SPA Resistant Left-to-Right Integer Recodings

Nicolas Thériault

Department of Combinatorics and Optimization, University of Waterloo
ntheriau@math.uwaterloo.ca

Abstract. We present two left-to-right integer recodings which can be
used to perform scalar multiplication with a fixed sequence of opera-
tions. These recodings make it possible to have a simple power analysis
resistant implementation of a group-based cryptosystem without using
unified formulas or introducing dummy operations. This approach is very
useful for groups in which the doubling step are less expensive than the
addition step, for example with hyperelliptic curves over binary fields or
elliptic curves with mixed coordinates.

1 Introduction

Side channel attacks are a constant threat to the implementations of a cryp-
tosystem. This is particularly true for most discrete log based cryptosystems
where the basic group operations are often easily distinguishable depending on
the nature of their inputs. As a general practice, countermeasures must always
be used against simple side channel analysis, even if using one-time keys.

In this paper, we look at the impact of integer recoding for cryptosystems
based on the discrete logarithm problem in additive groups. We are particu-
larly interested in groups where the doubling operation is significantly cheaper
than the addition. Examples of such groups are hyperelliptic curves over binary
fields [22,23,[10,[14] (where additions are often more than twice as expensive as
doublings) or elliptic curves with mixed coordinates [8]. For these groups, the
standard countermeasures against SPA attacks are particularly disappointing as
they remove most of the saving due to efficient implementations of the group
operations. Another particularity of many of these additive groups (and which
we take advantage of) is that the addition and the subtraction operations are
almost identical.

We introduce the general situation of scalar multiplication for additive
groups in Section 2l In Section Bl we describe some of the basic countermeasures
to SPA attacks. We then present the most common forms of integer recoding
in Section [] and introduce our recodings in Section Bl Finally, we compare the
efficiency of the different recodings in Section [6l

2 Scalar Multiplication

Many discrete log based public key cryptosystems are done on additive groups
and required the multiplication of a group element D by a scalar e (the secret

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 345-358] 2006.
© Springer-Verlag Berlin Heidelberg 2006

346 N. Thériault

key). It is therefore very important to compute [e] D as efficiently and as securely
as possible. This is usually done through a variation of the double-and-add al-
gorithm which relies on two basic group operations: Adding two distinct group
elements (addition) and adding a group element to itself (doubling).

2.1 Double-and-Add Algorithms

For this paper, we are interested in the left-to-right version of the double-and-
add algorithm (i.e. most significant bit first). Right-to-left double-and-add can
also be used, but the left-to-right version is often more interesting, in particular
when combined with integer recodings and applied to a fixed group element
(using precomputations). For right-to-left recodings, one might also consider
Yao’s algorithm [28§], although it does not take advantage of precomputations.

Given a n-bits integer e = Z?;Ol ;27 (with the e; in {0,1}), let f,—; =
Z;;.l ;29 (= i.e. the number formed by the n — i most significant bits of the
binary expansion of e. Then f,_; can be obtained from f,_;_; and e; via the
relation f,_; = 2f,_;_1 + €;. In terms of scalar multiplication, this becomes:
[frn—i]D = [2]([fn—i—1]D) + [e;] D. The left-to-right double-and-add algorithm fol-
lows easily from this relation and its general form proceeds as in Algorithm 1. This
algorithm is written in its most general form to cover most of the cases encoun-
tered in this paper. If we consider only the “classical” double-and-add algorithm
on the binary representation, there is no recoding step, no precomputation ([1]D
is already known) and the addition step when r; # 0 is simply Dy + D;.

Algorithm 1. Generic double-and-add algorithm

Input: D, e
Output: [e]D
recode e as Y 7,2 recoding
precompute [r]D for every digit r # 0 precomputations
DO — [T’m]D
for j =m — 1 down to 0 do

Dy — [2]Dg doubling

if r; # 0 then

Dy < Dy + [r;]D addition

return Dy

3 Simple Side Channel Analysis Attacks

Power traces [13] and electromagnetic emissions of processors [I] can be used as
sources of information for simple side channel analysis (we will refer to both as SPA
attacks for simplicity). SPA attacks may exploit even small differences between the
addition and the doubling operations on group elements to discover the sequence
in which they are used in the double-and-add algorithm. If successful, this gives
the binary expansion of e, hence the secret key. It is therefore essential to secure
implementations of public key cryptosystems against this type of attack.

SPA Resistant Left-to-Right Integer Recodings 347

As a general rule, countermeasures against simple side channel attacks do not
secure the encryption against differential side channel analysis (DPA). If DPA is
a potential threat, i.e. if the scalar is used more than once, this problem can be
resolved by combining SPA and DPA countermeasure when possible (see [3] for
details). On the other hand, DPA countermeasures are useless if the encryption
is insecure against simple side channel attacks, so SPA countermeasures should
always be used.

3.1 Standard Countermeasures

There are two standard countermeasures against SPA attacks: Dummy opera-
tions and unified formulas. Both approach attempt to make the power traces of
the two group operations (addition and doubling) indistinguishable.

The first approach consists in adding extra or “dummy” operations in the
addition and doubling algorithms where the sequences of operations differ [9].
The result is an addition and a doubling formula which use the same sequence
of operations, so they will appear identical to SPA attacks. Obviously this will
increase the cost of the group operations (or at least the cheapest of the two),
having a negative impact on the efficiency of the encryption algorithm.

Although this is a very simple countermeasure to implement, it is not always
safe: If the secret key is used multiple times, dummy operations can be revealed
by adaptive fault analysis [29/80], and further countermeasures are required to
prevent this attack.

The second approach consist in rewriting the two group operations into a
unified formula. Since both operations will then use the same set of operations,
the two operations will have the same power trace.

Unified formulas tend to be more costly to use than dummy operations, but
they prevent adaptive fault analysis (but not DPA). The main disadvantage of
unified formulas is that they are group specific and so far they have only been
developed for elliptic curves [IT}151[5,4L6].

Moreover, some of these formulas have been shown to be weak because some
field multiplications are performed twice with the same inputs in the doubling
formula but not in the addition formula, making the system potentially vulner-
able [27] (the same can sometimes be said of dummy operations [17]).

3.2 Montgomery Ladders

Another countermeasure against SPA is the use of a Montgomery ladder [12].
The algorithm proceeds from left-to-right, computing two elements at each step:
[f;]D and [f; + 1]D, where f; is the partial sum of the n — j most significant
bits of e, i.e. fj =31, ;2077

Since f; = 2f;41 + €j, the pair (f;, f; + 1) can be obtained from the pair
(fj+1, fi+1 + 1) (computed at the previous step) using the rules:

€; fj fj +1
0 2fj+1 fivi + (fir1 +1)
L fismi+ (fja+1) 2(fjr1+1)

348 N. Thériault

which gives Algorithm 2 for scalar multiplication (where Dy = [f;]D and D; =
[f; +1]D). Since all the steps use the same set of operations the two group oper-
ations do not have to be secured against SPA attacks. As no dummy operations
are introduced, the risk posed by adaptive fault analysis is minimal.

Algorithm 2. Montgomery ladder

Input: D, e =Y 1 €;2"
Output: [e]D

Do «—0; Dy «— D

for j = n down to 0 do

if e; = 0 then
D1<—D0+D1;D0<—2D0 8_7'20
else
D0<—D0+D1;D1<—2D1 ejzl
return Dy

One drawback of the Montgomery ladder is the high count of group operations
since every step requires one doubling and one addition. Since at any given
step the two group operations are independent from each other, it is sometimes
possible to offset part of the high operation count by combining the them. For
example, with elliptic curves in affine coordinates it is possible to combine the
field inversions of the group addition and doubling into one field inversion and
three field multiplication. Unfortunately, for most groups used in cryptographic
applications this approach is unlikely to give enough savings to justify using a
Montgomery ladder instead of other SPA countermeasures.

4 Integer Recoding

A common approach to improve the efficiency of the scalar multiplication is to
use integer recoding to reduce the number of operations required in the double-
and-add algorithm. By allowing integers other than 0 or 1 to be used in the

expansion of e, it becomes possible to recode e = Y €;2" as e = Z:'io 2%,

The double-and-add algorithm will still work as in Algorithm 1, but the term
added may now be different from D. If the weight (number of non-zero digits)
of the recoding of e is smaller than the weight of its binary expansion, then
Algorithm 1 will require fewer additions to compute [e]D (and possibly fewer
doublings if n’ < n). The main difference is that unlike the double-and-add
algorithm on the binary representation, the elements [s]D must be precomputed
for all the possible digits s.

Most recodings can be divided into two categories depending on the order in
which the bits are processed. Right-to-left recodings, i.e. from the least signifi-
cant bit to the most significant one, are more natural but they must be computed
before the double-and-add algorithm and the storage required for the recoding
is usually greater than that of the integer itself. Left-to-right recodings are com-
puted from the most significant bits down to the least significant bit, hence the

SPA Resistant Left-to-Right Integer Recodings 349

recoding can be done at the same time as the left-to-right double-and-add mul-
tiplication, avoiding the need to record the new representation. This makes left-
to-right recodings somewhat more interesting for implementations in restricted
environments, especially if the group element is fixed (so the precomputed values
[s]D for the digits s can be reused for a number of scalar multiplications).

For a number of groups used in cryptography, and in particular for Elliptic
and Jacobians of hyperelliptic curves, recodings can take advantage of symme-
tries. For these groups, the group subtraction is almost identical to the group
addition, up to a few sign changes in the field operations. Since field additions
and subtractions are indistinguishable under SPA attacks, the performance and
security of the cryptosystem are unaffected if we subtract [s]D instead of adding
[—s]D, but the storage requirement for the double and add algorithm can be
reduced. This makes it very interesting to use digit sets which are symmetric
around 0 since only half of the points must be precomputed (for example those
corresponding to the positive digits).

4.1 Recodings and SPA Attacks

In general, SPA attacks are much less effective on double-and-add algorithms
using integer recodings than those using the binary representation directly. From
the power trace of a double-and-add algorithm, it is possible to know which digits
in the recoding are non-zero, but not their values.

If the recoding has a density (weight of the recoding divided by its length)
which is too low or if it contains long sequences of zero digits, the attacker may
be able to restrict the portion of the keyspace the secret key could be in. The
size of the keyspace to consider may then become small enough for the attacker
to find the key using other methods (for example Shanks’ Baby-step Giant-step
algorithm, Pollard’s Rho algorithm, etc). When this is the case, the implementa-
tion of the double-and-add algorithm must also include a countermeasure against
SPA attacks (see Section [3)).

On the other hand, if the weight of the representation is high enough and
the non-zero digits are distributed uniformly enough, the recoding is inherently
secure and act as a SPA countermeasures. This is the idea behind the fixed
recodings in Subsection [£.4] and Section [5l

4.2 w-NAF

The most commonly used recodings are the Non Adjacent Form (NAF) [25] and
its extension the w-NAF [7,26]. For this paper, we will denote the w-NAF as
using the digit set {£+1,+3,...,£(2% —1)} U{0} and such that any pairs of non-
zero digits are separated by at least w zeros. This is also called the (w—1)-NAF
and sometimes denoted NAF,,_;. The w-NAF recoding is computed from right
to left and has average density 1/(w + 2).

To use the negative digits, we consider sequences of up to w bits and a carry
¢; (just as in a base 2 addition). To a sequence of w bits starting from the j-th
bit of e, we associate the integer s; = Y1 e;4;2". Starting with j = 0 and
co = 0, each step of the recoding follows the rules

350 N. Thériault

€j + Cj S5 + Cj k Cit+k Ty Tit1y s Tj+k—1
0 - 1 0 0 -
2 - 1 1 0 -
1 <2¥ w+1 0 sj ¢ 0
1 >2¢ w4l 1 s 4e — 2wt 0

where the next bit to be encoded is the (j+k)-th bit of the binary representation.
Although the w-NAF gives a recoding of the smallest possible weight for
the given digit set (see [2]), which is advantageous for the performance of the
encryption, the key is weakened by the low density and by the knowledge of the
variable positions of the non-zero digits. Since there are 2% possible values for
the non-zero digits and the recodings have an average density of 1/(w+2), there
are (on average) 2™/ (“*2) keys of n bits with a given sequence of doublings and
additions. Compared to the 2™ possible keys of length n, we get a reduction by
a factor of 22*/(¥+2) in the number of possible keys. We can see that unless SPA
countermeasures are used, the w-NAF is not intended for applications such as
restricted environments which are susceptible of side channel attacks.

4.3 Minimal Weight Left-to-Right Recoding

Avanzi [2] and Muir and Stinson [I8] developed left-to-right equivalents of the
w-NAF (see also [19]). Although the recodings in [2] and [I§] are not always
identical, they differ only in some special cases and their outputs always have
the same weight. These recodings give the same advantage as the w-NAF, i.e.
they give a recoding of minimal weight for the digit set, but with the added
bonus that they proceed from the most significant bit downward so they can be
interleaved with the left-to-right scalar multiplication.

Let vj, = sj—rx +ej—r — ej2k and let ¢; 5 be the highest power of 2 dividing
vk, then the recoding step in [2] follows the rule:

€j —€j—-1 k Tjyee s Tij—k+1 Tj—k+t
0 1 0 -
+1 min{w,j+ 1} 0 vj)20k

where the next recoding step is for the bit j — k (and lower). We refer to [2] and
[18] for the proof of correctness of the recoding process.

As was the case with the w-NAF, the group operations will also have to be
secured against SPA attacks.

4.4 Fixed Right-to-Left Recoding

In [17], Moller introduced a new fixed right-to-left recoding. The idea consists in
computing a 2"-ary expansion of e, but in such a way that none of the digits are
0 (hence producing a “regular” or “fixed” expansion). The recoding we present
here is from the extended version of [I7].

Since a 2%-ary recoding requires a set of at least 2 digits to be able to rep-
resent every possible integer, the digit 0 is replaced by —2% (to ensure a regular
addition structure), while the digits {2¥~1+1,2%~14+2, ... 2% — 1} are replaced

SPA Resistant Left-to-Right Integer Recodings 351

by {—(2¥71—1),—(2¥~1-2),..., —1} (to take advantage of symmetries), giving
the digit set {+1,+2,+3,...,2%v~1 —1} U {2v-1 2w},

As with the w-NAF, we need to introduce a carry to do the recoding but, to
cover all the possible situations, it can take the values 0, 1 and 2. The recoding
goes from right to left by blocks of w bits, starting with a carry of 0. Given
5; = Z;‘:()l ei+wj2", the recoding steps follows the rule:

Sj+c¢j r; Cj+1
0 —2v 1
A -2 2
2v 41 1 1
1,2,3,...,2v"1 sj+¢y 0
(2w71+1),...,(2w71) s;+cj —2% 1

Once the scalar is recoded (and stored), the scalar multiplication works very
much like a left-to-right “2* and add” algorithm on the recoding. Rather than
computing [2]Dg (where Dy is the partial sum at the previous step of the scalar
multiplication) and then adding [e;]D, the algorithm computes [2]Dg (by dou-
bling w times) and then adds [r;]D.

Since the sequence of doublings and additions is fixed and is the same for all
integers of the same size, this recoding is resistant against SPA attacks and the
fastest implementations of the group operations can be used even if they are
very unbalanced.

A side effect of this approach is that even leading zero digits can (and will)
be recoded as non-zero. The length of the recoding must then be decided before-
hand — usually to fit the longest possible key — with the added bonus that short
scalars are indistinguishable from longer ones.

5 Fixed Left-to-Right Recodings

The main disadvantage of Moéller’s recoding algorithm is that it is right-to-left,
so it must be computed and stored before the scalar multiplication. To obtain a
left-to-right recodings (which can be interleaved with the scalar multiplication)
and to use symmetries (to save space and precomputations), we use digit sets
which are symmetric around 0.

Since the recoding goes from the highest powers of 2¥ down to the lowest,
the carry will not behave as usual: Instead of delaying the addition of 2 and
replacing it by the addition of 1 at the next (higher) power of 2%, the carry (if
different from 0) will delay the subtraction of 1 and replace it by the subtraction
of 2% at the next (lower) power of 2. For simplicity, the values of the carry will
still be denoted 0 and 1 as in the w-NAF, but with the understanding that it
has the new meaning.

To simplify the notation, we define s; as Z;’:OI ei+w;2": The coefficient of 2%
in the 2"¥-ary expansion (using the digit set {0,1,...,2* —1}). As was the case
with the fixed right-to-left recoding, the length of the representation must be
decided beforehand.

352 N. Thériault

5.1 Groups of Odd Order

The recoding presented in this section is equivalent to a recoding suggested by
Martin Seysen (unpublished work), which is also described in [20], [21] and [I6].
The digit set {41, +3,...,4+(2* —1)} is a quite natural choice: Since the carry
produces a shift of +1 on s;, this is the smallest symmetric set of integer not
containing 0 for which all possible values of s; and s; — 2" (to take into account
the previous carry) can be recoded using a carry of either 0 or 1. With this digit
set, the general recoding step is described by the following rule:
Sj Tj Cj—1
even s;+1—¢;2¥ 1
odd s; —¢;2% 0

It is easy to verify that at every step r; = s; — ¢;2% + ¢j—1, so the fi-
nal recoding is Z;":O r;27 = e 4+ c_1. A nice aspect of this rule is that for
j < m it can be rewritten as: r; = 1 — 2% + > €;14,;2" (with ¢;_1 =

1—ew;), making it very straightforward to implement and requires no conditional
statement.

Since the recoding goes from left to right, the final recoding step takes place
at the w least significant bits. We could use the same recoding system for the
final step, but one must then decide what to do if there is a carry after that
step (a “rightward” carry at the unit level would require a fractional expansion,
which is incompatible with the scalar multiplication). One solution consists in
taking the result obtained at the final step and apply the carry directly to it
(without any extra doubling) instead of delaying it. But in the case of a SPA
attack, this would reveal the final bit.

Although this problem cannot be fixed in general, it can be avoided in most
cryptographic applications. From a cryptographic point of view, there is no dis-
advantage to consider that the order of the group used is a large prime. This is
because the discrete logarithm problem in a group can be reduced to the discrete
log problem in its subgroups using the Chinese Remainder Theorem [24]. We can
therefore make the assumption that the group in which the scalar multiplication
is done has odd order.

Under this condition, it is always possible to force the secret key to be an
odd integer: If e is even, it can be replaced by ¢ = e + #G (since [¢/]D = [e] D).
Since we can ensure the scalar is always odd, the left-to-right recoding using
digits +1,43,...,£(2¥ — 1) will have a final carry c_; equal to zero and the
recoding will always terminate correctly. Interleaving the recoding and the scalar
multiplication gives us Algorithm 3.

5.2 General Case

We now consider another digit set that could be used for the fixed left-to-right
recoding, but this time without any restriction on the group order. The argument
used here is by no means the only one possible and other digit sets could also
give a valid recoding with the same properties.

SPA Resistant Left-to-Right Integer Recodings 353

Algorithm 3. fixed left-to-right (odd) scalar multiplication

Input: D, w, e =1+) "1 €;2" (0dd)
Output: [e]D
precompute [1]D, [3]D,...,[2% —1]D
rj— 1+ Z;’:ll €itwm2 recoding
DO — [Tm]D
for j =m — 1 down to 0 do
for k=0tow—1do

Dy « [2]Dg w doublings
7= 1 =24+ 30 w2’ recoding
Dy « Dy + [r;]1D addition

return Dg

As the carry is done downward, we must be able to recode all the possible val-
ues of s; and s;—2", i.e. all the integers in [-2%, 2 —1]. Since the introduction of
a carry of one to the next (lower) power of 2% will increase the current coefficient
by 1, the possible values (after the carry) are —2%, —(2% —1),...,2% — 1,2%,
so the set of even integers 0, 2, 4, £6, ..., 2" seems like a reasonable choice.
However, we want to remove the possibility of a zero digit in the 2*-ary expan-
sion. Since the carry is either 0 or 1, the only possible choice for the recoding of 0
is 1 (with a new carry of 1). Similarly, —1 is also necessary since it cannot be re-
coded as 0 with a new carry of 1, so 1 must also be allowed as digits instead of 0.
Bringing all this together, we obtain the digit set {£1}U{%2, £4,+6,...,+2%}.

If with start with a carry of 0 for the leftmost bit recoded, the general recoding
rule can be written as follows:

S5 — Cj2w Tj Cj—1

even, # 0 55 —c;2% 0
0 1 1

odd, # -1 (s; —¢;29)+1 1
-1 -1 0

It is easy to verify that at every step of the recoding r; = s; — ¢;2* 4 ¢j_1, so
that 3707297 = 37 5200 — 2mFDwe, e g =et ey

Remark: With the residue system {£1} U {£2,£4,46,...,£2"}, there are
multiple choices for the recodings of —2 and 1:

e —2 can be recoded as —2 without a carry, or as —1 with a carry;
e 1 can be recoded as 1 without a carry, or as 2 with a carry.

The recodings rules given above were chosen for simplicity.

Once again, we must choose what to do with the final carry. We could apply
the carry directly at the end of the computation, but this would reveal the last
bit of the scalar (with the possible exception of a recoding of 0 or —1).

A better alternative consists in replacing the final recoding step so that the
final step of the encryption always consists of two additions (with ro + 7 =
s0 — cp2"):

354 N. Thériault

so — 2" 70 g
even, # —2 (sg —co2¥)+2 -2
-2 -1 -1
odd, # —1 (sg—cp2¥)+1 -1
-1 1 —2

Remark: With the exceptions of +1 (and —4 if w = 2), there exists multiple
choices for the recodings of all the possible values of sy — ¢g2". The recodings
rules given above were chosen for simplicity.

Note that this approach was not possible with the previous recoding. Since
the parity of a sum of odd digits depends only on the number of additions, not
which digits are added, there was no regular sum that could give both even and
odd results.

The computation of the scalar multiplication proceeds as in Algorithm 1 (with
w doublings between every two additions since we have a fixed 2-ary expansion,
as in Subsection [£4) except for the final step which becomes: Dy «— Dy +
[rolD + [r5] D.

6 Performance Comparison

We can now summarize and compare the efficiency of the different scalar mul-
tiplication and recoding algorithms to get a better idea of which ones are more
interesting depending on the situation. To compare equivalent security levels, we
assume that SPA countermeasures (for example unified formulas) are used on
the group operations in the cases where SPA attacks could reveal even partial
information on the secret key.

6.1 Unrestricted Environment

We first consider the case of applications where there is no restriction on the
memory used by the algorithm and where the group element is assumed fixed
for every scalar multiplication while the scalar varies. Under these conditions,
we can assume that the precomputations are already done when the double-
and-add algorithm is used, so their cost does not have to be taken into account.
To have a common basis for the comparison, we assume that the recodings all
have the same (average) density of 1/¢, with the exception of the double-and-
add algorithm on the binary representation (average density of 1/2) and the
Montgomery ladders (density of 1).

We express the costs as “group operations (on average) per bit of the scalar”.
We denote by r the cost (in normal group addition) of an optimized group
doubling, and by ¢ the cost of indistinguishable group operations (either using
uniform formulas or dummy operations). Note that ¢ > 1 and should ideally be
very close to 1.

By memory, we mean the number of precomputed elements which must be in
memory for the double-and-add algorithms, including [1]D. Since Montgomery

SPA Resistant Left-to-Right Integer Recodings 355

ladders do not require any precomputations but compute two group elements
instead of one, we write its memory requirement as 1.
We get the following table:

method section w cost memory direction
double-and-add 21 1 e 1 left-to-right
Montgomery Ladder 3.2 1 r+1 1 left-to-right
w-NAF A2 t—2 c(1+}) 273 right-to-left
minimal LtoR 13 t—2 c¢(1+}) 273 left-to-right
Moller Z4 t r+ 1 207141 right-to-left
fixed LtoR (odd order) [ETI t r+ 21 left-to-right
fixed LtoR (general) t r+ 7 27141 left-to-right

We can see that for the same density, the three fixed recodings require four
times as much memory and precomputations than the w-NAF (a little more in
the case of general group orders and the right-to-left recoding). If r < 1 + C;I,
the three fixed recodings are more efficient, but if » > 1 + Cgl, the w-NAF and
the minimal weight left-to-right recoding become more efficient.

6.2 Restricted Memory

In some applications (such as restricted environments and implementations
where the secret key is used more than once but on different group elements), it
is really unfair to compare recodings which require different number of precom-
putations. The easiest way to compare the different recodings in these situations
is to assume that a fixed number of precomputations are done (here we assume
either 2! or 2¢ 4 1) and compare the cost of the multiplications without taking
into account the precomputation cost (which is the same for all the recodings,
even thought they use different digit sets).

To make the comparisons uniform, we do not consider the double-and-add on
the binary expansion and Montgomery ladders. Using the same notation as in
the previous subsection, we find:

method section memory average density cost direction
w-NAF 1.2 2t s c(1+ ,;,) right-to-left
minimal LtoR A3 2¢ i c(1+,;,) left-to-right
Moller 9| 2t +1 t}rl 7+, right-to-left
fixed LtoR 5.2 2t +1 t}rl r 4 t-&l-l left-to-right
fixed LtoR B 2t i r+ 4, left-to-right

This time the comparisons are much more clearly delimited. If we let v =

c (1 + tid) — til’ we get the following rules:

e The fixed left-to-right recodings are at least as efficient as Moller’s fixed
right-to-left recoding.

o If r < ~, the fixed recodings are faster than the w-NAF or the minimal
weight left-to-right recoding.

356 N. Thériault

e If r > v, the w-NAF and the minimal weight left-to-right recoding are faster
than the fixed recodings, even though SPA countermeasures must be added
in the implementation of these algorithms.

e Although the recodings from Sections [£.4] and require one more step of
precomputation, the use of even integers as coefficients is often advantageous.
If doublings are faster than additions, the total cost of the precomputations
can be lower than for the other coefficient sets (to be precise, when r < 1/(1+4
21=%) since 2!~1 + 1 of the precomputations can be done by group doublings
rather than group additions). These recodings may be more interesting than
the recoding of Section 1] if having to store one more group element is an
acceptable compromise.

7 Conclusion

We presented two integers recodings which are resistant to SPA attacks. These
recodings are left-to-right so they can be interleaved with a left-to-right scalar
multiplication, removing the need to store both the scalar and its recoding.
In groups where the doubling operations can be implemented with significant
savings compared to a group addition, these algorithms become faster than a w-
NAF (or its left-to-right equivalent) which has been secured against SPA attacks.
It should be kept in mind that these implementation do not ensure in any way
the security against differential side channel analysis, so countermeasures against
these attacks should also be used if the secret key is used more than once.

Acknowledgements

The author would like to thank Roberto Avanzi and Bodo Moller for their useful
comments and remarks.

References

1. D. Agrawal, B. Archambeault, J.R. Rao, and P. Rohatgi. The em side-channel(s).
In B.S. Kaliski Jr., C.K. Kog, and C. Paar, editors, Cryptographic Hardware and
Embedded Systems — CHES 2002, volume 2523 of LNCS, pages 29-45. Springer—
Verlag, 2003.

2. R.M. Avanzi. A note on the signed sliding window integer recoding and a left-
to-right analogue. In H. Handschuh and M.A. Hasan, editors, Selected Areas in
Cryptography — SAC 2004, volume 3357 of LNCS, pages 130-143. Springer—Verlag,
2005.

3. R.M. Avanzi. Side channel attacks on implementations of curve-based crypto-
graphic primitives. Cryptology ePrint Archive, Report 2005/017, 2005. Available
at: <http://eprint.iacr.org/>.

4. O. Billet and M. Joye. The jacobi model of an elliptic curve and side-channel
analysis. In M. Fossorier, T. Hgholdt, and A. Poli, editors, Applied Algebra, Alge-
braic Algorithms and Error-Correcting Codes — AAECC-15, volume 2643 of LNCS,
pages 34-42. Springer—Verlag, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

SPA Resistant Left-to-Right Integer Recodings 357

E. Brier and M. Joye. WeierstraBelliptic curves and side-channel attacks. In D. Nac-
cache and P. Paillier, editors, Public Key Cryptography — PKC 2002, volume 2274
of LNCS, pages 335-345. Springer—Verlag, 2002.

. E. Brier, M. Joye, and I. Déchéne. Unified point addition formulefor elliptic curve

cryptosystems. In N. Nedjah and L. de Macedo Mourelle, editors, Embedded Cryp-
tographic Hardware: Methodologies € Architectures. Nova Science Publishers, 2004.

. H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation. In

ICICS’97, volume 1334 of LNCS, pages 282-290. Springer—Verlag, 1997.

. H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation us-

ing mixed coordinates. In K. Ohta and D. Pei, editors, Advances in Cryp-
tology - ASIACRYPT’98, volume 1514 of LNCS, pages 51-65. Springer—Verlag,
1998.

. J.-S. Coron. Resistance against differential power analysis for elliptic curve cryp-

tosystems. In C.K. Ko¢ and C. Paar, editors, Cryptographic Hardware and Embed-
ded Systems — CHES’99, volume 1717 of LNCS, pages 292-302. Springer—Verlag,
1999.

C. Guyot, K. Kaveh, and V. Patankar. Explicit algorithm for the arithmetic on the
hyperelliptic jacobians of genus 3. J. Ramanujan Math. Soc., 19(2):75-115, 2004.
M. Joye and J.-J. Quisquater. Hessian elliptic curves and side-channel attacks.
In C.K. Kog, D. Naccache, and C. Paar, editors, Cryptographic Hardware and
Embedded Systems — CHES 2001, volume 2162 of LNCS, pages 402-410. Springer—
Verlag, 2001.

M. Joye and S.-M. Yen. The montgomery powering ladder. In B.S. Kaliski Jr.,
C.K. Kog, and C. Paar, editors, Cryptographic Hardware and Embedded Systems —
CHES 2002, volume 2523 of LNCS, pages 291-302. Springer—Verlag, 2003.

P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. Wiener, editor,
Advances in Cryptology — CRYPTO0’99, volume 1666 of LNCS, pages 388-397.
Springer—Verlag, 1999.

T. Lange and M. Stevens. Efficient doubling on genus two curves over binary fields.
In H. Handschuh and M.A. Hasan, editors, Selected Areas in Cryptography — SAC
2004, volume 3357 of LNCS, pages 170-181. Springer—Verlag, 2005.

P.-Y. Liardet and N.P. Smart. Preventing spa/dpa in ecc systems using the jacobi
form. In C.K. Kog, D. Naccache, and C. Paar, editors, Cryptographic Hardware and
Embedded Systems — CHES 2001, volume 2162 of LNCS, pages 391-401. Springer—
Verlag, 2001.

C. H. Lim. A new method for securing elliptic scalar multiplication against side-
channel attacks. In H. Wang, J. Pieprzyk, and V. Varadharajan, editors, Informa-
tion Security and Privacy — ACISP 2004, volume 3108 of LNCS, pages 289-300.
Springer—Verlag, 2004.

B. Moller. Securing elliptic curve point multiplication against side-channel attacks.
In G.I. Davida and Y. Frankel, editors, Information Security: 4th International
Conference — ISC 2001, volume 2200 of LNCS, pages 324-334. Springer—Verlag,
2001. Extended version available at: <http://www.bmoeller.de/#ecc-sca>.

J. Muir and D. Stinson. New minimal weight representations for left-to-right win-
dow methods. CACR Technical Report, CORR 2004-19, 2004. Available at:
<http://www.cacr.math.uwaterloo.ca/techreports/2004/corr2004-19.pdf>.

K. Okeya, K. Schmidt-Samoa, C. Spahn, and T. Takagi. Signed binary represen-
tations revisited. In M. Franklin, editor, Advances in Cryptology - CRYPTO 2004,
volume 3152 of LNCS, pages 123-139. Springer—Verlag, 2004.

358

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

N. Thériault

K. Okeya and T. Takagi. The width-w naf method provides small memory and
fast elliptic scalar multiplications secure against side channel attacks. In M. Joye,
editor, Topics in Cryptology — CT-RSA 2003, volume 2612 of LNCS, pages 328—
343. Springer—Verlag, 2003.

K. Okeya, T. Takagi, and C. Vuillaume. On the exact flexibility of the flexible coun-
termeasure against side channel attacks. In H. Wang, J. Pieprzyk, and V. Varad-
harajan, editors, Information Security and Privacy — ACISP 2004, volume 3108 of
LNCS, pages 466—477. Springer—Verlag, 2004.

J. Pelzl, T. Wollinger, J. Guajardo, and C. Paar. Hyperelliptic curve cryptosystems:
Closing the performance gap to elliptic curves. In Cryptographic Hardware and
Embedded Systems — CHES 2003, volume 2779 of LNCS, pages 351-365. Springer—
Verlag, 2003.

J. Pelzl, T. Wollinger, and C. Paar. Low cost security: Explicit formulae for genus-
4 hyperelliptic curves. In M. Matsui and R. Zuccherato, editors, Selected Areas
in Cryptography — SAC 2003, volume 3006 of LNCS, pages 1-16. Springer—Verlag,
2004.

S.C. Pohlig and M.E. Hellman. An improved algorithm for computing logarithms
over gf(p) and its cryptographic significance. IEEE Trans. Information Theory,
24(1):106-110, 1978.

G.W. Reitwiesner. Binary arithmetic. In Advances in computers, volume 1, pages
231-308. Academic Press, New York, 1960.

J.A. Solinas. An improved algorithm for arithmetic on a family of elliptic curves.
In B.S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO ’97, volume 1294 of
LNCS, pages 357-371. Springer—Verlag, 1997.

C.D. Walter. Simple power analysis of unified code for ecc double and add. In
M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded Sys-
tems — CHES 2004, volume 3156 of LNCS, pages 191-204. Springer—Verlag, 2004.
A.C.C. Yao. On the evaluation of powers. SIAM J. Comput., 5(1):100-103, 1976.
S.-M. Yen and M. Joye. Checking before output may not be enough against fault-
based cryptanalysis. IEEE Trans. on Computers, 49(9):967-970, Sept. 2000.
S.-M. Yen, S. Kim, S. Lim, and S. Moon. A countermeasure against one physical
cryptanalysis may benefit another attack. In K. Kim, editor, Information Security
and Cryptology — ICISC 2001, volume 2288 of LNCS, pages 414-427. Springer—
Verlag, 2002.

	Introduction
	Scalar Multiplication
	Double-and-Add Algorithms

	Simple Side Channel Analysis Attacks
	Standard Countermeasures
	Montgomery Ladders

	Integer Recoding
	Recodings and SPA Attacks
	w-NAF
	Minimal Weight Left-to-Right Recoding
	Fixed Right-to-Left Recoding

	Fixed Left-to-Right Recodings
	Groups of Odd Order
	General Case

	Performance Comparison
	Unrestricted Environment
	Restricted Memory

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

