]]. See [2] for extra details on this work.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Center for Research in Language, International Picture Naming Project. Available from

http://crl.ucsd.edu/ aszekely/ipnp/index.html.

. A. Agarwal and B. Triggs. Hyperfeatures — Multilevel Local Coding for Visual Recognition.

Technical report, INRIA Rhone Alpes, 2005.

. S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images via a sparse, part-

based representation. PAMI, 26(11):1475-1490, November 2004.

. A. Berg and J. Malik. Geometric Blur for Template Matching. In Int. Conf. Computer Vision

& Pattern Recognition, 2001.

. D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. Journal of Machine Learning

Research, 3:993-1022, 2003.

. C. A. Bouman. Cluster: An unsupervised algorithm for modeling Gaussian mixtures. Avail-

able from http://www.ece.purdue.edu/"bouman, April 1997.

. W. Buntine and A. Jakaulin. Discrete principal component analysis. Technical report, HIIT,

2005.

. W. Buntine and S. Perttu. Is multinomial pca multi-faceted clustering or dimensionality

reduction? Al and Statistics, 2003.

. J. Canny. Gap: A factor model for discrete data. In ACM Conference on Information Retrieval

(SIGIR), Sheffield, U.K., 2004.

Visual Object Classes Challenge. The PASCAL Object Recognition Database Collection.
Available at www.pascal-network.org/challenges/VOC.

G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categorization with bags of keypoints. In
European Conf. Computer Vision, 2004.

G. Dorko and C. Schmid. Object class recognition using discriminative local features. Tech-
nical report, INRIA Rhone Alpes, 2005.

L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories.
In Int. Conf. Computer Vision & Pattern Recognition, 2005.

A. Ferencz, E. Learned-Miller, and J. Malik. Learning Hyper-Features for Visual Identifica-
tion. In Neural Information Processing Systems, 2004.

R. Fergus and P. Perona. The Caltech database. Available at www.vision.caltech.edu/html-
files/archive.html.

M. Fritz, E. Hayman, B. Caputo, and J.-O. Eklundh. The KTH-TIPS database. Available at
www.nada.kth.se/cvap/databases/kth-tips.

M. Fritz, E. Hayman, B. Caputo, and J.-O. Eklundh. On the Significance of Real-World
Conditions for Material Classification. In European Conf. Computer Vision, 2004.

K. Fukushima. Neocognitron: a self organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biol. Cybernetics, 36(4):193-202, 1980.
C. Harris and M. Stephens. A Combined Corner and Edge Detector. In Alvey Vision Confer-
ence, pages 147-151, 1988.

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Hyperfeatures — Multilevel Local Coding for Visual Recognition 43

T. Hofmann. Probabilistic Latent Semantic Analysis. In Proc. of Uncertainty in Artificial
Intelligence, Stockholm, 1999.

T. Joachims. Making large-Scale SVM Learning Practical. In Advances in Kernel Methods -
Support Vector Learning. MIT-Press, 1999.

F. Jurie and B. Triggs. Creating Efficient Codebooks for Visual Recognition. In
Int. Conf. Computer Vision, 2005.

T. Kadir and M. Brady. Saliency, Scale and Image Description. [Int. J. Computer Vision,
45(2):83-105, 2001.

M. Keller and S. Bengio. Theme-Topic Mixture Model for Document Representation. In
PASCAL Workshop on Learning Methods for Text Understanding and Mining, 2004.

G. Lang and P. Seitz. Robust Classification of Arbitrary Object Classes Based on Hierarchical
Spatial Feature-Matching. Machine Vision and Applications, 10(3):123-135, 1997.

S. Lazebnik, C. Schmid, and J. Ponce. Affine-Invariant Local Descriptors and Neighborhood
Statistics for Texture Recognition. In Int. Conf. Computer Vision, 2003.

S. Lazebnik, C. Schmid, and J. Ponce. Semi-local Affine Parts for Object Recognition. In
British Machine Vision Conference, volume volume 2, pages 779-788, 2004.

Y. LeCun, F.-J. Huang, and L. Bottou. Learning Methods for Generic Object Recognition
with Invariance to Pose and Lighting. In CVPR, 2004.

T. Leung and J. Malik. Recognizing Surfaces Using Three-Dimensional Textons. In
Int. Conf. Computer Vision, 1999.

D. Lowe. Distinctive Image Features from Scale-invariant Keypoints. Int. J. Computer
Vision, 60, 2:91-110, 2004.

J. Malik and P. Perona. Preattentive texture discrimination with early vision mechanisms. J.
Optical Society of America, A 7(5):923-932, May 1990.

K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. [EEE
Trans. Pattern Analysis & Machine Intelligence, 27(10), 2005.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir,
and L. Van Gool. A comparison of affine region detectors. ZJCV, 65(1/2), 2005.

G. Mori and J. Malik. Recognizing Objects in Adversarial Clutter: Breaking a Visual
CAPTCHA. In Int. Conf. Computer Vision & Pattern Recognition, 2003.

A. Opelt, M. Fussenegger, A. Pinz, and P. Auer. The Graz image databases. Available at
http://www.emt.tugraz.at/~pinz/data/.

A. Opelt, M. Fussenegger, A. Pinz, and P. Auer. Weak hypotheses and boosting for generic
object detection and recognition. In European Conf. Computer Vision, 2004.

J. Puzicha, T. Hofmann, and J. Buhmann. Histogram Clustering for Unsupervised Segmen-
tation and Image Retrieval. Pattern Recognition Letters, 20:899-909, 1999.

M. Riesenhuber, T., and Poggio. Hierarchical Models of Object Recognition in Cortex.
Nature Neuroscience, 2:1019-1025, 1999.

F. Schaftalitzky and A. Zisserman. Viewpoint invariant texture matching and wide baseline
stereo. In Int. Conf. Computer Vision, pages 636—-643, Vancouver, 2001.

B. Schiele and J. Crowley. Recognition without Correspondence using Multidimensional
Receptive Field Histograms. Int. J. Computer Vision, 36(1):31-50, January 2000.

B. Schiele and A. Pentland. Probabilistic Object Recognition and Localization. In
Int. Conf. Computer Vision, 1999.

C. Schmid. Weakly supervised learning of visual models and its application to content-based
retrieval. Int. J. Computer Vision, 56(1):7-16, 2004.

C. Schmid and R. Mohr. Local Grayvalue Invariants for Image Retrieval. IEEE Trans. Pattern
Analysis & Machine Intelligence, 19(5):530-534, 1997.

M. Varma and A. Zisserman. Texture Classification: Are filter banks necessary? In
Int. Conf. Computer Vision & Pattern Recognition, 2003.

	Introduction
	Hyperfeatures
	Previous Work

	Base Features and Image Coding
	Image Features
	Vector Quantization and Gaussian Mixtures
	Latent Dirichlet Allocation

	Constructing Hyperfeatures
	Experiments on Image Classification
	Object Localization
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

