
MSCan – A Tool for Analyzing MSC
Specifications

Benedikt Bollig1, Carsten Kern2, Markus Schlütter3, and Volker Stolz2

1 LSV, CNRS UMR 8643 & ENS de Cachan, France
bollig@lsv.ens-cachan.fr

2 Software Modeling and Verification Group, RWTH Aachen University, Germany
{kern, stolz}@informatik.rwth-aachen.de

3 Department of Process Control Engineering, RWTH Aachen University, Germany
schluetter@plt.rwth-aachen.de

Abstract. We present the tool MSCan, which supports MSC-based
system development. In particular, it automatically checks high-level
MSC specifications for implementability.

1 Introduction

Message Sequence Charts (MSCs) constitute a prominent notion for describing
protocols in the early stages of system development [8]. An MSC depicts a col-
lection of processes, which, in their visual representation, are drawn as vertical
lines and interpreted as time axes. An arrow from one line to a second corre-
sponds to sending and receiving a message. Not only does the MSC standard
allow to specify single scenarios; to make MSCs a flexible specification language,
it also supports choice, concatenation, and iteration, which give rise to high-level
MSCs. Consider Fig. 1: the MSCs M1, M2, and M3 are the building blocks of
the high-level MSC G, which generates scenarios such as the MSC M .

A high-level MSC specification permits a global view of a distributed system,
whereas the future implementation thereof will usually be controlled locally by
rather autonomous processes. Due to this inherent discrepancy, a preliminary
high-level MSC specification might not be suitable for an implementation and
often requires further refinement and adjustment steps. If, for example, the spec-
ification admits some global system behavior where the choice of two alternatives
can be triggered by independent processes, inconsistent (local) decisions might
lead the system into a deadlock. This phenomenon is known as non-local choice
[2]. Otherwise, the high-level MSC from Fig. 1 has the local-choice property: the
only choice point is entirely under the control of process 2.

A system specification with the local-choice property can always be realized
by a deadlock-free distributed implementation. Other requirements ensuring im-
plementability with various characteristics are local cooperativity, global coop-
erativity, and regularity [5, 7]. Last but not least, high-level MSCs with above-
mentioned properties come along with decidable model-checking problems for
further analyses that, in general, are undecidable [1, 5].

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 455–458, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

456 B. Bollig et al.

Fig. 1. A (local-choice) high-level MSC

2 The Tool MSCan

MSCan supports the system development based on high-level MSCs. It auto-
matically checks a high-level MSC specification for (several variants of) local
choice, local and global cooperativity, as well as regularity and many other rea-
sonable requirements to draw conclusions about implementability, consistency,
and decidable model-checking problems. Moreover, MSCan offers numerous fea-
tures for editing, displaying, and debugging high-level MSCs. It converts an ITU
Z.120 textual description of a high-level MSC specification into a graph structure
that naturally reflects choice, concatenation, and iteration. Based on the internal
graph representation, MSCan applies graph algorithms to explore the specifi-
cation and to detect global control structures that do not allow an embedding
into a locally controlled implementation.

Note that high-level MSCs, in their basic form, are only capable of specifying
finitely generated behavior [7]. To overcome those drawbacks and to be able
to specify non finitely generated behavior such as the alternating-bit protocol,
compositional high-level MSCs have been introduced by Gunter et al. [6]. We
would like to stress that, in all aspects, our tool supports this extension, which
enjoys many nice properties and increasing popularity [4].

2.1 Graphical User Interface

To grant the user a maximum degree of comfort, the graphical user interface is
partitioned into four main components (cf. Fig. 2). The upper part of the GUI
is taken by the menu component of the tool (1). It offers facilities to create,
load, and save MSC documents and to change the level of detail and the mode
of analysis (e.g., lazy evaluation). Moreover, the menu allows to select a single
high-level MSC property as well as grouping several properties together.

Further features that are controlled via the menu component of MSCan are:
(i) processing the MSC document and displaying its graph structure in the
graph component of the GUI, (ii) displaying the properties of the currently

MSCan – A Tool for Analyzing MSC Specifications 457

Fig. 2. An MSCan Session

selected high-level MSC that have been detected so far, and (iii) checking direc-
tories recursively for high-level MSCs, executing all tests currently supported by
the tool, and creating a text or HTML output containing the results of the
analysis. The left component (2) may be used for editing MSC documents.
Herein, the user can specify the system behavior to be analyzed as well as
alter faulty specifications to eventually converge to a protocol that exhibits
exactly the desired properties. Label (3) is associated with the graph com-
ponent of MSCan, in which the high-level MSC under consideration can be
displayed. It allows the user to zoom in and out partial behavior as well as
clicking onto nodes to depict the associated MSCs. The fourth component (4)
is addressed to the analysis output of a test execution providing the user with
counter examples, which may be used for debugging and system refinement.
It displays test results and calls the user’s attention to potential conflicts or
inconsistencies in the protocol specification. Additionally, it eases the protocol
designer’s task of ruling out errors by visualizing high-level MSC components
like nodes, edges, paths and all kinds of graphs (e.g., channel and communica-
tion graphs). This guides the user and substantially reduces her effort to detect
faulty or inconsistent system behavior. For further screenshots and a more elab-
orate feature description, the reader may visit the web page of MSCan located
at [11].

458 B. Bollig et al.

2.2 General Information

MSCan is written in Java 1.5 using the Java graph visualization package Grappa
[10] and the parser MSC2000 [9]. It consists of a console application started by
the class MSCExecute of the homonymous package and of a concise, interactive
graphical user interface. We developed the tool in a highly modular manner to
ease the integration of high-level MSC properties, analysis components, and the
graphical user interface. Instructions on how to extend the collection of currently
available properties can be found on the web page of the tool. We also offer a
web interface and a collection of predefined sample high-level MSCs to test the
basic features of the tool online [11].

3 Conclusion and Future Work

To our knowledge, there is no other tool that provides a protocol designer with
a likewise great variety of facilities to analyze high-level MSCs. Another project
is [3], which, in contrast to our tool, checks exclusively for the non-local choice
property. Moreover, it requires a high-level MSC to be in a normal form, de-
manding additional effort from the protocol designer.

MSCan is currently being enhanced to integrate a subsequent implementation
phase to automatically derive implementations from high-level MSCs. As a first
step in that direction, we are developing a code generation back-end, which emits
out-of-the-box compilable Java code from MSC documents [12].

References

1. R. Alur and M. Yannakakis. Model checking of message sequence charts. In
CONCUR 1999, volume 1664 of LNCS. Springer, 1999.

2. H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and non-
local choice in message sequence charts. In TACAS 1997, volume 1217 of LNCS.
Springer, 1997.

3. H. Ben-Abdallah and S. Leue. Mesa: Support for scenario-based design of concur-
rent systems. In TACAS 1998, volume 1384 of LNCS. Springer, 1998.

4. B. Genest. Compositional message sequence charts (CMSCs) are better to imple-
ment than MSCs. In TACAS 2005, volume 3340 of LNCS. Springer, 2005.

5. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level MSCs:
Model-checking and realizability. In ICALP 2002, volume 2380 of LNCS. Springer,
2002.

6. E. Gunter, A. Muscholl, and D. Peled. Compositional message sequence charts. In
TACAS 2001, volume 2031 of LNCS. Springer, 2001.

7. J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. S. Thiagarajan. On
message sequence graphs and finitely generated regular MSC languages. In ICALP
2000, volume 1853 of LNCS. Springer, 2000.

8. ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99), 1999.
9. H. Neukirchen. MSC2000 Parser. CS Dept., University of Göttingen.

10. Grappa (Version 1.2). http://www.research.att.com/~john/Grappa/.
11. MSCan. http://www-i2.informatik.rwth-aachen.de/MSCan/.
12. MSC Execute. http://www-i2.informatik.rwth-aachen.de/MSCExecute/.

	Introduction
	The Tool $\sc MSCan$
	Graphical User Interface
	General Information

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

