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Abstract. Using the variational approaches to estimate optical flow between two
frames, the flow discontinuities between different motion fields are usually not
distinguished even when an anisotropic diffusion operator is applied. In this pa-
per, we propose a multi-cue driven adaptive bilateral filter to regularize the flow
computation, which is able to achieve the smoothly varied optical flow field with
highly desirable motion discontinuities. First, we separate the traditional one-step
variational updating model into a two-step filtering-based updating model. Then,
employing our occlusion detector, we reformulate the energy functional of op-
tical flow estimation by explicitly introducing an occlusion term to balance the
energy loss due to the occlusion or mismatches. Furthermore, based on the two-
step updating framework, a novel multi-cue driven bilateral filter is proposed to
substitute the original anisotropic diffusion process, and it is able to adaptively
control the diffusion process according to the occlusion detection, image inten-
sity dissimilarity, and motion dissimilarity. After applying our approach on vari-
ous video sources (movie and TV) in the presence of occlusion, motion blurring,
non-rigid deformation, and weak textureness, we generate a spatial-coherent flow
field between each pair of input frames and detect more accurate flow disconti-
nuities along the motion boundaries.

1 Introduction

Optical flow estimation has been investigated by computer vision researchers for a long
time [10, 12, 19, 3, 4, 11, 1, 6]. Given two input images, how to compute accurate optical
flow is still challenging problem in computer vision especially when the images have
severe occlusion and non-rigid motion. The basic idea of optical flow computation is
maintaining the brightness constancy assumption, which relates the image gradient, �I ,
to the components u and v of the local optical flow. Since this is an ill-posed problem,
some additional constraints are required to regularize the motion field during the flow
estimation. From the well-known aperture phenomenon, a larger region of integration is
more preferable to produce stable motion estimation but it may be more likely contain
multiple motions in this region and cannot handle non-rigid deformation very well [4].
Therefore, the fundamental problem of optical flow estimation is still how to design
an effective anisotropic smoothness regularizer, such that it not only maintains variable
spatial coherence inside each piecewise-smooth region but also keeps accurate flow
discontinuities at the motion boundaries.
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Currently, the most popular regularizers of optical flow estimation are the variational-
based isotropic and/or anisotropic smoothness operators [10, 8, 2, 1, 6]. However, these
techniques have two drawbacks. First, when the input images in the presence of occlu-
sion, these methods cannot correctly handle the flow estimation for the occluded region,
and the flow at those occluded regions appears over-smoothing or randomly dragging.
Second, if the input images have large homogeneous colored regions, these methods
will fail to produce correct flow vector inside those regions due to the poor texture
and image gradient field. To overcome these two problems, some researchers propose
parametric model or motion segmentation to break the optical flow field into several
piecewise-smooth parts [4, 9, 13, 21, 20]. Unfortunately, due to the inherent limitation
of the parametric model, these approaches cannot correctly handle the non-rigid scene,
where the objects may have irregular deformation.

Aiming to solve those pre-mentioned problems, this paper combines the occlusion
detection and an adaptive bilateral filter into a two-step updating variational frame-
work to estimate a high-quality optical flow field between two input frames. In our
approach, first we design an occlusion detector to identify the occluded areas, which ef-
fectively breaks the spatial coherence over the motion boundaries and makes it possible
to produce accurate flow discontinuities. Then, based on this occlusion detector, a novel
variational model is proposed where the occlusion detection and occlusion penalty are
integrated into the model to explicitly handle the occlusion problem. Third, at the sec-
ond updating step of the variational model, we substitute the traditional anisotropic
filter by our multi-cue driven bilateral filter to deal with the incorrect (or missing)
flow estimation of those occlusion regions. As a result, our approach effectively pre-
serve motion discontinuities between the different motion fields and generate smoothly
varying motion flow inside each piece of rigid or non-rigid motion field. Furthermore,
in this paper we also illustrate the flexibility of integrating more constraints, such as
the flow symmetric property, into our framework to compute more accurate optical
flow.

The remainder of this paper is organized as follows. Section 2 discusses the existing
variational model of optical flow computation and also illustrates how to convert the
model into a two-step iteration with a convolution-based diffusion. Based on the new
iteration model, Section 3 presents a novel optical flow framework integrated with the
explicit occlusion term and a multi-cue driven bilateral filter. In Section 4, we demon-
strate several results on various video sources in the presence of occlusion, motion
blurring, non-rigid deformation, and weak texture conditions.

2 The Two-Step Variational Updating Model

According to the brightness constancy assumption, given two input images I1 and I2,
the image brightness of a pixel at x = [x y]T in I1 should not be changed by the
motion vector u = [u v]T , such that I1(x) = I2(x + u) [10]. One direct solution
of optical flow estimation is to minimize the following quadratic data energy func-
tional over the image domain Ω, such that Ed(u) =

∫
Ω

(
I1(x) − I2(x + u)

)2
dx.

Since this data energy is differentiable, it can be approximated by the first order Taylor
expansion
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Ed(u) =
∫

Ω

(
�IT u + It

)2
dx, (1)

where �I is the average gradient of images I1 and I2, and It is the temporal derivative
between I1 and I2. In order to avoid the aperture problem and suppress noise during op-
tical flow estimation, a smoothness constraint should be added to regularize the optical
flow gradient, �u. The most common smoothness term used in optical flow estima-
tion is the edge-preserving anisotropic operator which can efficiently prevent flow to be
smoothed over region boundaries [14, 15, 5, 1, 16]. Therefore, the new overall energy
functional for optical flow minimization becomes

E(u) = Ed(u) + Es(�u) =
∫

Ω

((
�IT u + It

)2 + �uT D(�I1)�u
)
dx

=
∫

Ω

(
ed(u) + es(�u)

)
dx, (2)

where ed(u) is a data term corresponding to data energy Ed(u), es(�u) is the smooth-
ness term to smoothness energy Es(�u), �I1 is the image gradient of frame 1, and
D(�I1) is an anisotropic diffusion tensor defined by

D(�I1) =
1

‖�I1‖2 + 2ν2

(
�I⊥1 �I⊥1

T
+ ν21

)
, (3)

where 1 is a 2 × 2 identity matrix, ν is a parameter to control the degree of isotropy
smoothness, and �I⊥1 is the vector perpendicular to �I1. The diffusion tensor, D(�I1),
has two orthogonal eigenvectors: η = �I1

‖�I1‖ and ξ = η⊥ = �I⊥
1

‖�I1‖ with corresponding
eigenvalues,λη and λξ , as shown in Fig.1.

To obtain the minimal energy of Eq.2, we can apply Euler Lagrange equation to
iteratively update the flow field u along the gradient descent direction, such that

∂u
∂τ

= uτ − uτ−1 = −
(

∂ed(u)
∂u

− div

(
∂es(�u)

∂�u

))

= −�I
(
�IT u + It

)
+ div

(
D(�I1)�u

)
, (4)

where the optical flow uτ is the flow field at iteration step τ . From this equation, it is
clear to see that since the data and smoothness terms are operating on different domains:
u and �u, these two terms will keep separated after applying Euler Lagrange equation.
Therefore, instead of updating uτ in one step, we divide the updating process into a
two-step procedure, such that

uτ ′
− uτ−1 = −∂ed(u)

∂u
= −�I

(
�IT uτ−1 + It

)
, (5)

uτ − uτ ′
= div

(
∂es(�u)

∂�u

)

= div
(
D(�I1)�uτ ′)

, (6)

where the first step is updating the flow field to an intermediate result, uτ ′
, by minimiz-

ing the data energy, and the second step is preforming an independent diffusion process
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(a)

(b)

(c)

Fig. 1. (a) Given an image with two distinguished regions, one pair of eigenvectors, η and ξ, are
shown for a pixel located at the region boundary. Depending on the diffusion tensor T, the shape
and size of the Gaussian kernel are varying at different locations. (b) The isotropic Gaussian
kernel at the homogeneous region. (c) The anisotropic oriented Gaussian kernel at the region
boundary.

on the estimated motion field uτ ′
. One interesting point of this separation is that if we

construct a structure tensor T = ληηηT + λξξξ
T and let H =

[
uτ ′

xx uτ ′

xy

uτ ′

yx uτ ′

yy

]

, then Eq.6

can be rewritten as uτ − uτ ′
= trace(TH), and this diffusion equation can be further

replaced by a 2D oriented Gaussian convolution [18], such that

uτ = uτ ′
∗ G(T, Δτ), where G(T, Δτ) =

1
4πΔτ

exp
(

− xT T−1x
4Δτ

)

, (7)

and Δτ is the step length of iteration. If Δτ is set to more than 1, the size of the oriented
Gaussian kernel becomes large and the diffusion process would be speeded up. Fig.1.a
shows the variation of the Gaussian kernel at different locations due to its varied struc-
ture tensor, T. Notice that the radii of the oriented Gaussian kernel also depend on the
eigenvalues of T−1, which are 1

λη
and 1

λξ
. When the pixel x is located at the interior of

a smooth region, ‖�I1‖ is small and λξ � λη � 1
2 , which is equivalent to applying an

isotropic Gaussian kernel for the smoothing as shown in Fig.1.b. If the pixel is located at
the sharp boundary between two segments, ‖�I1‖ will be large and λξ � 1 � λη � 0,
which is equivalent to applying an oriented Gaussian kernel on the images as shown in
Fig.1.c.

After separating the updating procedure into two steps, another interesting point is
that we can substitute the original diffusion tensor by a more powerful, convolution-
based diffusion filter in this variational framework, and this new filter may not be im-
plemented by the traditional PDE iteration. Based on this motivation, the next section
will show how to integrate a powerful, convolution-based bilateral filter into the flow
estimation framework to achieve highly discontinuous flow field from two input images.
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3 Highly Discontinuity-Persevering Optical Flow Estimation with
Occlusion Detection

Even with the anisotropic diffusion term in the energy minimization function, the previ-
ous work still has difficulties to obtain highly discontinuous flow field due to the unclear
occlusion process [19, 8, 1, 6, 16]. In [1, 16], the authors all point out that occlusion de-
tection is critical for the motion estimation especially when the motion gap is large.
However, the quality of occlusion detection and optical flow estimation at occluded
regions are unsatisfactory in these papers due to the lack of the elaborate occlusion han-
dling. In this section, we first exploit the natural property of the occlusion between two
frames, and then provide an occlusion detector to identify the occlusion area. Based
on the occlusion analysis, an explicit occlusion term is introduced into the variational
framework to balance the data and occlusion energy. Furthermore, we substitute the
traditional anisotropic diffusion tensor in the variational framework by a more flexi-
ble, multi-cue driven bilinear filter to preform more effective occlusion handling and
produce more accurate optical flow field.

3.1 Occlusion Analysis and Detection

Fig.2 illustrates two kinds of occlusion happening in optical flow estimation. The first
case is motion occlusion, where the occlusion generation is due to object motion and
the occluded areas from two frames are not overlapped at the same location. The second
case is mismatching where the occluded regions from different images are overlapped
at the same position. The mismatching may happen under different conditions, such
as object appearing/disappearing, shadow, color change, or large object deformation
(shrinking or expanding), etc.

To detect such occlusion, one way is checking the consistency between the forward
and backward flow. If the backward and forward flow is constant, the pixel will be

(a ) (b ) (c) (d )

Fig. 2. (a) The case of the motion occlusion, where a rectangle is moving from the left (the top
frame) to the right side (the bottom frame). (b) The corresponding occluded areas of (a) are
masked in red and the occluded areas locate at different positions due to the object’s motion. (c)
The case of mismatching, where the top is the first frame and a rectangle suddenly appears in the
second frame (the bottom one). (d) The corresponding occluded areas of (c) are also masked in
red, but in this case these occluded regions are overlapped at the same location.
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(a ) (b) (c)

(d ) (e) (f)

Fig. 3. (a) The first input frame. (b) The second input frame. (c) The estimated optical flow using
the traditional variational approach, where the flow of the weak-textured regions are dragged by
the high gradient region boundaries (Note: for comparison, please refer Fig.5.b). (d) The zoomed
image from the blue box in (c). (e) The dense flow field shown in color coded fashion where it
is easy to see the dragging around the high gradient boundaries. (f ) The color code map where
the color represents the orientation of the vector and brightness stands for its magnitude. Note: in
(c) and (d), we also draw the flow vector using a line segment which starts from red and ends at
green.

considered as non-occluded [1]. However, this forward-backward matching may not be
reliable for some cases, such as mismatching where the flow inside the both overlapping
occluded regions may be zero as shown in Fig.2.c − d. As a result, this detector will
not detect the error from forward and backward flow and it will calm such regions as
non-occluded, which is contradictory to our analysis. In order to avoid such missing
detection, we propose a simple but robust solution to detect the occlusion for the both
cases by employing the squared image residue as

ρ(u) =
{

0 if
(
I1(x) − I2(x + u)

)2
> εI

1 otherwise.
(8)

where εI is a threshold to decide the occlusion, ρ = 0 means the pixel is occluded, and
ρ = 1 denotes this pixel is visible in the both frames. To obtain a continuous function
of ρ(u) for PDE differentiation, a numerical approximation of the Heaviside function
is used, such that

ρ(u) =
1
2

+
1
π

tan−1
((

I1(x) − I2(x + u)
)2 − εI

)
. (9)
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3.2 Energy Model with Occlusion Detection

One mishandling in the current variational model is trying to minimize the squared
intensity error or data energy for every pixel regardless if the pixel is occluded or not.
As a result, the warped image, I2(x + u), has to perform incorrect deformation to fill
the occluded area of frame I1(x) even though no corresponding pixel at I2 can match
the occluded pixel x at the first frame.

Fig.3 shows one example when a large occlusion between two images, this mini-
mization will produce some serious distortion or dragging. In this example, there is
a large motion difference between non-rigid foreground and the rigid background.
Using the traditional framework, the weak-textured regions would be dragged to fol-
low the movement of the high-gradient region boundaries. Another possible common
case is when camera has apparent zooming or pan, a larger number of pixels should
be occluded at the image boundary. If without correct occlusion handling, the en-
ergy of those pixels will be minimized to cause the serious distortion along the image
boundary.

To fix these problems, we need to exclude the occluded pixels from the minimization
process and add a corresponding penalty into the energy functional to balance occlusion
and visibility. Therefore, our new energy model can be written as

E(u) =
(
Ed(u) + Es(�u)

)
· ρ(u) +

(
Ed

oc + Es
oc(�u)

)
·
(
1 − ρ(u)

)
, (10)

where the first part of this equation is dealing with the energy of the non-occluded pix-
els and it includes two components, Ed and Es, which correspond to the conventional
data and smoothness energy similar to the model in the previous section. The second
part of the equation is handling the energy of the occluded pixels, where Ed

oc is oc-
clusion energy and Es

oc is the smooth regulation for the occluded pixels. If the smooth
processing of Es and Es

oc are same, we can merge these two terms into one, such that

E(u) =
(
Ed(u) − Ed

oc
)

· ρ(u) + Ed
oc + Es(u),

=
∫

Ω

((
ed(u) − ed

oc
)

· ρ(u) + ed
oc + es(�u)

)
dx, (11)

where ed
oc is a constant occlusion penalty corresponding to the occlusion energy Ed

oc,
ed(u) and es(�u) are data and smoothness terms same as Eq.2. From this equation, it is
obvious when the occlusion penalty ed

oc increase, the occlusion detection will become
more difficult and less pixels will be claimed as occluded. Therefore, a proper occlusion
penalty will balance energies between the occlusion and data terms, and correctly locate
the occlusion regions. In our experiment, we set ed

oc = εI , same as the occlusion
detector threshold in Section 3.1.

Then, after applying Euler Lagrange equation, we can update the flow field by the
two-step updating scheme as (Eq.5-7) becomes

uτ ′
− uτ−1 = −∂ed(u)

∂u
ρ(u) −

(
ed(u) − eoc

d

)∂ρ(u)
∂u

, (12)

uτ − uτ ′
= div

(
∂es(�u)

∂�u

)

or uτ = uτ ′ ∗ G(T, Δτ), (13)
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where the first step is updating the flow field only based on the data and occlusion penalty,
and the second step is performing diffusion process to suppress the noise and propagate
the flow to non-textured region by either PDE updating or Gaussian convolution.

3.3 Occlusion Diffusion Using Multi-cue Driven Adaptive Bilateral Filter

Theoretically, the pixels at the occlusion area should not be assigned any flow vector since
there is no correspondence available in the other frame. Nevertheless, in practice, the oc-
cluded pixels will be associated with certain motion flow by the diffusion operation in
the variational model, and therefore the estimated flow at these areas will heavily depend
on the diffusion process. Unfortunately, using the current variational-based anisotropic
diffusion or oriented Gaussian smoothing, the diffusion process lacks the occlusion han-
dling mechanism and also cannot distinguish the flow influence from different regions
very well, which may produces serious distortion at the region boundaries.

Fig.4.a shows two kinds of mishandling of the current anisotropic diffusion on a
simple example, where the cyan box is moving from the left to the right and the red
region is occluded region similar to the Fig.2.b (To save space, we only show the first
frame). In the first non-occluded case at pixel x1, an oriented Gaussian kernel is gen-
erated to perform diffusion process based on the diffusion tensor D(�I1). Even though
this Gaussian kernel is stretched along the region boundary, the diffusion process will
still convolute with a certain of flow information from the dissimilar regions to esti-
mate its flow vector. Hence, the flow influence from the cyan region may dramatically
distort the flow field in the white background region. In the second case, the pixel, x2,
is located at the occluded region, similarly an oriented Gaussian kernel is generated
as shown in Fig.4.a. However, if the occlusion gap is large, the radius of the oriented
Gaussian kernel may not be possible to cover the size of occlusion area. Therefore, the
only information convoluted for the flow estimation of pixel x2 is from the unreliable
occluded region.

Therefore, in order to overcome these two mishandling, we need to redesign the
diffusion process which can adaptively change the diffusion kernel’s size and shape to
minimize the flow influence from the inconsistent regions. In this section, we present an
adaptive, multi-cue driven bilateral filter to block such incorrect flow influence between
different regions and simultaneously infer the motion flow for the occluded regions
from the surrounding non-occluded pixels. In Fig.4.b, one possible solution of Fig.4.a
is given. In the both cases, the kernel size is adaptively changed and the kernel shape
is truncated into two parts according to the occlusion detection and image intensity.
The first part of these kernels is the support region marked as green where the motion
information inside this region is used to estimate the flow vector for pixels xi. The
remaining part of the kernels is the unsupport region and its information is discarded or
reduced by certain weights during the flow estimation.

The original bilateral filter is introduced by Tomasi and Manduchi to preform a non-
linear diffusion on image restoration [17], where two Gaussian kernels are stacked to-
gether such that

I ′(x1) =
1

k(x1)

∫

Ω

I(x) · gs(x − x1) · gI

(
I(x) − I(x1)

)
dx, (14)
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(a) (b)
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(c)

(d)

Occluded regions

Fig. 4. Comparison between the variational-based anisotropic diffusion and our adaptive bilateral
filter. Here the cyan box is moving from the left to the right side as indicated by the big yellow
arrow. The red region is occluded region similar as the Fig.2.b (here we only show the first frame).
(a) Two kinds of Mishandling for the pixel located near the region boundary and occluded area by
using the variational-based anisotropic diffusion. (b) Employing our adaptive bilateral filter, the
shape and size of the Gaussian kernel are adaptively changed for different cases and the optical
flow is correctly estimated for the both cases. Note: only the green area is used for the diffusion.
(c) and (d) are 3D visualization of the bilateral filter kernels where a green cross is marked at the
kernel center.

where the normalize term k(x1) =
∫

Ω
gs(x − x1) · gI

(
I(x) − I(x1)

)
dx, I ′(x1) is

the output of the bilateral filter for pixel x1, gs(·) and gI(·) are two Gaussian functions
for spatial and intensity domains respectively. Using the function gI(·), the influence
of the intensity-dissimilar pixels are effectively reduced. One can simplify Eq.14 by a
convolution format such that

I ′ = I ∗ Gs(x, σs) ∗ GI(I, σI), (15)

where Gs(σs) is a Gaussian kernel on spatial domain x with variance σs, which corre-
sponds to gs(x − x1) of Eq.14. GI(σI) is another Gaussian kernel on intensity domain
I with variance σI , which corresponds to gI

(
I(x) − I(x1)

)
of Eq.14.

In our two-step optical flow estimation model, since the diffusion process is explic-
itly separated from the motion estimation step, we can simply substitute the oriented
Gaussian filter in Eq.13 by our adaptive bilateral filter, such that

uτ = uτ ′ ∗ Gs

(
x, σs(ρ, χ)

)
∗ GI(I, σI) ∗ Gu(u, σu) ∗ ρ. (16)

Compared to the original bilateral filter (Eq.15), two additional convolution function
are added. One is the occlusion function, ρ, which can fully disable the influence of the
occluded region during the diffusion process. The other is a one dimensional Gaussian
kernel, Gu, to reduce the influence based on motion dissimilarity. Moreover, we also
modify the spatial Gaussian kernel, Gs, which is able to adaptively change the kernel
size by the occlusion function ρ and a varied occlusion region radius, χ, such that

σs(ρ, π)) =
{

σ0 if ρ = 1
σ0 + χ

3 if ρ = 0 , (17)
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(a ) (b )

(c) (d )

Fig. 5. (a) The estimated optical flow of Fig.3 using our approach, where the flow of the weak-
textured regions are not dragged by the high gradient region boundaries any more. (b) The zoomed
image from the blue box in (a). Compared to Fig.3.d, the flow vectors at the background region
are not dragged by high gradient boundary any more. (c) Dense flow field. (d) The occluded areas
in frame 1 (red regions).

where σ0 is a default value of the kernel variance. When ρ = 1, the pixel is located
at the non-occluded area where the estimated flow is reliable. With the convolution of
the intensity kernel GI and motion kernel Gu, a small Gaussian kernel with σs = σ0
is applied to preform diffusion as shown at position x1 in Fig.4.b, and the influence
from the dissimilar pixels are efficiently reduced by GI and Gu. When ρ = 0, the
pixel is occluded and the kernel size is increased by an additional term, χ

3 , where χ
is an occlusion region radius function and it is pre-computed for each pixel after the
occlusion detection step. With this new term, we can guarantee the radius of spatial
kernel is always larger than the radius of the occluded region. Then employing the
convolution of function GI ∗ Gu ∗ ρ, the flow influence from the unreliable occluded
region is disabled, and the influence from the other dissimilar regions is also reduced
according to the intensity and motion similarities. As a result, our adaptive bilateral filter
can effectively collect the flow influence from the non-occluded, intensity and motion
similar, surrounding regions to estimate correct flow vector for the occlude pixel as
shown at position x2 in Fig.4.b.
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Fig.5 shows the estimated flow field between frame Fig.3.a and 3.b by using our
approach. Compared to the previous results in Fig.3.c − e, our approach correctly de-
tects the occluded regions and effectively excludes these occluded pixels from the data
minimization process to avoid the undesirable background dragging. Then, with the
multi-cue bilateral filter, the motion flow for these occluded regions are inferred from
the surrounding non-occluded pixels. As a result, the sharp motion discontinuities are
obtained between different flow fields, and the non-rigid, continuous flow inside each
flow fields are maintained as well.

4 Experiments and Evaluation

In the case of the optical flow is more than one pixel, a multi-scale pyramid [7] is
necessary to be applied to avoid the minimization process trapped into a local minimum.
After creating pyramids for two input reference frames, we start from the top level
and iteratively update the flow field in two steps: first we estimate the flow vectors
between the reference frame and the corresponding warped frame, then an adaptive
bilateral diffusion process (Eq.16) is applied to correct the flow field and suppress the
noise.

(a ) (b )

(c) (d )

 Technique AAE ( o ) STD ( o )

 Nagel [3] 10.22 16.51

9.78 16.19Horn–Schunck, mod. [3]

8.94 15.61Uras et al. [3]

5.53 7.40Alvarez et al. [2]

2.57 6.07Our method

4.69 6.89M´emin–P´erez [15]

2.46 7.31Brox et al. [6]

Fig. 6. (a) One frame from the Yosemite sequence with clouds. The occluded regions are masked
in red, which hasn’t been done in the literature. (b) The corresponding dense flow field of the
ground truth. (c) Dense flow field of our result. (d) Comparison with the results from the literature
with 100% density for the Yosemite sequence with clouds. AAE denotes average angular error
and STD denotes standard deviation.
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(a) (b) (c)

(d ) (e) ( f )

Fig. 7. (a) The first frame. (b) The second frame. (c) Dense flow field using the traditional ap-
proach. (d) The estimated optical flow in the first frame using our approach. (e) Dense flow field
using our approach. (f ) The occluded areas in frame 1 (red regions).

In order to evaluate our algorithm, we test our method on the synthetic data which
has the ground truth. In Fig.6, we show our results for the well-known Yosemite with
clouds sequence, and also compare them to the results from the literature. From the
table of Fig.6.d, our results are slightly worse than the current best results [6] in this
small motion case, but outperform the rest algorithms. The average computation time
of this sequence is 4.03 sec/frame at 3.6GHz Intel Xeon CPU. For Yosemite sequence
without clouds, the average angular error of our results is 1.57◦ with 100% density,
which is also comparable to the most state-of-arts algorithms [3, 11, 6].

Beside this, we also test our algorithm in different real videos from movie or TV.
In these videos, some non-rigid objects have serious deformation and large displace-
ment of the moving objects produce severe occlusion and motion blurring as shown in
Fig.7-8. Fig.7.c shows two frames from one cartoon video, “Tiger”, where the leaves
have large motion along different directions and some parts of the scene without tex-
ture. Using the traditional approach, the flow vectors of the background are dragged
with the high-gradient boundaries and the motion discontinuities are not preserved very
well along the leave boundaries as shown in Fig.7.c. In our results (Fig.7.d − f ), we
correctly detect the boundary occlusion and achieve more accurate motion disconti-
nuities between the leaves and background regions. In Fig.8, we also show one result
from Football TV. The first two images are the input frames. Our results (Fig.8.d − f )
is apparently better than the traditional optical flow algorithm. Using our approach, we
obtain more accurate and highly contrast motion discontinuities for this non-rigid, fast
motion sequence with irregular occlusions.
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(a ) (b ) (c )

( f)(e)(d )

Fig. 8. (a) The first frame. (b) The second frame. (c) Dense flow field using the traditional ap-
proach. (d) The estimated optical flow in the first frame using our approach. (e) Dense flow field
using our approach. (f ) The occluded areas in frame 1 (red regions).

5 Conclusion

In this paper, we present a novel variational-based framework to compute the optical
flow for the video sequence in the presence of large occlusion and non-rigid motion.
Our main contributions consist of: (1) We explicitly introduce an occlusion term into
variational model to balance the data energy with occlusion handling process. (2) We
initialize a two-step updating model for optical flow estimation, and further seamlessly
integrate it with our multi-cue driven bilateral diffusion process to solve the occlusion
mishandling of the previous approaches. Using our approach, the occluded regions are
explicitly excluded from the optical flow computation, and our bilateral diffusion effec-
tively infer the flow vectors for the occluded regions. After applying our approach on
various video sources, the experiments show that our method can maintain piecewise
spatial-coherent flow field for the rigid or non-rigid objects and also preserve accurate
flow discontinuities along the motion boundaries simultaneously.
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