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Abstract. At present, there is a dichotomy of approaches to support-
ing web service implementation: extending mainstream programming
languages with libraries and metadata notations vs. designing new lan-
guages. While the former approach has proven suitable for interconnect-
ing services on a simple point-to-point fashion, it turns to be unsuitable
for coding concurrent, multi-party, and interrelated interactions requiring
extensive XML manipulation. As a result, various web service program-
ming languages have been proposed, most notably (WS-)BPEL. How-
ever, these languages still do not meet the needs of highly concurrent
and dynamic interactions due to their bias towards statically-bounded
concurrency. In this paper we introduce a new web service programming
language with a set of features designed to address this gap. We describe
the implementations in this language of non-trivial scenarios of service
interaction and contrast them to the corresponding BPEL implementa-
tions. We also define a formal semantics for the language by translation
to the join calculus. A compiler for the language has been implemented
based on this semantics.

1 Introduction

There is an increasing acceptance of Service-Oriented Architectures as a
paradigm for software application integration. In this paradigm, independently
developed and operated applications are exposed as (web) services that are then
interconnected using standard protocols and languages [1]. While the technology
for developing basic services and interconnecting them on a point-to-point basis
has attained some maturity, there remain open challenges when it comes to im-
plementing service interactions that go beyond simple sequences of requests and
responses or that involve many participants.

A number of recent and ongoing initiatives aim at tackling these challenges.
These initiatives can be classified into conservative extensions to mainstream
programming languages and novel service-oriented programming languages. The
former provide metadata-based extensions for web service development on top
of object-oriented programming languages. For example Microsoft Web Services
Extensions, Windows Communication Foundation, Apache Axis and JSR-181,
can be placed in this category. While these extensions are suitable for deal-
ing with bilateral interactions and simple forms of concurrency and correlation,

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 3–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



4 D. Cooney, M. Dumas, and P. Roe

capturing complex interactions with these libraries remains daunting. On the
other hand, a number of service-oriented languages have been proposed, ranging
from research proposals (e.g. XL [2, 3]) down to standardisation initiatives, most
notably the Business Process Execution Language for Web Services (BPEL) [4].

BPEL facilitates the development of services that engage in concurrent inter-
actions and incorporates a declarative correlation mechanism, thus addressing
some limitations of bespoke conservative language extensions. Nonetheless, it
fails to provide direct support for typical service interaction scenarios. In [5], a
number of patterns of service interaction are proposed. It is shown that while
BPEL directly supports the most basic of these patterns, it fails to address the
needs of more complex scenarios. In particular, BPEL has problems dealing with
one-to-many interaction scenarios with partial synchronisation especially when
the set of partner services is not known in advance.

The analysis of BPEL in [5] suggests that web service implementation requires
novel programming abstractions for dealing with advanced forms of concurrency,
synchronisation, and message correlation. Accordingly, this paper presents a pro-
gramming language, Gardens Point Service Language (GPSL), that integrates
concepts and constructs from join calculus [6], a declarative correlation mecha-
nism with greater flexibility than BPEL’s one, and direct support for complex
XML data manipulation. Specifically, GPSL incorporates:

– Dedicated messaging constructs, both for interacting with the other services
via SOAP, and for structuring the internal implementation of services

– A stratified integration of XQuery [7] expressions with imperative constructs.
– A join calculus-style approach to concurrent web service messaging, and an

embodiment of this concurrency style as a programming language construct.
– An approach to message correlation that provides direct support for both

point-to-point and one-to-many web service conversations [8].

A compiler implementation of GPSL can be found in [9]. The suitability of
GPSL has been tested by implementing a number of scenarios, ranging from
simple scenarios (e.g. an Amazon.com Queue Service client [10]) to scenarios
corresponding to the more complicated service interaction patterns of [5]. In
this paper, we sketch the implementations of three of these patterns.

The paper is structured as follows: Section 2 provides an overview of GPSL.
Next, Section 3 describes the abstract syntax and formal semantics of GPSL.
Section 4 illustrates how the language supports advanced service interaction
patterns. Section 5 then briefly describes the compiler implementation of GPSL
focusing on the code generation. Finally, Section 6 reviews related work while
Section 7 concludes.

2 Overview of GPSL

To illustrate the basic features of GPSL, we consider the implementation of a
simple ‘echo’ service and its client:
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declare interface Echo {
declare operation Shout in action = ’urn:echo:shout’ out

}
declare service EchoService implements Echo {
Shout($doc, Reply) { Reply($doc) }

}
declare service EchoClient {
do {

let $x := ’soap.tcp://localhost:4000/echo’ in
$x: Shout(element Say { ’Hello’ }, Done)

}
Done($doc) { (: comment -- do nothing :) }

}

GPSL has explicit contract and service declaration elements. Metadata from
contracts are used by the compiler to provide types to operations. For exam-
ple, the Echo contract has one operation, Shout. Shout is declared as an in-out
operation and by convention in GPSL has two parameters: one for data, and
the other for a channel to send the reply on. When a Shout operation message
is received, in the case of EchoService, or sent, in the case of the EchoClient,
the first parameter is bound to the body of the SOAP envelope and the second
parameter is bound to the WS-Addressing (WS-A) reply-to SOAP header.

EchoService declares implements Echo and includes a block guarded by a
label Shout that takes two parameters. The Shout label refers to an operation
in the Echo contract, so whenever the service receives a message with SOAP
action urn:echo:shout the service executes the corresponding block of code. The
language enforces a convention where variables bound to XML data are prefixed
with a $. The $doc parameter is bound to the body of the SOAP message and
the Reply parameter is bound to the WS-A reply-to header. Reply, although
derived from XML in the SOAP envelope, describes the capability for sending a
message and we do not prefix it with $. Reply is opaque and the capability can
only be passed to another service or exercised to send a message. The syntax
for sending a message is to write the channel variable and a parameter list in
parentheses. In this example, EchoService sends in the reply the data it received
in the request.

The data model of GPSL has two kinds of values: XML data, such as the
element Say, and channels, such as Reply. All XML expressions in GPSL are
XQuery expressions. For example, element Say is an example of the XQuery
computed element constructor. This ability to construct new XML data distin-
guishes XQuery from the less powerful XPath. However XQuery alone is not
sufficient for implementing services because it is a pure functional language with
no messaging constructs. Moreover, there are some semantic tensions between
XQuery’s flexible evaluation semantics and messaging, because it is difficult to
determine when a message will be sent or received. To avoid these tensions,
GPSL is based on a stratified approach in which imperative constructs are used
for messaging whereas XQuery is used for expressions.



6 D. Cooney, M. Dumas, and P. Roe

Now let us consider the implementation of EchoClient. It contains a do block;
do blocks are executed when a service starts up and can initialise state like
a constructor in an object-oriented language. Here EchoClient sends a Shout
message. For the first parameter it constructs an element Say that contains
the text Hello. By convention, the second parameter becomes the WS-A reply-
to header. Here EchoClient provides the label of a block, Done, as the second
parameter. Done is a “private” label of EchoClient, and does not refer to any
operation in a contract.

Messaging in GPSL is asynchronous; this encourages programmers to
write services that make concurrent requests rather than sequences of re-
quest/responses, although this RPC programming style is also possible in GPSL.
GPSL’s means of spawning concurrent threads derives from asynchronous mes-
saging. Using a private label to send an internal message starts the corresponding
block of code which is executed concurrently with subsequent instructions.

...
M(); (: sends local message, asynchronously :)
... (: subsequent instructions go here :)

}

M() {
(: this code executes concurrently when a message is sent on M :)

}

Synchronisation is achieved through blocks of code guarded by multiple labels.
Such multi-label guards are called concurrency patterns and are inspired by the
join calculus. A block of code guarded by a concurrency pattern is executed when
messages are available on all labels. For example, in the following code snippet,
local messages ResultA and ResultB are sent in two different blocks of code A()
and B() which we assume are executed concurrently (although their spawning
is not shown). When both messages are available, then the rule at the bottom
is reduced and the corresponding block of code is executed.

A() {
...
ResultA(...) (: produce message ResultA :)

}
B() {

...
ResultB(...) (: produce message ResultB :)

}
ResultA($a) & ResultB($b) (* this is a join pattern *) {

(: executed when ResultA and ResultB are available :)
}

3 Syntax and Semantics

The syntax of GPSL statements and expressions is shown in Figure 1. For space
reasons we focus on statements and expressions omitting the service and contract
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S, T ::= statement
ε empty
S ; T sequence
if E then S else T end conditional
let v := E in S let-binding
for v in E do S end iteration
E(G, [rc]) send (2nd argument may be used for reply channel)
E : m(G, · · ·) endpoint send
def D in S receive rules

D, F ::= definitions
J { S } receive rule
D F composition

J, K ::= pattern
x(y, · · ·) internal message receive
receive y where E external message receive
x(y)[where E] contract receive: x is an “in” operation def-

ined in a contract
x(y, rc)[where E] contract receive: x is an “in-out” operation def-

ined in a contract (rc stands for “reply channel”)
J & K synchronisation

E, G ::= expression
m label
· · · XQuery expression

Where m, v, x, y and rc are identifiers.

Fig. 1. Abstract syntax of the imperative GPSL statements

elements; these elements provide metadata about the SOAP action and message
exchange patterns of operations and do not have a direct operational semantics.

We sketch the semantics of GPSL in Figure 2 via an operational encoding in
the join calculus [6]. Since GPSL’s concurrency feature is based directly on the
join calculus this encoding is often straightforward syntax translation.

For our encoding we assume a join calculus with XQuery expressions
and values. Where XQuery has flexible evaluation semantics related to lazi-
ness/strictness and raising errors, GPSL needs predictable behaviour for mes-
sage sending. We introduce an explicit channel, eval, to specify precisely when
XQuery evaluation occurs. eval forces XQuery evaulation in its first argument
and passes the result on its second argument. cond, for implementing condition-
als, is like eval except it chooses a continuation based on the result.

For sending messages on internal channels (rule “Int. Snd” in Figure 2) we
only give the encoding of the single-argument case. Other arities follow the same
pattern, where the message receiver and arguments are evaluated left-to-right.
Likewise, for sending messages to other services (Ext. Snd,) we only give the
case when the operation is expected to reply, where by convention in GPSL the
first argument becomes the body of the message, and the second argument is
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Empty: [[ ε]] → 0
Seq: [[ S;T ]] → [[S]].[[T ]]
If: [[ if E then S else T end]]→ def t〈〉 � [[S]] | f〈〉 � [[T ]] in cond〈E, t, f〉
Let: [[ let v := E in S]] → def s〈v〉 � [[S]] in eval〈E, s〉
For: [[ for v in E do S end]] → def test〈es, s〉�

def t〈〉�
def hd〈e〉�

def tl〈es〉 � s〈e, es〉 in
eval〈es[position() > 1], tl〉 in

eval〈es[position() = 1], hd〉 in
def f〈〉 � 0 in
cond〈es = nil(), t, f〉 in

def s〈v, es〉 � [[S]].test〈es, s〉 in
def init〈es〉 � test〈es, s〉 in
eval〈E, init〉

Int. Snd: [[ E(G)]] → def receiver〈e〉�
def actual1〈f〉 � e〈f〉 in
eval〈G, actual1〉 in

eval〈E, receiver〉

Ext. Snd: [[ E:m(G, H)]] → [[let receiver := E in
let actual := G in
let reply := H in
let id := gensym in
def receive env

where Header/RelatesTo = id {
reply(env)

} in
send(receiver, maction, id, actual)]]

Recv: [[def D in S]] → def [[D]] in [[D]]Init.[[S]]
Reaction: [[ J{S}]] → [[J ]] � [[S]]
Composition: [[ D F ]] → D ∧ F
Synch: [[ D & F ]] → D|F
Int. Recv: [[ x(y)]] → x〈y〉
Ext. Recv: [[ receive y where E]] → x〈y〉, x is fresh
Contract
Recv:

[[ x(y) where E]] → x〈y〉

Init Reaction: [[J{S}]]Init → [[J ]]Init

Init Comp.: [[D F ]]Init → [[D]]Init.[[F ]]Init

Init Synch: [[D & F ]]Init → [[D]]Init.[[F ]]Init

Init Int. Recv: [[x(y)]]Init → 0
Init Ext Recv: [[receive y where E]]Init → def xtest〈y, t, f〉 � cond〈E, t, f〉 in

subscribe〈x, xtest〉

Init Contract
Recv:

[[x(y) where E]]Init → [[def receive env
where Header/Action = xaction and

E { x(env) } in
· · ·]], for the first occurence of x(y) where E

Fig. 2. Partial semantics by translation into join calculus
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a channel to use for replies. It is the metadata from a contract element that
dictates whether a reply is expected and the SOAP action maction. Correlating
replies involves generating a new message ID, establishing a closure to listen for
incoming messages with a matching message ID, and then sending the message.
We write send for this latter step; send formats a SOAP envelope and sends it
over the network.

Definitions and patterns follow predictable syntactic translation, except for
external message receive which has no parallel in the join calculus. External
message receive is responsible for marshalling SOAP messages received from the
outside world into a GPSL program. This raises the important semantical issue
of precisely what point in a program messages are delivered to. GPSL is more
flexible and powerful than most contemporary programming languages in that
it supports a where clause for filtering incoming messages. This feature is akin to
filtering capabilities in message-oriented middleware and enables, among other
things, to correlate any sent or received message with follow-up messages.

To encode external message receives, we create fresh internal channels and
bind them to the SOAP messaging machinery via a message to subscribe when
the closure is created. subscribe is a global internal channel with a complete
join-calculus definition in Figure 3. This gives a precise semantics to receiving
messages in GPSL: there is no race condition between receiving and sending mes-
sages in a closure as a closure is created, because of the continuation k threaded
through subscribe, which is important for the correctness of closures initiating
conversations; messages are routed into matching closures; concurrently active
receive statements cause a runtime error if they compete for a particular message;
and messages that have no active receive to process them are silently dropped.

There is syntactic sugar for receiving messages from an operation of an im-
plemented contract (Init Ctrct Recv) which includes a test against the SOAP
action specified in the contract. Our translation omits one detail in that the
receive clause constructed for an in-out operation also creates a channel carrying
the reply. The translation in Figure 2 is for an in operation.

def subscribe〈msg,predicate, k〉|subscribers〈f〉�
def g〈x, found, done〉�

def true〈〉 � found〈msg, f〉 in
def false〈〉 � f〈x, found, done〉 in
predicate〈x, true, false〉 in

subscribers〈g〉.k〈〉
∧ external〈env〉|subscribers〈f〉�

subscribers〈f〉|
def done〈〉|single〈msg〉 � msg〈env〉 in
def fail〈msg, k〉 � error in
def found〈msg, k〉 � single〈msg〉.k〈env, fail, done〉 in
f〈env, found, done〉 in

def nil〈x, found, done〉 � done〈〉 in
subscribers〈nil〉

Fig. 3. Join-calculus definition of subscribe
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4 Service Interaction Patterns in GPSL

In this section, we compare GPSL with BPEL by implementing scenarios corre-
sponding to two of the service interaction patterns of [5]. Using the nomenclature
and numbering of [5] we have chosen: one-to-many send/receive (pattern 7), and
contingent requests (pattern 8). We choose not to illustrate patterns 1 to 4 since
they correspond to simple point-to-point interactions and do not put forward
significant differences between GPSL and other service-oriented programming
languages such as BPEL; patterns 5 and 6 are partly subsumed by pattern 7;
pattern 9 makes appeal to similar features as patterns 4 and 7; pattern 10 deals
with transactional issues beyond the scope of GPSL and BPEL; and patterns 11
through 13 deal with interconnecting groups of services rather than implement-
ing individual ones.

4.1 One-to-Many Send-Receive

We consider an interaction pattern where a service sends messages and collects
responses before continuing. In this example we implement a broker service that
solicits bids from a set of bidders, and collects responses, keeping track of the
best (in this example, lowest) bid received. Bids are collected until a time-out
occurs.

declare interface BrokerContract {
declare operation InitiateAuction in action = ’urn:broker:init’;
...

}

declare service Broker implements BrokerContract {
InitiateAuction($env) {

(: solicit bids :)
for $bidder in $env/Bidders do

$bidder: SolicitBid($env/Item, Reply)
done;
OutstandingBids(util:length($env/Bidders));

(: start timer :)
let $timeout := ’soap.inproc://timer’ in
$timeout: Time(10000, TimedOut);

NoBids()
}
OutstandingBids($n) & Reply($bid) & NoBids() {

Winning($bid);
Decrement($n)

}
OutstandingBids($n) & Reply($bid) & Winning($best) {

if xs:decimal($bid/Amount) < xs:decimal($best/Amount) then
Winning($bid)

else
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Winning($best)
end;
Decrement($n)

}
Decrement($n) {

let $n := xs:int($n) - 1 in
if xs:int($n) = 0 then
BiddingFinished()

else
OutstandingBids($n)

end
}
BiddingFinished() & Winning($bid) { (: process winning bid :) }
TimedOut() & Winning($bid) { (: fault or process winning bid :) }
TimedOut() & NoBids() { (: fault :) }
...

}

This program sends n SolicitBid messages. Although the for loop is sequential,
the SolicitBid messages are sent in a non-blocking manner. The first bid received
consumes the NoBids message and becomes the winning bid. Subsequent bids
are compared to the winning bid. Messages OutstandingBids and WinningBid
are used to capture state. They carry data for the number of outstanding bids
and the best bid received. It is possible to check that this service correctly treats
concurrent bids because contention for the WinningBid message acts as a mutual
exclusion.

In previous work [8], we have sketched a more complicated variant of this sce-
nario where the service stops after either receiving the first n-out-of-m responses
or after the time-out, whichever occurs first.

Coding the above scenario in BPEL is complicated by several factors. First,
given that the set of partners to which bid requests are sent is not known in
advance, dynamic addressing is required. In GPSL, this is achieved by treating
channels as first-class citizens. In BPEL, dynamic addressing is possible but re-
quires manual assignment of endpoint references to partner links. Second, BPEL
lacks high-level constructs for manipulating collections. Thus, capturing this sce-
nario requires the use of while loops and additional book-keeping. Third, there
is no direct support in BPEL for interrupting the execution of a block when a
given event (e.g. a timeout) occurs. To achieve this, it is necessary to combine
an event handler with a fault handler, such that the event handler raises a fault
when the nominated event occurs and the fault handler catches this artificially
created fault. This causes the immediately enclosing scope to be stopped. In
GPSL, such interruption can be achieved simply by adding a join pattern that
matches the event in question (in this case, the timeout). Finally, a further com-
plication arises if explicit correlation using correlation sets is necessary. In this
case, the first message needs to be treated differently from the following mes-
sages (at least in BPEL 1.1) since the first message initialises the correlation
set. BPEL pseudo-code for this scenario is given below. The full version of this
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pseudo-code is considerably longer than the corresponding GPSL solution. The
interested reader will find the full BPEL implementation of a similar scenario in
the code repository of the service interaction patterns site.1 This implementa-
tion comprises around 150 lines of BPEL code excluding comments, partly due
to the verbosity of the XML syntax, but also because of the more fundamental
drawbacks of BPEL mentioned above.

set partner link to the address of the first bidder;
send first bid request and initialise correlation set;
while (more partners)

set partner link to the address of next bidder;
send next bid request;

begin scope
onAlarm timeLimit : throw timeoutFault
catch timeoutFault : set flag to indicate time-out
while (not stopCondition)

receive a bid;
update winning bid

end scope
(* process time-out or winning bid *)

4.2 Contingent Requests

In this pattern, a service sends a message and if a response is not received
within a given timeframe, a message is sent to a second service, and so on. If
while waiting for a response from the second service, the first service happens to
respond, this response is accepted and the response from the second service is no
longer needed. This implements a fail-over process. An example of this pattern is
a conference that provides redundant services to accept a paper submission. The
client submits the paper via the first service, and if a response is not received
within ten seconds, it submits the paper via the second service, and so on. Here
is the implementation of the “client” in GPSL.

declare variable $timeout := ’soap.inproc://timer’;
declare interface PaperSubmission {
declare operation Submit in action = ’urn:paper:submit’ out

}
declare service PaperSubmitter {
do {

let $submission-points := element Point { ... }, ... in
let $paper := ... in
Submit($paper, $submission-points)

}
Submit($paper, $submission-points) {

let $uri := $submission-points[1] in
let $submission-points := $submission-points[position()>1] in

1 See code sample “One-to-many send/receive with dynamically determined partners”
at http://www.serviceinteraction.com
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$uri: Submit($paper, Response);
$timeout: Time(10000, TimedOut);
Waiting($paper, $submission-points)

}
Waiting($paper, $submission-points) & Response($doc) { (: success! :) }
Waiting($paper, $submission-points) & TimedOut($doc) {

(: submit to the next server :)
Submit($paper, $submission-points)

}
}

The PaperSubmitter service has knowledge of a list of services that accept
submissions. Submit strips a URI from the head of the list and sets up a race
between Response and TimedOut messages. If a TimedOut message is available
first, PaperSubmitter submits to the next service. After a response is received
from any of the contacted services, PaperSubmitter does not wait for other re-
sponses, unless the code in the “success” block issues a new Waiting message.

This example shows the PaperSubmitter service interacting with a timer ser-
vice at a known URI through Time (an operation to arm the timer) and Timed-
Out (an internal channel that receives time-out messages from the timer). This
timer service does not need to be located outside PaperSubmitter’s memory
space. Our implementation supports an efficient in-process transport for SOAP
messaging, namely soap.inproc. This way, we can extend the language by adding
services implemented in (e.g.) C#, rather than adding new constructs for every
required feature. This is similar to a library, except that GSPL’s library calling
convention is based on messaging rather than function or method calls.

Capturing this example in BPEL in all its details is complicated by two fac-
tors: (i) the lack of direct support for interruptions due to an event as discussed
previously; and (ii) the lack of support for maintaining an a priori unknown
number of conversations in parallel. Indeed, this pattern puts forward a case
where a requester may start a new conversation with a partner, but keep an-
other ongoing conversation alive. There is only one construct in BPEL that
supports an unbounded number of threads to be entertained concurrently: event
handlers. However, using event handlers to capture the scenario at hand leads
to an unintuitive solution. In this solution, the code for submitting a paper to
a given server is embedded in an event handler. To start this event handler for
the first server, the process sends a message to itself. This starts a first instance
of the event handler. This event handler is terminated if a response is received
(to do so, a fault indicating this is thrown). If a time-out occurs within this first
instance of the event handler, the process sends a second message to itself to
activate a second instance of the event handler (without stopping the previous
instance since a late response from the first server may still arrive). This pro-
cess of starting new instances of the event handler continues until a response is
received or all servers have been tried.

The BPEL pseudo-code for this scenario is given below. Again, the full BPEL
code is considerably more verbose, partly due to the need to define and configure
the partner link through which the process sends messages to itself. The full
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BPEL code for a similar scenario available at the serviceinteraction.com site
comprises around 120 lines of code.

responseReceived := false
begin scope
onMessage X :

begin scope
onAlarm timeLimit :

if (more servers) send a message of type X to myself
else throw allServersTimedOut

catch allServersTimedOut: do nothing (* terminates scope *)
catch responseReceived: do nothing (* terminates scope *)
send request to next server and wait for response;
responseReceived := true;
throw responseReceived

end scope
send a message of type X to myself

end scope
if (not responseReceived) (* deal with case where no response received *)

5 Code Generation

We have prototyped a compiler that produces Microsoft Intermediate Language
(MSIL), from GPSL programs. MSIL is similar to Java byte code although dif-
fering from it in various respects. Despite these differences though, our prototype
proves that the feasibility of compiling GPSL for modern virtual machines.

Despite the novelty in the programming language, the compiler operates in
traditional parsing, analysis, and code generation phases. The parser must han-
dle XQuery for expressions. For our prototype we found ignoring XQuery direct
constructors—the angle-brackets syntax for synthesizing XML which require spe-
cial handling of whitespace—greatly simplifies parser development. Because syn-
tactically simpler computed constructors can do the job of direct constructors,
the expressive power of XQuery is unimpeded.

Most of the complexity in the compiler is in the code generator, and specifi-
cally in the creation of closures and in the delivery of messages sent on internal
labels (i.e. messages from a service to itself). For each def we create a class with
a method for each concurrency rule, a field for each captured variable, and a
method and field for each label. This field holds a queue of pending messages;
the method takes a message to that label, tests whether any rules are satisfied,
and if so, calls the method for the rule. We perform the rule testing on the caller
thread and only spawn a thread when a rule is satisfied, which avoids spawning
many threads. The rule testing follows the join calculus semantics and the def-
inition for the subscribe reaction rule given in Figures 2 and 3 for internal and
external messages respectively.

We do not compile XQuery expressions because implementing an XQuery
compiler is a daunting task. Instead we generate code to call an external XQuery
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library at runtime. One critical criterion for the programming language imple-
menter integrating an XQuery implementation is how that XQuery implemen-
tation accepts external variables and provides results. GPSL requires access to
expression results as a sequence of XQuery data model values—which is dis-
tinctly different from an XML document—to behave consistently with XQuery
when those values that are used later in subsequent expressions. We use an in-
teroperability layer over the C API of Galax2, which has exactly the kind of
interface for providing external values and examining results that we want. Our
biggest complaint about Galax is that evaluating expressions must be serialized
because Galax is non-reentrant.

GPSL programs also rely on the Microsoft Web Services Extensions3 (WSE)
for SOAP messaging. WSE has a low-level messaging interface which is suffi-
cient for GPSL’s needs except for the fact that WSE does not support SOAP
RPC/encoded. In the case of synchronous operations, the GPSL compiler gener-
ates some bookkeeping code to make SOAP over synchronous-HTTP work using
the WSE messaging interface.

6 Related Work

Mainstream approaches to web service implementation are based on the use of
Java, C#, and C++ in conjunction with libraries, such as Axis, and metadata
annotations as in JSR181 and Windows Communication Foundation. Putting
aside the mismatch between object-oriented and XML-based data manipula-
tion, this approach has proven fairly suitable for programming point-to-point
service interactions. However, it does not properly serve the requirements of
multilateral interactions, especially those requiring partial synchronisation and
message correlation beyond simple “request-response” scenarios. Message pass-
ing interfaces, like MPI [11], alleviate some of these issues, but even MPI’s scatter
and gather primitives assume barrier synchronisation and message correlation
requires careful programming.

BPEL departs from mainstream web service implementation approaches by
providing an XML data model, a set of message exchange primitives, concur-
rency constructs inspired from workflow languages, and a message correlation
mechanism based on lexically scoped “static” variables. However, while BPEL
supports high-level concurrency and barrier synchronisation constructs for fixed
numbers of threads (for example through the “flow” construct), it does not sup-
port partial synchronisation nor unbounded numbers of threads, and thus, the
expression of patterns such as one-to-many send-receive, multi-responses and
contingent requests is cumbersome. Also, support for message correlation in
BPEL is limited: BPEL’s correlation sets can not be used to capture the type
of correlation required by the one-to-many send-receive pattern.

Similar comments apply to XL, which provides a correlation mechanism suit-
able for 1:1 conversations, but not for 1 : n scenarios. Similarly, XL is suitable for
2 http://www.galaxquery.org
3 http://msdn.microsoft.com/webservices/building/wse



16 D. Cooney, M. Dumas, and P. Roe

barrier synchronisation of conversations but not for partial synchronisation. Fi-
nally, XL relies on in-place updates of XML nodes through extensions to XQuery,
while GPSL adopts a stratified approach where XQuery is only used as an ex-
pression language, orthogonal to the imperative part of the language. A more
detailed comparison of XL and an earlier version of GPSL can be found in [8].

GPSL draws one of its main constructs, concurrency patterns, from the join
calculus. The join calculus has inspired several extensions of object-oriented
programming languages with concurrency features, namely Join Java [12] and
Polyphonic C# [13]. Compared to these languages, GPSL adds XML data ma-
nipulation, messaging and message correlation. An extension to Polyphonic C#,
Cω4, adds XML data manipulation, but retains the legacy object data model
and does not have explicit support for messaging or message correlation.

7 Conclusion

We have presented the syntax and semantics of the GPSL language and illus-
trated its suitability for service implementation using scenarios corresponding to
patterns identified elsewhere. This exercise showed how simple features based on
SOAP messaging, join-calculus style declarative concurrency, and XQuery can
be combined to implement non-trivial patterns of service interaction in a way
that arguably leads to simpler solutions than in BPEL. Also, GPSL’s formal
semantics is much simpler than corresponding semantics of BPEL5 thus provid-
ing a solid basis for program analysis. The compiler implementation of GPSL,
especially with respect to compiling rules with where statements, mirrors the
formal semantics.

GPSL integrates messaging, concurrency, and XML data manipulation cohe-
sively. Examples of the cohesive fit are the interplay between sending messages
and spawning concurrent threads on the one hand, and receiving messages and
synchronising threads on the other; dynamic XML data describing message re-
cipients; concurrency patterns describing thread-safe access to XML data; and
the consistent treatment of inter- and intra-service messages. Sometimes the co-
hesion is imperfect. For example, channels and channel variables can not appear
in arbitrary XQuery expressions. This is a deliberate restriction which provides
a simple way to preserve strong typing for internal message sending, and to con-
trol when an internal channel has to be connected to the machinery for receiving
SOAP messages from the outside world. However channels are reified to XML
when they appear in a WS-A “reply-to” header.

GPSL could be extended to address other difficult aspects of service imple-
mentation such as transactions and faults. We expect to address these areas by
leveraging the messaging and concurrency features, for example, by surfacing
faults as messages. We also plan to introduce a garbage collection technique to
reclaim resources when it is detected that a given message will not be consumed.

4 http://research.microsoft.com/Comega
5 For a semantics of BPEL see e.g. [14].
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