
Model-Checking Markov Chains in the Presence
of Uncertainties

Koushik Sen, Mahesh Viswanathan, and Gul Agha

Department of Computer Science,
University of Illinois at Urbana-Champaign
{ksen, vmahesh, agha}@uiuc.edu

Abstract. We investigate the problem of model checking Interval-valued
Discrete-time Markov Chains (IDTMC). IDTMCs are discrete-time finite
Markov Chains for which the exact transition probabilities are not known. In-
stead in IDTMCs, each transition is associated with an interval in which the ac-
tual transition probability must lie. We consider two semantic interpretations for
the uncertainty in the transition probabilities of an IDTMC. In the first interpre-
tation, we think of an IDTMC as representing a (possibly uncountable) family of
(classical) discrete-time Markov Chains, where each member of the family is a
Markov Chain whose transition probabilities lie within the interval range given
in the IDTMC. This semantic interpretation we call Uncertain Markov Chains
(UMC). In the second semantics for an IDTMC, which we call Interval Markov
Decision Process (IMDP), we view the uncertainty as being resolved through
non-determinism. In other words, each time a state is visited, we adversarially
pick a transition distribution that respects the interval constraints, and take a
probabilistic step according to the chosen distribution. We show that the PCTL
model checking problem for both Uncertain Markov Chain semantics and Inter-
val Markov Decision Process semantics is decidable in PSPACE. We also prove
lower bounds for these model checking problems.

1 Introduction

Discrete time stochastic models such as Discrete Time Markov Chains (DTMCs)
have been used to analyze the correctness, reliability, and performance of systems
[8, 11, 19, 13]. In a DTMC, the system is assumed to have finitely many states, and
the system’s future behavior is completely determined by its current state. From each
state of the system, the probability of transitioning to any other given state at the next
step is fixed and is given by the transition probability matrix of the DTMC.

The assumption that the system makes transitions according to a fixed distribution
at each step and that this distribution is precisely known when modeling, is a strong
assumption that may often not hold in practice [12, 15, 26, 14]. If the system being
modeled is an open system, i.e., interacts with an environment, then uncertainty in the
transitions may arise due to imperfect information about the environment. For example,
consider a system that interacts with an imperfect communication medium that may lose
messages. The probability of message loss may either depend on choice of the commu-
nication medium or on a complicated, time-varying dependence on events that are not

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 394–410, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Model-Checking Markov Chains in the Presence of Uncertainties 395

precisely understood at the time of modeling the system. Another source of impreci-
sion is that the transition probabilities in the system model are often estimated through
statistical experiments, which only provide bounds on the transition probabilities.

In order to faithfully capture these system uncertainties in stochastic models, the
model of Interval-valued Discrete-time Markov Chains (IDTMC) has been introduced
[12, 14]. These are DTMC models where the exact probability of taking a state transi-
tion is not known, and instead the transition probability is assumed to lie within a range
associated with the transition. Two semantic interpretations have been suggested for
such models. Uncertain Markov Chains (UMC) [12] is an interpretation of an IDTMC
as a family of (possibly uncountably many) DTMCs, where each member of the fam-
ily is a DTMC whose transition probabilities lie within the interval range given in the
IDTMC. In the second interpretation, called Interval Markov Decision Process (IMDP),
we view the uncertainty as being resolved through non-determinism. In other words,
each time a state is visited, we adversarially pick a transition distribution that respects
the interval constraints, and take a probabilistic step according to the chosen distribu-
tion. Thus, IMDPs allow the possibility of modeling a non-deterministic choice made
from a set of (possibly) uncountably many choices. An IMDP can be seen as a general-
ization of Markov Decision Processes (MDPs) [17, 3, 21].

We investigate the problem of model checking PCTL specifications for IDTMC.
The two semantic interpretations of IDTMCs yield very different model checking re-
sults (whenever the property has at least two probabilistic operators, not necessarily
nested; see example in Figure 1) and require different algorithmic techniques. For the
case of UMCs, we show that PCTL model checking problem can be reduced to find-
ing feasible solutions to inequality constraints, much like in the case of DTMC and
MDP [8, 4, 3, 19, 7]. However, there is one important difference. The constraints to be
solved in the case of UMCs are polynomial and not just linear (as for DTMCs and
MDPs). Since the existential theory of reals is decidable in PSPACE [18, 6], the feasi-
bility of the polynomial constraints arising in model checking, can be determined by
making a “query” to the existential theory of reals. Thus, the PCTL model checking
problem for UMCs is in PSPACE. In practice, however, this algorithm may not be the
most efficient. The constraints we obtain during model checking all take a special form:
the polynomials are bilinear1. Therefore, it might be more efficient to instead use algo-
rithms for solving bilinear matrix inequalities (BMIs) [10, 9] or tools developed for this
purpose [16]. Checking feasibility of BMIs is known to be NP-hard [24], but the exact
complexity, which is lower than PSPACE, is unknown. On the other hand, in the case
of IMDPs, we show that the model checking problem can be reduced to model check-
ing an MDP of exponential size. We then use known results for MDPs to show that
IMDPs can be model checked in PSPACE. We also present an iterative model checking
algorithm for IMDPs which may prove to be more efficient in practice.

In addition to demonstrating the decidability of the model checking problem, we also
prove lower bounds on the complexity of the model checking problem. We show that
the model checking problem for UMCs is NP-hard and co-NP-hard; thus, for UMCs the
problem is unlikely to be in P. A straightforward corollary of our results is that solving

1 The highest power of any variable in the polynomial is 1, and any term is the product of at
most two variables.

396 K. Sen, M. Viswanathan, and G. Agha

BMIs is also co-NP-hard. For IMDPs, we can only show P-hardness; in fact, even this
is a consequence of the P-hardness of (classical) DTMC model checking.

The rest of the paper is organized as follows. We briefly discuss related work next.
In Section 2 we formally define IDTMC and give its semantics as UMC and IMDP.
PCTL and the model checking problem is introduced in Section 3. We then revisit the
model checking algorithm for DTMC (Section 4) and present a modified version of the
classical algorithm. The ideas in the section play a key role in our UMC model checking
algorithm. Section 5 (UMC) and Section 6 (IMDP) contain our main results about the
model checking problem, providing both upper and lower bounds. Finally we present
our conclusions in Section 7. Due to lack of space, we do not present any proofs here;
all proofs including motivating examples of UMCs and IMDPs can be found in [23].

Related Work. The model of IDTMCs has been introduced independently by Jons-
son and Larsen [12] and Kozine and Utkin [14] under the names interval specification
systems and interval-valued finite Markov chains, respectively. However, they consider
different semantic interpretations. Jonsson and Larsen consider the UMC interpreta-
tion and study bisimulation and simulation preorders for such an interpretation. Kozine
and Utkin, on the other hand, take the IMDP interpretation and present algorithms to
compute the probability distribution on the states after t steps. Neither of these papers
investigate the PCTL model checking problem which is the focus of this paper. We
introduce new names to emphasize the subtle semantic difference in the two interpreta-
tions. A more general model called generalized Markov processes for describing infinite
families of Markov Chains was introduced in [1]. In that paper, they showed that model
checking such models with respect to PCTL∗ (a more general logic than PCTL) is de-
cidable and has elementary complexity. PCTL model checking for classical DTMC and
MDP models has been considered in [8, 4, 3, 19, 7].

2 Formal Models

Definition 1. A discrete-time Markov chain (DTMC) is a 4-tuple M = (S, sI ,P, L),
where

1. S is a finite set of states,
2. sI ∈ S is the initial state,
3. P : S ×S → [0, 1] is a transition probability matrix, such that

∑
s′∈S P(s, s′) = 1,

and
4. L : S → 2AP is a labeling function that maps states to sets of atomic propositions

from a set AP.

A non-empty sequence π = s0s1s2 · · · is called a path of M, if each si ∈ S and
P(si, si+1) > 0 for all i ≥ 0. We denote the ith state in a path π by π[i] = si. We let
Path(s) be the set of paths starting at state s. A probability measure on paths is induced
by the matrix P as follows.

Let s0, s1, . . . , sk ∈ S with P(si, si+1) > 0 for all 0 ≤ i < k. Then C(s0s1 . . . sk)
denotes a cylinder set consisting of all paths π ∈ Path(s0) such that π[i] = si (for
0 ≤ i ≤ k). Let B be the smallest σ-algebra on Path(s0) which contains all the cylinders
C(s0s1 . . . sk). The measure µ on cylinder sets can be defined as follows

Model-Checking Markov Chains in the Presence of Uncertainties 397

µ(C(s0s1 . . . sk)) =
{

1 if k = 0
P(s0, s1) · · ·P(sk−1, sk) otherwise

The probability measure on B is then defined as the unique measure that agrees with
µ (as defined above) on the cylinder sets.

Definition 2. An Interval-valued Discrete-time Markov chain (IDTMC) is a 5-tuple
I = (S, sI , P̌, P̂, L), where

1. S is a finite set of states,
2. sI ∈ S is the initial state,
3. P̌ : S × S → [0, 1] is a transition probability matrix, where each P̌(s, s′) gives the

lower bound of the transition probability from the state s to the state s′,
4. P̂ : S × S → [0, 1] is a transition probability matrix, where each P̂(s, s′) gives the

upper bound of the transition probability from the state s to the state s′,
5. L : S → 2AP is a labeling function that maps states to sets of atomic propositions

from a set AP.

We consider two semantics interpretations of an IDTMC model, namely Uncertain
Markov Chains (UMC) and Interval Markov Decision Processes (IMDP).

Uncertain Markov Chains. An IDTMC I may represent an infinite set of DTMCs,
denoted by [I], where for each DTMC (S, sI ,P, L) ∈ [I] the following is true,

– P̌(s, s′) ≤ P(s, s′) ≤ P̂(s, s′) for all pairs of states s and s′ in S

In the Uncertain Markov Chains semantics, or simply, in the UMCs, we assume that the
external environment non-deterministically picks a DTMC from the set [I] at the be-
ginning and then all the transitions take place according to the chosen DTMC. Note that
in this semantics, the external environment makes only one non-deterministic choice.
Henceforth, we will use the term UMC to denote an IDTMC interpreted according to
the Uncertain Markov Chains semantics.

Interval Markov Decision Processes. In the Interval Markov Decision Processes se-
mantics, or simply, in the IMDPs, we assume that before every transition the external
environment non-deterministically picks a DTMC from the set [I] and then takes a one-
step transition according to the probability distribution of the chosen DTMC. Note that
in this semantics, the external environment makes a non-deterministic choice before ev-
ery transition. Henceforth, we will use the term IMDP to denote an IDTMC interpreted
according to the Interval Markov Decision Processes semantics. We now formally de-
fine this semantics.

Let Steps(s) be the set of probability density functions over S defined as follows:

Steps(s) = {µ : S → R
≥0 |

∑

s′∈S

µ(s′) = 1 and P̌(s, s′) ≤ µ(s′) ≤ P̂(s, s′) for all s′ ∈ S}

In an IMDP, at every state s ∈ S, a probability density function µ is chosen non-
deterministically from the set Steps(s). A successor state s′ is then chosen according to
the probability distribution µ over S.

398 K. Sen, M. Viswanathan, and G. Agha

A path π in an IMDP I = (S, sI , P̌, P̂, L) is a non-empty sequence of the form
s0

µ1→ s1
µ2→ . . ., where si ∈ S, µi+1 ∈ Steps(si), and µi+1(si+1) > 0 for all i ≥ 0.

A path can be either finite or infinite. We use πfin to denote a finite path. Let last(πfin)
be the last state in the finite path πfin. As in DTMC, we denote the ith state in a path
π by π[i] = si. We let Path(s) and Pathfin(s) be the set of all infinite and finite paths,
respectively, starting at state s. To associate a probability measure with the paths, we
resolve the non-deterministic choices by an adversary, which is defined as follows:

Definition 3. An adversary A of an IMDP I is a function mapping every finite path πfin
of I onto an element of the set Steps(last(πfin)). Let AI denote the set of all possible ad-
versaries of the IMDP I. Let PathA(s) denote the subset of Path(s) which corresponds
to A.

The behavior of an IMDP I = (S, sI , P̌, P̂, L) under a given adversary A is purely
deterministic. The behavior of a IMDP I from a state s can be described by an infinite-
state DTMC MA = (SA, sA

I ,PA, LA) where

– SA = Pathfin(s),
– sA

I = s, and

– PA(πfin, π′
fin) =

{

A(πfin)(s′) if π′
fin is of the form πfin

A(πfin)→ s′

0 otherwise

There is a one-to-one correspondence between the paths of MA and PathA(s) of I.
Therefore, we can define a probability measure ProbA

s over the set of paths PathA(s)
using the probability measure of the DTMC MA.

3 Probabilistic Computation Tree Logic (PCTL)

In this paper we consider a sub-logic of PCTL that excludes the steady-state probabilis-
tic operators. The formal syntax and semantics of this logic is as follows.

PCTL Syntax

φ ::= true | a | ¬φ | φ ∧ φ | P��p(ψ)
ψ ::= φ U φ | Xφ

where a ∈ AP is an atomic propositions, �� ∈ {<, ≤, >, ≥}, p ∈ [0, 1], and k ∈ N.
Here φ represents a state formula and ψ represents a path formula.

PCTL Semantics for DTMC

The notion that a state s (or a path π) satisfies a formula φ in a DTMC M is denoted
by s |=M φ (or π |=M φ), and is defined inductively as follows:

s |=M true
s |=M a iff a ∈ L(s)
s |=M ¬φ iff s �|=M φ
s |=M φ1 ∧ φ2 iff s |=M φ1 and s |=M φ2

s |=M P��p(ψ) iff Prob{π ∈ Path(s) | π |=M ψ} �� p
π |=M Xφ iff π[1] |=M φ
π |=M φ1 U φ2 iff ∃i ≥ 0 (π[i] |=M φ2 and ∀j < i. π[j] |=M φ1)

Model-Checking Markov Chains in the Presence of Uncertainties 399

Fig. 1. Example IDTMC and
PCTL formula φ. The UMC
interpretation of the IDTMC
satisfies φ, whereas the IMDP
interpretation of the IDTMC
violates φ.

s |= true
s |= a iff a ∈ AP(s)
s |= ¬φ iff s �|= φ
s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= P��p(ψ) iff ProbA
s ({π ∈ PathA(s) | π |= ψ}) �� p

for all A ∈ A
π |= Xφ iff π[1] |= φ
π |= φ1 U φ2 iff ∃i ≥ 0 (π[i] |= φ2 and ∀j < i. π[j] |=φ1)

Fig. 2. PCTL semantics for IMDP

It can shown that for any path formula ψ and any state s, the set {π ∈ Path(s) |
π |=M ψ} is measurable [25]. A formula P��p(ψ) is satisfied by a state s if Prob[path
starting at s satisfies ψ] �� p. The path formula Xφ holds over a path if φ holds at the
second state on the path. The formula φ1 U φ2 is true over a path π if φ2 holds in some
state along π, and φ holds along all prior states along π.

Given a DTMC M and a PCTL state formula φ, M |= φ iff sI |=M φ.

PCTL Semantics for UMC

Given a UMC I and a PCTL state formula φ, we say I |= φ iff, for all M ∈ [I],
M |= φ. Note that I �|= φ does not imply that I |= ¬φ. This because if I �|= φ, there
may exist M, M′ ∈ [I] such that M |= φ and M′ |= ¬φ.

PCTL Semantics for IMDP

The interpretation of a state formula and a path formula of PCTL for IMDPs is same as
for DTMCs except for the state formulas of the form P��p(ψ).

The notion that a state s (or a path π) satisfies a formula φ in a IMDP I is denoted
by s |= φ (or π |= φ), and is defined inductively in Figure 2.

The model checking of IDTMC with respect to the two semantics can give different
results. For example, consider the IDTMC in Figure 1 and the PCTL formula φ. The
UMC semantics of this IDTMC satisfies φ, while the IMDP semantics violates φ.

4 Revisiting DTMC Model-Checking

In this section we outline the basic model checking algorithm for (classical) DTMCs.
The algorithm that we outline here for DTMCs is not the most efficient (like the one
presented in [8]); however the main ideas presented here will form the crux of our model
checking algorithm for UMCs.

400 K. Sen, M. Viswanathan, and G. Agha

The algorithm for model checking DTMCs will reduce the problem to checking the
feasibility of simultaneously satisfying a finite set of polynomial inequalities. This fea-
sibility test can be done by checking if a first-order formula with existential quantifiers
about the real numbers is true. More precisely, we need to check if a formula of the
form ∃x1, . . . , xnP (x1, . . . , xn) is valid over the reals, where P is a boolean function
of atomic predicates of the form fi(x1, . . . , xn) �� 0, where fi is a multivariate poly-
nomial and ��∈ {=, �=, ≤, ≥, <, >}. It is well-known that this problem can be decided
in PSPACE [18, 6] 2.

The model checking algorithm for DTMC takes a DTMC M = (S, sI ,P, L) and a
PCTL formula φ as input. The output is the set Sat(φ) = {s ∈ S | s |=M φ}, i.e., the
set of all states of the model that satisfy φ. We say M |= φ iff sI ∈ Sat(φ).

The algorithm works by recursively computing the set Sat(φ′) for each sub-formula
φ′ of φ as follows.

Sat(true) = S Sat(a) = {s | a ∈ L(S)}
Sat(¬φ) = S \ Sat(φ) Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

Sat(P��p(ψ)) = {s ∈ S | ps(ψ) �� p}

where ps(ψ)=Prob{π∈Path(s) |π |=M ψ}. The computation of the set Sat(P��p(ψ))
requires the computation of ps(ψ) at every state s ∈ S.

If ψ = Xφ, then ps(ψ) =
∑

s′∈Sat(φ) P(s, s′).
To compute ps(φ1 U φ2), we first split the set of states S into three disjoint subsets,

Sno, Syes, and S? where Sno = Sat(¬φ1 ∧ ¬φ2), Syes = Sat(φ2), and S? =
S \ (Sno ∪ Syes). Moreover, let S?no be the set {s | ps(φ1 U φ2) = 0} \ Sno and
S>0 be the set {s | ps(φ1 U φ2) > 0}. Note that S = S>0 ∪ S?no ∪ Sno. By [8],
{xs = ps(φ1 U φ2) | s ∈ S} is a solution of the following linear equation system.

xs =

⎧
⎨

⎩

0 if s ∈ Sno

1 if s ∈ Syes
∑

s′∈S P(s, s′)xs′ if s ∈ S?
(1)

Note that the equation system (1) can have infinite number of solutions. For example,
consider the formula true U a, where a is an atomic proposition and the DTMC M =
({s}, s,P, L), where P(s, s) = 1 and L(s) = ∅. Note that s ∈ S?no. The linear
equation system (1) that is instantiated for computing ps(true U a) for M is xs = xs.
The system has infinite number of solutions.

We can ensure that {xs = ps(φ1 U φ2) | s ∈ S} is a unique solution of a system
of equations as follows. Fix a γ such that 0 < γ < 1. Consider the following linear
equation system.

x′
s =

⎧
⎨

⎩

0 if s ∈ Sno

1 if s ∈ Syes
∑

s′∈S γP(s, s′)x′
s′ if s ∈ S?

(2)

2 If one takes the computational model to be Turing machines, then this result holds when the
coefficients of the polynomials are rationals. One the other hand, if one considers a model of
computation that is appropriate for real number computation, like the one proposed by Blum,
Shub, and Smale [5], then the algorithm can handle even real coefficients.

Model-Checking Markov Chains in the Presence of Uncertainties 401

Lemma 1. x′
s > 0 iff s ∈ S>0.

Lemma 2. The system of linear equations in (2) has a unique solution.

Lemma 3. x′
s = 0 iff s ∈ S?no ∪ Sno.

Consider the following system of constraints.

x′
s = 0 iff xs = 0 for all s ∈ S (3)

where x′
s are variables of (2) and xs are variables of (1).

Lemma 4. The system of linear equations in (1) and (2) has a unique solution given
that the constraints in (3) hold. Moreover, for this unique solution xs = ps(φ1 U φ2),
for all s ∈ S.

Note that the set of constraints (1), (2), and (3) can be written compactly as follows.

xs =

⎧
⎨

⎩

0 if s ∈ Sno

1 if s ∈ Syes
∑

s′∈S P(s, s′)xs′ if s ∈ S?
x′

s =

⎧
⎨

⎩

0 if s ∈ Sno

1 if s ∈ Syes
∑

s′∈S γP(s, s′)x′
s′ if s ∈ S?

(4)

δs > 0 xs = δsx
′
s

where for each s ∈ S, we introduce the variable δs, such that we can impose the con-
straint that xs = 0 iff x′

s = 0. The satisfiability of the set of constraints (4) can be easily
reduced to checking if a formula with existential quantifiers belongs to the theory of re-
als. The constructed formula is linear in the size of the DTMC.

5 Model Checking UMC

In this section, we reduce the problem of model-checking a UMC to checking the feasi-
bility of a bilinear matrix inequality. (More details about bilinear matrix inequality can
found in [23].) In the non-trivial reduction, we introduce a number of auxiliary variables
to achieve the goal. Note that a simpler PSPACE algorithm, which avoids the extra aux-
iliary variables by guessing their values non-deterministically, is possible and is easy
to come up from our reduction. However, we believe that the following reduction is
important from the perspective of implementation in practice using algorithms to solve
bilinear matrix inequalities (BMIs).

Given a UMC I and a PCTL state formula φ, our goal is to check whether I |=
φ. In other words, for every M ∈ [I], M |= φ. Thus, to check whether I |= φ,
we check if there exists some M ∈ [I] such that M |= ¬φ. If such an M does
not exist, we conclude that I |= φ. We will view the problem of discovering whether
a M ∈ [I] satisfies ¬φ as problem of checking the feasibility of a set of bilinear
inequality constraints as follows. Each transition probability of the DTMC M that we
are searching for, will be a variable taking a value within the bounds. We will also have
variables denoting the satisfaction (or non-satisfaction) of each subformula at each state,
and variables denoting the probability of a path subformula being satisfied at each state.
Inequality constraints on these variables will ensure that they all have consistent values.
We now describe this construction formally.

402 K. Sen, M. Viswanathan, and G. Agha

Let us fix an UMC I =(S, sI , P̌, P̂, L) and a PCTL formula φ. Let M=(S, sI ,P, L)
be an arbitrary Markov chain in [I].

For every pair of states s, s′ ∈ S, let the variable pss′ denote the transition proba-
bility from s to s′ in M, i.e., pss′ denotes P(s, s′). Since M is an arbitrary DTMC in
[I], by the definition of UMC, the following constraints hold: For every state s ∈ S,
∑

s′∈S pss′ = 1 and for every pair of states s, s′ ∈ S, P̌(s, s′) ≤ pss′ ≤ P̂(s, s′).
Given any PCTL formula φ, let us define the set subfS(φ) (of state sub-formulas)

recursively as follows:
subfS(a) = {a} subfS(¬φ) = {¬φ} ∪ subfS(φ)

subfS(φ1 ∧ φ2) = {φ1 ∧ φ2} ∪ subfS(φ1) ∪ subfS(φ2) subfS(P��p(ψ)) = {P��p(ψ)} ∪ subfS(ψ)
subfS(φ1 U φ2) = subfS(φ1 ∧ ¬φ2) subfS(Xφ) = subfS(φ)

Given a state s ∈ S and any formula φ′ ∈ subfS(φ), either s |=M φ′ or s �|=M φ′.
For each s ∈ S and each φ′ ∈ subfS(φ), let the variable tφ

′

s be such that tφ
′

s = 1
iff s |=M φ′; and, tφ

′

s = 0 iff s �|=M φ′. Following the definition of the various
logical operators in PCTL, we can set up a set of constraints among these variables
such that for any M ∈ [I], the values taken by these variables is consistent with their
intended semantic interpretation. We introduce the following additional variables to
aid in setting up these constraints. For every state s ∈ S and φ′ ∈ subfS(φ), let the
auxiliary variables fφ′

s , and uφ′

s be such that tφ
′

s = 1 ⇐⇒ fφ′

s = 0 ⇐⇒ uφ′

s = 1
and tφ

′

s = 0 ⇐⇒ fφ′

s = 1 ⇐⇒ uφ′

s = −1 Clearly, tφ
′

s , fφ′

s , and uφ′

s are related by
the following set of constraints:

tφ′
s fφ′

s = 0 tφ′
s + fφ′

s = 1 2tφ′
s = uφ′

s + 1

For every formula φ′ ∈ subfS(φ) of the form P��p(ψ) and for every state s ∈ S, let
pψ

s be the variable such that pψ
s denotes Prob{π ∈ Path(s) | π |=M ψ} in M.

For each state s ∈ S and for each φ′ ∈ subfS(φ) exactly one of the following
constraints hold depending on the form of φ′:

tφ′
s = 1 if φ′ = a ∈ L(s) tφ′

s = 0 if φ′ = a �∈ L(s)
tφ′
s = 1 − tφ1

s if φ′ = ¬φ1 tφ1
s tφ2

s = tφ′
s if φ′ = φ1 ∧ φ2

uφ′
s pψ

s ≥ uφ′
s p + δfφ′

s if φ′ = P≥p(ψ) uφ′
s pψ

s ≥ uφ′
s p + δtφ′

s if φ′ = P>p(ψ)
uφ′

s pψ
s + δfφ′

s ≤ uφ′
s p if φ′ = P≤p(ψ) uφ′

s pψ
s + δtφ′

s ≤ uφ′
s p if φ′ = P<p(ψ)

where δ is slack variable that is required to be strictly greater than 0.
Note that the above constraints do not reflect the fact that for each φ′ ∈ subfS(φ)

of the form P��p(ψ), pψ
s denotes Prob{π ∈ Path(s) | π |=M ψ}. To set up such

constraints, we introduce the set subfP(φ) (of path sub-formulas) as follows:

subfP(a) = ∅ subfP(¬φ) = subfP(φ)
subfP(φ1 ∧ φ2) = subfP(φ1) ∪ subfP(φ2) subfP(P��p(ψ)) = {ψ} ∪ subfP(ψ)
subfP(φ1 U φ2) = subfP(φ1) ∪ subfP(φ2) subfP(Xφ) = subfP(φ)

Thus for all sub-formula of φ of the form P��p(ψ), subfP(φ) contains ψ.
For any ψ ∈ subfP(φ) of the form Xφ1 and for each s ∈ S the following constraint

holds:
pψ

s =
∑

s′∈S

pss′ tφ1
s′

Model-Checking Markov Chains in the Presence of Uncertainties 403

For each ψ ∈ subfS(φ) of the form φ1 U φ2 and s ∈ S the following constraints
hold.

pψ
s = tφ2

s + tφ1∧¬φ2
s wψ

s wψ
s =

∑

s′∈S

pss′pψ
s

As in simple DTMC, if we consider the above constraints only, then we may not have
unique solution for certain pψ

s . Therefore, we fix a γ such that 0 < γ < 1. Then, as in
simple DTMC model-checking, for each ψ ∈ subfP(φ) of the form φ1 U φ2 and s ∈ S,
we introduce the variables p

′ψ
s and w

′ψ
s , such that the following constraints hold.

p
′ψ
s = tφ2

s + tφ1∧¬φ2
s w

′ψ
s w

′ψ
s = γ

∑

s′∈S

pss′p
′ψ
s

We want pψ
s = 0 if p

′ψ
s = 0. To ensure this, for each ψ ∈ subfP(φ) of the form

φ1 U φ2 and s ∈ S, we introduce the auxiliary variable δψ
s and ensure that the following

constraint hold.

δψ
s > 0 pψ

s = δψ
s p

′ψ
s

Let V (I, φ) = {δ} ∪
⋃

s,s′∈S{pss′} ∪
⋃

s∈S,φ′∈subfS(φ){tφ
′

s , fφ′

s , uφ′

s } ∪
⋃

s∈S,ψ∈subfP(φ){pψ
s , wψ

s , p
′ψ
s , w

′ψ
s , δψ

s } denote the set of variables over which the

above constraints are described and let C(I, φ) denote the above set of constraints.

Lemma 5. For every solution I : V (I, φ) → R of C(I, φ), there exists a DTMC M =
(S, sI ,P, L) ∈ [I] such that the following holds:

1. I(pss′) = P(s, s′) for any s, s′ ∈ S
2. tφ

′

s , fφ′

s ∈ {0, 1} and uφ′

s ∈ {−1, 1} for any s ∈ S and φ′ ∈ subfS(φ)
3. tφ

′

s = 1 ∧ fφ′

s = 0 ∧ uφ′

s = 1 iff s |=M φ′ for any s ∈ S and φ′ ∈ subfS(φ)
4. tφ

′

s = 0 ∧ fφ′

s = 1 ∧ uφ′

s = −1 iff s |=M φ′ for any s ∈ S and φ′ ∈ subfS(φ)
5. pψ

s = Prob{π ∈ Path(s) | π |=M ψ} for any ψ ∈ subfP(φ)

The proof follows from the observations made while setting up the constraints. An
immediate consequence of the Lemma 5 is the following theorem.

Theorem 1. If there exists a solution I of C(I, φ) such that I(tφsI
) = 1, then there

exists an M ∈ [I] such that M |= φ.

In order to check if I |= φ, the model checking algorithm sets up the constraints
C(I, ¬φ) and checks its feasibility. Clearly, checking the feasibility of C(I, ¬φ) is
equivalent to checking if a sentence with existential quantifiers is valid for the reals;
the size of the sentence is polynomial in the size of the UMC. However, the constraints
C(I, ¬φ) are bilinear constraints, and we need to satisfy the conjunction of all these
constraints (not an arbitrary boolean function). The feasibility of such constraints can
be more efficiently checked viewing them as bilinear matrix inequalities (BMIs) for
which algorithms [10, 9] and tools [16] have been developed. (More details can seen
in [23].) We also observe that to prove that the model checking problem can be solved
in PSPACE, we could have constructed a simpler set of constraints by first guessing the
values of the variables tφ

′

s , uφ′

s , and fφ′

s for the subformulas φ′, and then solving the

404 K. Sen, M. Viswanathan, and G. Agha

constraints resulting from those guesses; since NPSPACE = PSPACE, we can obtain
a deterministic algorithm from this. However, we believe that in practice solving this
single BMI presented here will be more efficient than solving the exponentially many
simpler BMIs that this alternative approach would yield.

5.1 Complexity of Model-Checking UMC

We showed that the model-checking problem for UMC can be reduced to checking the
validity of a formula in the existential theory of the reals. Therefore, the model-checking
problem of UMC is in PSPACE.

The model checking problem for UMCs is however intractable: we can reduce both
the satisfiability and validity of propositional boolean formulas to the model checking
problem (details in [23]).

Theorem 2. The model checking problem for UMC with respect to PCTL is NP-hard
and co-NP-hard.

6 Model-Checking IMDP

We consider the problem of model checking IMDPs in this section. We will solve the
problem by showing that we can reduce IMDP model checking to model checking
(classical) a Markov Decision Process (MDP) [4, 20]. Before presenting this reduction
we recall some basic properties of the feasible solutions of a linear program and the
definition of an MDP.

6.1 Linear Programming

Consider an IMDP I = (S, sI , P̌, P̂, L). For a given s ∈ S, let IE(s) be the following
set of inequalities over the variables {pss′ | s′ ∈ S}:

∑

s′∈S

pss′ = 1 P̌(s, s′) ≤ pss′ ≤ P̂(s, s′) for all s′ ∈ S

Definition 4. A map θs : S → [0, 1] is called a basic feasible solution (BFS) to the
above set of inequalities IE(s) iff {pss′ = θs(s′) | s′ ∈ S} is a solution of IE(s)
and there exists a set S′ ⊆ S such that |S′| ≥ |S| − 1 and for all s′ ∈ S′ either
θs(s′) = P̌(s, s′) or θs(s′) = P̂(s, s′).

Let Θs be the set of all BFS of IE(s). The set of BFS of linear program have the special
property that every other feasible solution can be expressed as a linear combination of
basic feasible solutions. This is the content of the next proposition.

Proposition 1. Let {pss′ = p̄ss′ | s′ ∈ S} be some solution of IE(s). There there are
0 ≤ αθs ≤ 1 for all θs ∈ Θs, such that

p̄ss′ =
∑

θs∈Θs αθsθs(s′) for all s′ ∈ S and
∑

s∈S αθs = 1

Lemma 6. The number of basic feasible solutions of IE(s) in the worst case can be
O(|S|2|S|−1).

Model-Checking Markov Chains in the Presence of Uncertainties 405

6.2 Markov Decision Processes (MDP)

A Markov decision process (MDP) is a Markov chain that has non-deterministic tran-
sitions, in addition to the probabilistic ones. In this section we formally introduce this
model along with some well-known observations about them.

Definition 5. If S is the set of states of a system, a next-state probability distribution
is a function µ : S → [0, 1] such that

∑
s∈S µ(s) = 1. For s ∈ S, p(s) represents the

probability of making a direct transition to s from the current state.

Definition 6. A Markov decision Process (MDP) is a 4-tuple D = (S, sI , τ, L), where

1. S is a finite set of states,
2. sI ∈ S is the initial state,
3. L : S → 2AP is a labeling function that maps states to sets of atomic propositions

from a set AP,
4. τ is a function which associates to each s ∈ S a finite set τ(s) = {µs

1, . . . , µ
s
ks

} of
next-state probability distributions for transitions from s.

A path π in an MDP D = (S, sI , τ, L) is a non-empty sequence of the form s0
µ1→

s1
µ2→ . . ., where si ∈ S, µi+1 ∈ τ(si), and µi+1(si+1) > 0 for all i ≥ 0. A path can be

either finite or infinite. We use πfin to denote a finite path. Let last(πfin) be the last state
in the finite path πfin. As in DTMC, we denote the ith state in a path π by π[i] = si.
We let Path(s) and Pathfin(s) be the set of all infinite and finite paths, respectively,
starting at state s. To associate a probability measure with the paths, we resolve the
non-deterministic choices by a randomized adversary, which is defined as follows:

Definition 7. A randomized adversary A of an MDP D is a function mapping every
finite path πfin of D and an element of the set τ(last(πfin)) to [0, 1], such that for a
given finite path πfin of D,

∑
µ∈τ(last(πfin)) A(πfin, µ) = 1. Let AD denote the set of

all possible randomized adversaries of the MDP D. Let PathA(s) denote the subset of
Path(s) which corresponds to an adversary A.

The behavior of an MDP under a given randomized adversary is purely probabilistic.
If an MDP has evolved to the state s after starting from the state sI and following the
finite path πfin, then it chooses the next-state distribution µs ∈ τ(s) with probability
A(πfin, µs). Then it chooses the next state s′ with probability µs(s′). Thus the proba-
bility that a direct transition to s′ takes place is

∑
µs∈τ(s) A(πfin, µs)µs(s′). Thus as for

IMDPs, one can define DTMC DA that captures the probabilistic behavior of MDP D
under adversary A and also associate a probability measure on execution paths. Given
a MDP D and a PCTL formula ϕ, we can define when D |= ϕ in a way analogous to
the IMDPs (see Figure 2).

6.3 The Reduction

We are now ready to describe the model checking algorithm for IMDPs. Consider an
IMDP I = (S, sI , P̌, P̂, L). Recall from Section 6.1, we can describe the transition
probability distributions from state s that satisfy the range constraints as the feasible

406 K. Sen, M. Viswanathan, and G. Agha

solutions of the linear program IE(s). Furthermore, we denote by Θs is the set of all
BFS of IE(s). Define the following MDP D = (S′, s′I , τ, L

′) where S′ = S, s′I = sI ,
L′ = L, and for all s ∈ S, τ(s) = Θs. Observe that D is exponentially sized in I, since
τ(s) is exponential (see Lemma 6).

The main observation behind the reduction is that the MDP D “captures” all the
possible behaviors of the IMDP I. This is the formal content of the next proposition.

Proposition 2. For any adversary A for I, we can define a randomized adversary A′

such that ProbIA

s = ProbDA′

s for every s, where ProbXA

s is measure on paths from s
defined by machine X under A. Similarly for every adversary A for D, we can find an
adversary A′ for I that defines the same probability measure on paths.

Proof. Consider an adversary A for I. For a path πfin let A(πfin)=µ∈Steps(last(πfin)).
We know from Proposition 1, that there are αθs for θs ∈ Θs such that

µ(s′) =
∑

θs∈Θs αθsθs(s′) for all s′ ∈ S and
∑

s∈S αθs = 1

We now define A′(πfin, θs) = αθs . It is straightforward to see that ProbI
A

s = ProbDA′

s .
The converse direction also can be proved similarly.
�

An important consequence of the above observation is the following main theorem.

Theorem 3. For any PCTL formula ϕ, I |= ϕ iff D |= ϕ.

Thus, in order to model check IMDP I, we can model check the MDP D for which
algorithms are known [4, 20]. The algorithms for MDP run in time (and space) which is
polynomial in the size of the MDP. Thus, if we directly model check D we get an EXP-
TIME model checking algorithm for I. However, we can improve this to get a PSPACE
algorithm. The reason for this is that it is known that as far as model checking MDPs is
concerned, we can restrict our attention to deterministic, memoryless adversaries, i.e.,
adversaries that always pick the same single non-deterministic choice whenever a state
is visited.

Proposition 3 ([4, 20]). Let Adet be the set of deterministic, memoryless adversaries
for MDP D, i.e., for all A ∈ Adet, A(s, µ) = 1 for exactly one µ ∈ τ(s). Consider a
PCTL formula ϕ = P��p(ψ) such that the truth or falsity of every subformula of ψ in
every state of D is already determined. Then D |= ϕ iff DA |= ϕ for all A ∈ Adet.

For every subformula of the form P��p(ψ), our model checking algorithm, will model
check each of the DTMCs DA, where A is a deterministic, memoryless adversary. This
will give us the desired PSPACE algorithm.

Theorem 4. The model-checking algorithm for IMDP is in PSPACE.

Proof. From Lemma 6, we know that the total number of BFSs is O(|S|2|S|−1). Hence
the total number of DTMCs DA for A ∈ Adet is O(|S||S|2|S|2−|S|). By reusing space
for every subformula P��p(ψ), all of these model checking problems can be solved in
PSPACE.
�

Model-Checking Markov Chains in the Presence of Uncertainties 407

6.4 Iterative Algorithm

The above PSPACE algorithm is computationally expensive for large IMDPs. There-
fore, we propose an alternative iterative algorithm motivated by a similar algorithm
in [2].

The iterative model checking algorithm for PCTL over IMDPs works exactly as for
DTMCs with the exception of handling of P��p(ψ). For these, we need to check if
pA

s (ψ) = ProbA
s ({π ∈ PathA(s) | π |= ψ}) satisfies the bound �� p for all adver-

saries A ∈ AI . Let pmax
s (ψ) and pmin

s (ψ) be the minimum or maximum probability,
respectively, for all adversaries A ∈ AI , i.e.,

pmax
s (ψ) def= supA∈AI

[pA
s (ψ)], pmin

s (ψ) def= infA∈AI [pA
s (ψ)].

Then if ��∈ {<, ≤},

Sat(P��p(ψ)) = {s ∈ S | pmax
s (ψ) �� p}

and if ��∈ {>, ≥},
Sat(P��p(ψ)) = {s ∈ S | pmin

s (ψ) �� p}

We next describe how to compute the values pmax
s (ψ) and pmin

s (ψ) for ψ = Xφ and
ψ = φ1 U φ2. Recall that Θs is the set of all BFS of IE(s). It can be shown following [2]

that pmax
s = limn→∞p

max(n)
s where:

pmax(n)
s =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? and n = 0
max{p̄ss′ |s′∈S}∈Θs

{∑
s′∈S p̄ss′ .p

max(n−1)
s′

}

if s ∈ S? and n > 0

and pmin
s = limn→∞p

min(n)
s where:

pmin(n)
s =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? and n = 0
min{p̄ss′ |s′∈S}∈Θs

{∑
s′∈S p̄ss′ .p

min(n−1)
s′

}

if s ∈ S? and n > 0

Note that although the size of Θs can be O(|S|2|S|−1) (by Lemma 6), the computa-
tion of the expressions

max{p̄ss′ |s′∈S}∈Θs

{
∑

s′∈S

p̄ss′ .p
max(n−1)
s′

}

or min{p̄ss′ |s′∈S}∈Θs

{
∑

s′∈S

p̄ss′ .p
min(n−1)
s′

}

(5)

can be done in O(|S|) time as follows:

408 K. Sen, M. Viswanathan, and G. Agha

We consider the ordering s1, s2, . . . , s|S| of the states of S such that

p
max(n−1)
s1 , p

max(n−1)
s2 , . . . , p

max(n−1)
s|S| is in descending order. Then the following result

holds.

Lemma 7.

a) There exists an 1 ≤ i ≤ |S| such that {P̂(s, s1), . . . , P̂(s, si−1), q, P̌(s, si+1),
. . . , P̌(s, s|S|)} is a BFS of IE(s), where q = 1 −

∑
1≤j≤(i−1) P̂(s, sj) −

∑
(i+1)≤j≤|S| P̌(s, sj).

b) and for that i

max{p̄ss′ |s′∈S}∈Θs

{
∑

s′∈S

p̄ss′ .p
max(n−1)
s′

}

= pmax(n−1)
si

.q

+
∑

1≤j≤(i−1)

pmax(n−1)
sj

.P̂(s, sj) +
∑

(i+1)≤j≤|S|

pmax(n−1)
sj

.P̌(s, sj)

Proof.
a) Let i0 be defined as follows:

i0 = min{i |
i∑

j=1

P̂(s, sj) +
|S|∑

j=i+1

P̌(s, sj) ≥ 1}

Observe that such an i0 must exist if the IMDP is well-defined. Consider the solution
{P̂(s, s1), . . . , P̂(s, si0−1), q, P̌(s, si0+1), . . . , P̌(s, s|S|)} where q = 1 −
∑

1≤j≤(i0−1) P̂(s, sj) −
∑

(i0+1)≤j≤|S| P̌(s, sj). This solution is a BFS of IE(s).

b) Let {p̄ss1 , . . . , p̄ss|S|} be any solution (it may be BFS or not) of IE(s). Then by
simple algebraic simplification it can be shown that

X

1≤j≤(i−1)

p
max(n−1)
sj

.P̂(s, sj)+p
max(n−1)
si

.q+
X

(i+1)≤j≤|S|

p
max(n−1)
sj

.P̌(s, sj) ≥
X

s′∈S

p̄ss′ .p
max(n−1)

s′

given the fact that p
max(n−1)
s1 ≥ p

max(n−1)
s2 ≥ . . . ≥ p

max(n−1)
s|S| , and P̌(s, s′) ≤ p̄ss′ ≤

P̂(s, s′) for all s′ ∈ S.
�

Similarly, if we consider the ordering s1, s2, . . . , s|S| of the states of S such that

p
min(n−1)
s1 , p

min(n−1)
s2 , . . . , p

min(n−1)
s|S| is in ascending order, then the above Lemma

holds with max replaced by min.
The expressions (5) can be computed in O(|S|) time by finding an i as in Lemma 7.

6.5 Lower Bound for IMDP Model-Checking

We can show that the model checking problem for IMDPs is P-hard. The result follows
from observing that the problem of determining the truth value of propositional logic
formula under an assignment (which is known to be P-complete) can be reduced to the
PCTL model checking problem of DTMCs; since DTMCs are special IMDPs, the result
follows. The details can be found in [23].

Model-Checking Markov Chains in the Presence of Uncertainties 409

7 Conclusion

We have investigated the PCTL model checking problem for two semantic interpreta-
tions of IDTMCs, namely UMC and IMDP. We proved the upper bounds and the lower
bounds on the complexity of the model checking problem for these models. Our bounds
however are not tight. Finding tight lower and upper bounds for these model-checking
problems is an interesting open problem.

Acknowledgment

We would like to thank anonymous referees and Timo Latvala for providing valuable
comments. This work is supported in part by the ONR Grant N00014-02-1-0715, the
NSF Grants NSF CNS 05-09321, NSF CCF 04-29639, NSF CCF 04-48178, and the
Motorola Grant Motorola RPF #23.

References

1. A. Aziz, V. Singhal, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. It usually works: The
temporal logic of stochastic systems. In Proc. of Computer Aided Verification, volume 939,
pages 155–165, 1995.

2. C. Baier. On algorithmic verification methods for probabilistic systems. Habilitation Thesis.
Fakultät für Mathematik and Informatik, Universität Mannheim, 1998.

3. C. Baier and M. Z. Kwiatkowska. Model checking for a probabilistic branching time logic
with fairness. Distributed Computing, 11(3):125–155, 1998.

4. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems.
In Proceedings of 15th Conference on the Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS’95), volume 1026 of LNCS.

5. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over real num-
bers: NP-completeness, recursive functions and universal machines. Bulletin of the American
Mathematical Society, 21:1–46, 1989.

6. J. Canny. Some algebraic and geometric computations in PSPACE. In 20th ACM Symposium
on Theory of Computing (STOC’88), pages 460–467, 1988.

7. C. Courcoubetis and M. Yannakakis. Markov decision processes and regular events. In
Proceedings of the seventeenth international colloquium on Automata, languages and pro-
gramming, pages 336–349, 1990.

8. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal
of ACM, 42(4):857–907, 1995.

9. M. Fukuda and M. Kojima. Branch-and-cut algorithms for the bilinear matrix inequality
eigenvalue problem. Comput. Optim. Appl., 19(1):79–105, 2001.

10. K. C. Goh, M. G. Safonov, and G. P. Papavassilopoulos. Global optimization for the biaffine
matrix inequality problem. Journal of Global Optimization, 7:365–380, 1995.

11. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing, 6(5):512–535, 1994.

12. B. Jonsson and K. G. Larsen. Specification and refinement of probabilistic processes. In
Proceedings of the IEEE Symposium on Logic in Computer Science, pages 266–277, 1991.

13. J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov chains. Springer, 1976.
14. I. O. Kozine and L. V. Utkin. Interval-valued finite markov chains. Reliable Computing,

8(2):97–113, 2002.

410 K. Sen, M. Viswanathan, and G. Agha

15. V. P. Kuznetsov. Interval statistical models. Radio and Communication, 1991.
16. PENbmi. http://www.penopt.com/.
17. M. Puterman. Markov decision processes: discrete stochastic dynamic programming. Wiley,

New York, 1994.
18. J. Renegar. A faster pspace algorithm for deciding the existential theory of the reals. In 29th

Annual IEEE Symposium on Foundations of Computer Science, pages 291–295, 1988.
19. J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques for Analyz-

ing Concurrent and Probabilistic Systems, volume 23 of CRM Monograph Series. American
Mathematical Society, 2004.

20. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, MIT, 1995.

21. R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes. In Interna-
tional Conference on Concurrency Theory, pages 481–496, 1994.

22. K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box probabilistic
systems. In 16th conference on Computer Aided Verification (CAV’04), volume 3114 of
LNCS, pages 202–215, 2004.

23. K. Sen, M. Viswanathan, and G. Agha. Model-checking markov chains in the presence of
uncertainties. Technical Report UIUCDCS-R-2006-2677, UIUC, 2006.

24. O. Toker and H. Özbay. On the NP-hardness of solving bilinear matrix in equalities and
simultaneous stabilization with static output feedback. In Proc. of American Control Con-
ference, 1995.

25. M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In 26th
Annual Symposium on Foundations of Computer Science, pages 327–338. IEEE, 1985.

26. P. Walley. Measures of uncertainty in expert systems. Artificial Intelligence, 83:1–58, 1996.

	Introduction
	Formal Models
	Probabilistic Computation Tree Logic (PCTL)
	Revisiting DTMC Model-Checking
	Model Checking UMC
	Complexity of Model-Checking UMC

	Model-Checking IMDP
	Linear Programming
	Markov Decision Processes (MDP)
	The Reduction
	Iterative Algorithm
	Lower Bound for IMDP Model-Checking

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

