Expressiveness + Automation + Soundness:
Towards Combining SMT Solvers
and Interactive Proof Assistants

Pascal Fontaine, Jean-Yves Marion, Stephan Merz,
Leonor Prensa Nieto, and Alwen Tiu

LORIA - INRIA Lorraine — Université de Nancy

Abstract. Formal system development needs expressive specification languages,
but also calls for highly automated tools. These two goals are not easy to recon-
cile, especially if one also aims at high assurances for correctness. In this paper,
we describe a combination of Isabelle/HOL with a proof-producing SMT (Sat-
isfiability Modulo Theories) solver that contains a SAT engine and a decision
procedure for quantifier-free first-order logic with equality. As a result, a user
benefits from the expressiveness of Isabelle/HOL when modeling a system, but
obtains much better automation for those fragments of the proofs that fall within
the scope of the (automatic) SMT solver. Soundness is not compromised because
all proofs are submitted to the trusted kernel of Isabelle for certification. This ar-
chitecture is straightforward to extend for other interactive proof assistants and
proof-producing reasoners.

1 Introduction

Deductive tools for system verification can be classified according to the axes of ex-
pressiveness, degree of automation and guarantees of soundness. An ideal tool would
score high everywhere: expressive input languages such as higher-order logic or set
theory allow a user to write natural and concise models, automatic verification takes
care of a large fraction of the proof obligations, and the assurance of soundness gives
confidence in the result. In practice, these goals are in conflict. For example, interactive
proof assistants encode rich logics, which are at the basis of highly expressive (and user-
extensible) modeling languages. Their verification environment is usually built around
a small trusted code base, ensuring that theorems can only be produced from explicitly
stated axioms and proof rules. At the other end of the spectrum one finds automatic
verification tools, including model checkers and decision procedures. These tools come
with fixed input languages in which to express the models, and they implement fully
automatic verification algorithms tailored for these languages. Using sophisticated op-
timizations, they aim to scale up to large problems; however, it is all too easy to inad-
vertently introduce bugs that compromise soundness.

It is clearly desirable to combine interactive and automatic verification tools in order
to benefit from their respective strengths. Proof assistants often provide a back door
for using automated tools in the form of trusted oracles: it suffices to translate the
formulas to prove into the input language of the automatic reasoner and to invoke it. If
the proof succeeds, the proof assistant will accept the formula as a theorem. However,

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 167-IZ1l 2006.
(© Springer-Verlag Berlin Heidelberg 2006

168 P. Fontaine et al.

this mechanism makes the oracle a part of the trusted code base, and therefore weakens
the guarantees of soundness. Even if one may be inclined to trust the external reasoner,
the translation function can be non-trivial, for example when translating from higher-
order to first-order logic; moreover, the translation will often undergo much less testing
than the external reasoner itself.

One way to avoid this problem is to make the external reasoner produce proof traces
that can be checked independently. Usually, checking a proof is a much simpler prob-
lem than finding it in the first place, so the checker can be accepted as part of the trusted
code base. Even more, proof checking can be implemented relatively easily within an
interactive proof assistant so that the size of the trusted kernel does not augment beyond
what users of the proof assistant accept anyway. The combined tool offers the full ex-
pressiveness of the proof assistant, but provides the automation of the external reasoner
over its domain, without compromising soundness guarantees.

An alternative would be to verify the algorithm of the automatic prover within a
proof assistant and to extract an implementation whose soundness is guaranteed, with-
out the need of checking individual proofs. (Note that code extraction or interpretation
becomes part of the trusted code base.) It is not clear yet that this approach can produce
implementations whose efficiency can compete with reasoners implemented as, say,
highly optimized C programs. Mahboubi describes ongoing work with the aim of
implementing cylindrical algebraic decomposition in Coq.

In this paper we describe an implementation of proof certification for a decision pro-
cedure for the quantifier-free first-order language of uninterpreted function and pred-
icate symbols implemented in haRVey [7] within Isabelle/HOL [23]], the encoding of
higher-order logic in Isabelle. The SMT (Satisfiability Modulo Theories) solver haR-
Vey combines a SAT solver with decision procedures. In a nutshell, the SAT solver
maintains a Boolean abstraction of the input formula. Whenever a propositional model
for this abstraction is found, it is submitted to the decision procedure(s). If the model
is found to be incompatible with a theory, a conflict clause is produced in order to ex-
clude a class of models. This process continues until either a model is found, in which
case the input formula is satisfiable, or until the SAT solver determines the Boolean
abstraction to be unsatisfiable. Because the SAT solver plays a central role in haRVey,
we first introduce in Sect. [proof reconstruction in Isabelle for SAT solvers. In Sect.]
we describe how haRVey has been extended to produce proof traces and how we imple-
ment proof reconstruction for these traces (Sect. B)). The overall approach generalizes
to other theories implemented in SMT solvers, including fragments of arithmetic and
set-theoretical constructions.

Related Work. We are not aware of any existing combination of SMT solvers and proof
assistants, but the use of proof certification for tool combination is widely accepted. For
example, an interface between Coq and the rewriting system ELAN [21]] lets ELAN
compute proof objects (as A-terms) that are submitted to Coq, and a similar approach
has been implemented for Coq and the first-order theorem provers Bliksem and
Zenon. Because explicit proof objects can be huge, Necula and Lee [18] propose tech-
niques to compress them. In contrast, we do not compute full proof objects but just
“hints” that guide Isabelle during proof reconstruction. Meng et al. describe a combina-
tion of Isabelle and resolution-based first-order theorem provers [16]], and a similar ap-

Towards Combining SMT Solvers and Interactive Proof Assistants 169

proach underlies the combination of Gandalf and HOL within the Prosper project [13]].
The work on the TRAMP system reported by Meier is used in the Omega sys-
tem [23]], and it appears to be closely related to ours because the target logic is similar;
also, our “proof hints” can be understood as a form of proof planning.

2 Motivation for Tool Integration

Our motivation for combining interactive proof assistants and SMT solvers comes from
case studies that we performed for the verification of distributed algorithms, including
a framework for clock synchronization protocols [326]. These case studies were car-
ried out in Isabelle/HOL, and this formalism allowed us to write easily understandable
system specifications. When it came to verification, we would typically instantiate the
higher-order abstractions in a few initial proof steps, leaving us with first-order verifi-
cation conditions. Many of these subgoals would fall within the domain of automatic
decision procedures. A typical example is provided by the following lemma that appears
within the context of clock synchronization:

lemma bounded-drift:
assumes s <t and correct pt and correct gt
and rboundl C and rbound2 C and rboundl D and rbound2 D
shows [Cpt—Dqt|<|Cps—Dgs|+2xpx(t—ys)

The lemma establishes a bound on the drift between two p-bounded clocks C and D
for processors p and ¢ that are supposed non-faulty (correct) at time ¢. It relies on the
following definition of p-boundedness:

rboundl C
rbound2 C

Vp,s,t. correct pt A\s<t —Cpt—Cps<(l+p)x(t—s)
Vp,s,t.correct pt As <t — (1—p)x(t—s)<Cpt—Cps

e [le

The Isabelle proof of this lemma in [26] requires a series of intermediate lemmas,
which were rather tedious to prove. In particular, Isabelle’s built-in tactic for linear
arithmetic is unable to prove the lemma, even after manual instantiation of the quanti-
fiers. This is mainly due to the appearance of the subterm p x (¢ — s), which falls outside
the scope of linear arithmetic. In contrast, it is not hard to see that the lemma is correct,
and CVC-Lite [2]] was able to prove it automatically. CVC-Lite is an SMT solver whose
core consists of a combination of decision procedures for fragments of first-order logic;
other tools in this category include MathSAT [J3]], ICS [10] and Yices.

As a first step towards tool combination, we tried an oracle-style integration and
implemented ML functions that translate a fragment of Isabelle/HOL to the input lan-
guages of SMT solvers. The recent emergence of the common SMT-LIB input for-
mat [24]] turned out to be very helpful, because the same translations worked for many
different tools. By using SMT solvers as oracles, we could concentrate on the high-
level structure of the verification and leave tedious details such as the above lemma to
the external tools.

However, we were also quickly reminded of the dangers with oracle-style integra-
tion: a simple typo in the translation functions was enough to corrupt soundness. The

170 P. Fontaine et al.

translation from a higher-order setting to a (multi-sorted) first-order language is non-
trivial. In short, it was all too easy to introduce bugs in the translation, which suggested
to us that we should investigate techniques of proof certification.

3 Proof Reconstruction for Propositional Logic

SAT solvers decide the satisfiability problem for propositional logic, and they are an es-
sential component of SMT solvers. Given a propositional formula, a SAT solver either
computes a satisfying valuation or reports that the formula is unsatisfiable. Modern SAT
solvers implement the DPLL algorithm [6] due to Davis, Putnam, Logemann, and Love-
land, enhanced by optimizations such as conflict analysis and non-chronological back-
tracking, good branching heuristics, and efficient data structures [29]. These solvers
expect the input to be presented as a set (i.e., conjunction) of clauses, which are dis-
junctions of literals. In preparation for using a SAT solver, we must convert arbitrary
propositional formulas into conjunctions of clauses, preserving satisfiability.

A naive conversion to conjunctive normal form (CNF) simply distributes disjunc-
tions over conjunctions. However, this could result in a conjunction whose size is expo-
nential in the size of the original formula. For example, the formula

(al/\bl)\/...\/(an/\b,,)

gives rise to 2" conjuncts. For our purposes, we do not need to produce an equivalent
CNF formula, but only have to preserve (un)satisfiability, and it is well known that a
conversion of linear complexity is possible in this case. The classical technique, due to
Tseitin [1L127], is to introduce new Boolean variables to represent complex subformulas.
In the above example, we would introduce additional variables xi, ... ,x, and obtain the
clauses

X1 V..V, i Va;, x; Vb, x;V-a; Vb (i=1,...,n).

The first clause represents the original formula, whereas the remaining clauses arise
from “definitional” equivalences x; = a; A b;. This idea can be implemented in Isabelle
by a tactic that repeatedly applies the theorem

(AAB)VC = (3x.(x=AAB)A(xVC(C))

in order to obtain a quantified Boolean formula 3x.c; A ... A ¢, that is equivalent to the
original formula. The clauses cy, ..., ¢, are then passed on to the SAT solver.

SAT solvers try to compute a satisfying assignment of truth values to atoms by re-
peatedly applying two basic operations [[17]: Boolean constraint propagation determines
the values of Boolean variables that appear in unit clauses, i.e. clauses that contain a
single unassigned literal. Second, truth values are guessed for variables whose value has
not yet been determined. In case these guesses are found to be incompatible with the in-
put clauses, the search backtracks, remembering the unsuccessful guesses as a learned
clause that is added to the original set of clauses in order to help direct the search.

In a theorem-proving context, we show a formula to be valid by establishing the
unsatisfiability of its negation, and we are therefore mostly interested in verdicts of
unsatisfiability. As explained in [30], SAT solvers such as MiniSAT [9]] or zChaff [29]

Towards Combining SMT Solvers and Interactive Proof Assistants 171

can produce justifications of unsatisfiability verdicts as lists of binary resolution steps.
Each step operates on two clauses ¢c; = a1V...Vagandcy = by V...V b; that contain
a complementary literal (say, by = aj) to produce the clause a, V... Var Vb V...V by;
hence, a step can be represented as a triple of integers identifying the two participating
clauses and the propositional variable to resolve on. The proof ends with establishing
the empty clause, which is trivially unsatisfiable.

The proof trace produced by the SAT solver is passed to Isabelle, where it is used to
guide a proof of the unsatisfiability of the formula Ix.c; A... A ¢, obtained by the CNF
transformation. The unsatisfiability of this latter formula is easily reduced to the proof
of the sequent [c;;...;c,] = False, i.e. to deriving a contradiction from the hypothe-
ses c1, ..., ¢y At this point, the representation of the clauses c¢; in Isabelle becomes
important. A naive representation of clauses as disjunctions of literals in Isabelle/HOL
requires associativity and commutativity of disjunction to be applied prior to each res-
olution step so that the complementary literal appears, say, as the first disjunct. This
complication can be circumvented when clauses are encoded as sequents, observing
that the clause a; V...V g, can be represented as the sequent [[al;”.;ak]] — Fualse
where a; denotes the complement of the literal a;. With this representation, binary res-
olution essentially becomes an application of the cut rule. More precisely, given two
clauses ¢; = [ai;...;ar] = False and ¢c2 = [by;...;b;] = False in sequent repre-
sentation such that, say, b; = a;, we deduce from c the equivalent sequent

¢y = as. . saiiais..] = a;

and then join the two sequents using a primitive operation provided by Isabelle to obtain
the sequent representation of the resolvent, i.e.

lai;...;ai-iaivs.. sabis..sbj—13bjgrs. .. by = False.

We have tested our method with proofs generated by MiniSAT and by zChaff, and
it is now available as the sat and satx tactics (the latter based on the definitional CNF
conversion described above) in the Isabelle 2005 standard distribution. Table [1 shows
experimental results for several examples taken from the TPTP benchmark, based on the
solver zChaff. We can successfully check proofs for problems of a few hundred clauses
and that require about 10000 binary resolutions. As for the execution time (given in
seconds, measured on a Pentium-IV with 1.6 GHz and 512 MB main memory under

Table 1. Running time for SAT proof reconstruction

Problem # clauses SAT time Total time
MSC007-1.008 204 0.208 11.546
PUZ015-2.006 184 0.005 2.435
PUZ016-2.005 117 0.003 1.158
PUZ030-2 63 0.002 0.485
PUZ033-1 13 0.003 0.078
SYNO090-1.008 65 0.002 0.492
SYN093-1.002 26 0.005 0.133

SYNO094-1.005 82 0.005 0.742

172 P. Fontaine et al.

Linux), “SAT time” refers to the running time of the SAT solver alone whereas “Total
time” includes the time taken by Isabelle to reconstruct the proof. One can see that proof
checking by Isabelle takes at least two orders of magnitude longer than it takes zChaff
to determine unsatisfiability and to produce the proof. This mainly comes from the
underlying representation of formulas and theorems in Isabelle, which accommodates
arbitrary higher-order syntax, and is not optimized for propositional logic. On the other
hand, the default automated tactics offered by Isabelle cannot solve any but the smallest
problems of Tab. [Tl

Weber has independently suggested a way to perform proof reconstruction in
Isabelle from proof traces obtained from SAT solvers. His approach is based on rewrit-
ing entire sets of clauses, whereas our sequent representation allows us to operate on
comparatively small objects, and our implementation is about an order of magnitude
faster for most of the examples of Tab. [Il

4 Proof Traces from SMT Solvers

The integration of SAT solving with Isabelle is essential for supporting SMT solvers
that handle more expressive, though still quantifier-free, languages. Roughly, SMT
solvers are SAT solvers working together with theory reasoners, as illustrated in Fig. Il
The information exchanged at the interface are conflict clauses of the theory reasoner,
introduced in Sections {.1] and These clauses also contain the essence of a formal
proof: the conjunction of the clauses implies the unsatisfiability of the goal formula by
purely propositional reasoning. The conflict clauses themselves are proved by laws of
equational logic (reflexivity, symmetry, transitivity, and congruence), and in Sect. 3|
we address the generation of these proofs from the data structures of the underlying
decision procedure.

Propositional “model”

Theory
reasoning

SAT solver

Conflict clause

Fig. 1. Cooperation between a SAT solver and a theory reasoner

4.1 SAT Solvers Beyond Boolean Logic
Assume that we wish to decide the satisfiability of the formula
x=yA(f(x) # F)V (2p(x) Ap(2))).- (1)

We first construct a Boolean abstraction by consistently replacing first-order atoms by
Boolean variables. For our example, we obtain the propositional formula

piA(=p2V (=p3Aps)) 2

Towards Combining SMT Solvers and Interactive Proof Assistants 173

where the Boolean variables p1, p», p3 and p4 correspond to the first-order atoms x =y,
f(x) = f(y), p(x) and p(z). This Boolean abstraction has two (sets of) models that
respectively satisfy the literals {p;,—p2} and {p1,—p3,pa}. The first abstract model
(i.e. the one that makes p; true and p, false) does not correspond to a model for the
original formula (), because it is not possible to have a model that would make x =y
true and f(x) = f(y) false. The second abstract model corresponds to a concrete one,
since {x = y,—p(x),p(z)} is satisfiable. In general, a formula is satisfiable if and only
if there exists a model for the Boolean abstraction of the formula that corresponds to a
satisfiable set of literals. Formula () is indeed satisfiable.

Notice that this process of first building a Boolean abstraction to extract an abstract
model, and then checking the corresponding sets of first-order literals, allows the the-
ory reasoner to operate on sets of literals only. The Boolean structure of formulas is
managed efficiently by the SAT solver.

Now if in Formula () we replace p(z) by p(y), we obtain the unsatisfiable formula

x=yA(f(x) # f()V (=p(x) Ap(y)))-

Its Boolean abstraction is still () but ps now represents p(y). The models for the ab-
straction do not correspond to models for the original formula, since the sets of literals
{x=y,f(x) # f(y)} and {x=y,—p(x), p(y)} are both unsatisfiable. To reduce the satis-
fiability problem to a purely propositional one, it is sufficient to add conjunctively to (2)
conflict clauses that express the unsatisfiability of the abstract models in the first-order
theory. In our example, we obtain the conflict clauses —p; V p> and —p; V p3 V —pa4,
corresponding to the valid formulas x # y V f(x) = f(y) and x # y V p(x) V =p(y).

To summarize, the cooperation between the SAT solver and the decision procedure
for sets of literals is depicted in Fig.[Tl The SAT solver produces models for the Boolean
abstraction (that are not necessarily models for the original formula). If the sets of first-
order literals that correspond to those models are unsatisfiable, they are rejected by the
theory reasoning module, and the Boolean abstraction is refined by a conflict clause.
For a satisfiable input, an abstract model corresponding to a satisfiable set of first-order
literals will eventually be found. For an unsatisfiable input, the successive refinements
with conflict clauses will eventually produce an unsatisfiable propositional formula.

4.2 TImproving Efficiency

In practice, the Boolean abstraction of a given formula will have many models. It is
therefore important to find conflict clauses that eliminate not just one, but many abstract
models.

The first ingredient to remove several abstract models simultaneously is to extract
partial models from the propositional abstraction rather than full models. A partial
model assigns a truth value to a subset of the propositional variables used in the ab-
straction, such that every interpretation that extends this partial model is a (full) model.
A partial model assigning n variables for a formula using m variables represents 2" ~"
full models. Adding a conflict clause to reject a partial model allows us to reject a large
number of full models. In [T1]] we introduced a simple technique to efficiently compute
a minimal partial model from a full model for a set of clauses.

174 P. Fontaine et al.

Second, the set of literals L corresponding to an abstract (partial) model can still
be huge. On the contrary, the very reason for which this set is unsatisfiable is often
quite small: it can be expressed as a small subset of L that is unsatisfiable with re-
spect to the theory, the remaining literals being irrelevant. Generating conflict clauses
that correspond to small unsatisfiable subsets will, in practice, contribute to an efficient
cooperation of the SAT solver with the theory reasoner. The theory reasoner should
therefore be able, given an unsatisfiable set of literals, to detect those literals that were
really useful to conclude that the set is unsatisfiable. The congruence closure algorithm
described in Sect.[£.3] has been designed for this purpose.

Because proof reconstruction essentially relies on the conflict clauses produced by
the theory reasoner, it also benefits from this effort to compute small conflict clauses.

4.3 Congruence Closure

A congruence closure algorithm decides the satisfiability of a set of ground first-order
logic literals in the theory of uninterpreted predicates and functions. It does so by con-
structing equivalence classes of terms. Two terms belong to the same class if and only
if the equalities from the input force the terms to be equal: disequalities play no role
in building equivalence classes. A set of literals may be unsatisfiable for two rea-
sons. First, if it contains a pair of complementary literals built from the same pred-
icate such that the corresponding arguments are in the same congruence class as in
{a=0b,p(a,b),—p(b,a)}. Second, if there is a disequality between two terms in a sin-
gle congruence class: for instance the set {a = b, f(a) # f(b)} is unsatisfiable.

Many implementations of congruence closure exist, notably the Nelson-Oppen algo-
rithm [20], and the algorithm due to Downey, Sethi and Tarjan (DST for short) [8]. The
simple Nelson-Oppen algorithm has a complexity of O (n2) where 7 is the total number
of nodes in the tree or DAG representations of the set of literals. The DST algorithm
is more complicated but is of complexity O (nlogn), as long as enter and query opera-
tions on a hash table are assumed to be constant in time. haRVey implements a variant
of DST: its complexity is O (nlogn), and terms are represented as DAGs for maximal
sharing of subterms. This algorithm is described in detail in .

Very abstractly, the congruence closure algorithms work on a partition of a set of
terms. This set must be closed under the subterm relation. Initially each term is alone in
its own class. The partition of terms is successively updated to take into account a set
of equalities. When an equality 7 = ¢’ is given to the algorithm, the classes for terms ¢
and ¢ are merged. Any class merge may produce the merge of further classes because
of the congruence rule

n=ty - ty=t,

n 3
fltn,..ty) = f(t],...1)) 3)

For instance, assume x and y belong to two classes that are merged. Then, if f(x)
and f(y) belong to two different classes, those two classes should also be merged. Im-
plementations of congruence closure algorithms rely on efficient data structures to rep-
resent classes of terms, and on indexing techniques to quickly find the classes that have
to be merged because of the congruence rule.

As an example, consider the set of terms

{a,b,f(a),g(a),5(b).5(8(a)), f(g(b)).8(f(a))}.

Towards Combining SMT Solvers and Interactive Proof Assistants 175

This set is closed under the subterm relation. Assume that we wish to compute the
equivalence classes of this set of terms for the equalities a = f(a), f(a) = f(g(b)),
f(g(b)) =g(f(a)) and g(b) = g(g(a)). Initially every term is in its own class. Process-
ing the equality @ = f(a) merges the classes for a and f(a). Because of congruence,
the classes for g(a) and g(f(a)) will also be merged. Taking into account the equal-
ity f(a) = f(g(b)) merges the classes for the two terms, without inducing any further
merging operations. At this point, the partition of terms is

{{a.f(a), f(s(0))}.{b},{g(a).8(f(a))}.{g(P)} . {s(g(a))} }.

Now, processing the equality f(g(b)) = g(f(a)) merges the classes for those two terms,
that is, the classes for a and g(a). This entails, by congruence, that g(a) and g(g(a))
are equal. Processing the last equality g(b) = g(g(a)) results in all terms except for b
forming a single class.

Notice that only the congruence axiom is applied explicitly: the data structure (i.e. a
partition of terms) makes implicit the equivalence properties of equality, i.e. the laws of
reflexivity, symmetry, and transitivity. Two classes are merged because two terms are
found to be equal, either because a literal in the input equates them, or by propagation
according to the congruence rule. If we want to store that information for later use, we
can store the pair of terms that are responsible for a merge, together with its reason.
This information is enough to reconstruct, for any two terms of a class, a small set of
equations that entail their equality.

Back to the previous example, we can draw a graph that summarizes the successive
merges. The nodes of the graph are just the terms handled by the algorithm. Each time
two classes are merged because of an equation in the input (for instance a = f(a)),
we draw a plain edge between the left- and right-hand side terms of the equation, and
label the edge by the equation. If two classes are merged because of an application
of the congruence rule (for instance g(a) and g(f(a))), we draw a dashed edge. The
full merge-history graph for the congruence closure algorithm applied to our example
appears in Fig.

Fig. 2. Merge-history graph

It is easy to verify that merge-history graphs enjoy the following properties:

— the equality of two terms is entailed by a set of equations (i.e. the two terms are in
the same class), if and only if there is a path between the corresponding nodes in
the merge-history graph;

— there is a unique path between any two terms in the same class;

176 P. Fontaine et al.

— the equality between two terms in the same class follows by reflexivity, symmetry,
and transitivity of equality from the conjunction of the edge labels along the path
between the two terms;

— two terms connected by a dashed edge have the same topmost symbol, and the
corresponding subterms are in the same classes. The equality between those two
terms follows, by congruence only, from equalities between direct subterms.

As a consequence, it is easy to use a merge-history graph to decomposeEl the jus-
tification of the equality of two terms into elementary steps that involve either only
congruence or only reflexivity, symmetry, and transitivity of equality.

Assume that the algorithm concludes the unsatisfiability of a set containing the
equalitics a = f(a), f(a) = f(g(b)). f(s(b)) = g(f(a)) and g(b) = g(g(a)) and the
disequality a # g(b), possibly among many other literals. It does so by building the
classes of terms according to the equalities in the input, and then discovering a conflict
with the disequality a # g(b). At this point, the algorithm uses the merge-history graph
to produce a minimal unsatisfiable subset of the input literals and outputs a justification
of the unsatisfiability of this set that will be used for proof reconstruction.

The idea of using representations similar to merge-history graphs to extract small
conflict sets has appeared before [[19,[12,22]], but we are not aware of a previous use of
these graphs to justify a posteriori the equality of terms by elementary proof steps.

5 Proof Reconstruction for Congruence Closure

In this section we describe our implementation of the interface between Isabelle and
haRVey, with the focus on proof reconstruction for the congruence closure reasoning
part of haRVey, as it is described in Section[dl This interface is implemented as a proof
method called rv in Isabelle, i.e., as an ML program.

The idea behind the interface is not to use haRVey to give a complete proof for a
given goal, rather, it is used to provide a list of intermediate lemmas, namely the conflict
clauses described in Section[], to guide proof search in Isabelle. More precisely, given
a goal formula F, the interface performs the following steps:

1. Convert the negated goal (—F) to SMT-LIB format and give it to haRVey.

2. If —F is unsatisfiable, haRVey produces a list of formulas Cy,...,C, (the conflict
clauses) along with a proof trace for each C;. If —F is satisfiable, the interface
displays the model found by haRVey and aborts.

3. Construct a proof for each conflict clause C; in Isabelle, based on the justification
output by haRVey.

4. Construct a proof for the sequent [-F;Cy;--- ;C,] = False.

5. Apply modus ponens to the formulas obtained in (B) and @) to get ~F = Fulse,
and hence prove F.

Step (@) is implemented straightforwardly in Isabelle using resolution. Step (@) applies
the SAT interface described in Section[3l We now describe the proof reconstruction for
each conflict clause C;.

! Decomposition terminates due to the inductive construction of merge-history graphs from the
two elementary merge operations.

Towards Combining SMT Solvers and Interactive Proof Assistants 177

The haRVey prover produces a compact proof trace for each conflict clause, summa-
rizing the kind of reasoning needed to prove the clause. These proof traces consist of
lists of sequents labeled with hints how they can be proved, as follows:

TRANS: <sequent>
CONGR: <sequent>
PRED : <sequent>
INEQ : <sequent>

and end with the line
CONFL: <formula>

The formula following the keyword CONFL is the conflict clause. We shall look at the
overall structure of the proof trace, before explaining in details the meaning of the
other keywords. Implicit in the proof format is the (backward) resolution proof for
deriving the conflict clause. More precisely, suppose that the list of sequents preceding

the conflict clause are
L [Cis--- i Cuy] = By

Iy [[Cnl;"' ;an,,ﬂ == B,

where each label /; is either TRANS, CONGR, PRED or INEQ. The first sequent is always a
statement of a contradiction, i.e., By is False. The assumptions C;; in the sequent i satisfy
the following requirement: each of them either appears in negated form in the conflict
clause, or it is the conclusion of a later sequent, i.e. it is By, for some k > i. The conflict
clause is therefore proved by contradiction, as the result of resolving its negation with
all the intermediate sequents above until False is derived. The corresponding inference
in Isabelle looks something like:

[-C;Cuis- - ;Cup,] = By -+ [C;Ci1;--- ;Cii, | = False
C

where C'is the conflict clause. This is a valid inference because each Cj; is either justified
by —C, oritis By for some k > i. In the implementation, this inference scheme is realized
by a series of resolution steps between sequent i, for several (possibly all) i > 1, with
the first sequent.

We shall now turn to the proofs of the intermediate sequents. The keywords pre-
ceding the sequents indicate the kind of reasoning needed to prove the sequent. The
keyword PRED indicates that the sequent can be proved using one substitution and fol-
lowed by proof-by-contradiction. That is, the sequent in this case is of the form:

[s=1#;P s;—(Pt)] = False.
The keyword INEQ indicates that the sequent contains a contradictory pair of equalities:
[s =t;s #t] = False.

Proof reconstruction for both cases are easily done in Isabelle using substitution and
proof by contradiction.

178 P. Fontaine et al.

The keyword TRANS means that the sequent is provable by using the reflexivity, sym-
metry, and transitivity of equality alone. We have implemented a special tactic in Is-
abelle to do this type of equality reasoning. We could have used the built-in simplifier
tactics (based on rewriting) but these may not terminate in case of equalities that result
in looping rewrite rules.

The label CONGR indicates that the sequent is provable by using the congruence
rule (3). As in the case with TRANS, we could use Isabelle’s built-in rewriting engine,
but faster proofs are obtained using a custom-built tactic. Because terms are represented
in curried notation in Isabelle/HOL, we only need to rely on a single axiom scheme, in-
dependently of the arity of the function symbol:

[f=gx=y]=fx=gy.

Proof construction proceeds recursively from the last argument of a function applica-
tion: to prove f xi---X, = g y1 - - - Vp, first show x,, = y, and then recursively construct a
proof for f x1-- X1 =g y1- - Yn-1-

Example. Given the formula (cf. Fig.2))

a=faNfa=f(gb)Nf(gb)=g(fa)Ngb=g(ga)=a=gbh,

haRVey produces one conflict clause, which is just the formula itself, but in CNF. It
also produces a proof trace for the conflict clause, which appears in Fig. Bl For better
readability, we have presented in boldface letters the (dis)equations that come from the
conflict clause (the last line of the proof trace). The remaining (dis)equations appear
as conclusions of sequents below in the proof trace. It is straightforward to construct a
refutation proof from the above sequents.

INEQ: [a=gb; a+#gb] = Fualse

TRANS: [a=fa; fa=f(gh); f(gh)=g (fa);
g(fa)=g(ga);gh=g(ga)]—=a=gb

CONGR: fa=ga=—=g(fa)=g(ga)

TRANS: ¢ (fa)=ga; f(gh)=g(fa);fa=f(gh)]= fa=ga

CONGR: a=fa=—g (fa)=ga

CONFL: a=gbVa# faVfa#f(gb)Vf(gb)#g(fa)Vgb#g(ga)

Fig. 3. Proof trace for a conflict clause

Benchmark. We have tested our interface to haRVey with proof reconstruction with a
number of example formulas. The running times needed to solve these problems using
the rv tactic are given in Tab.[2l The benchmarks were run on a machine with a 1.5 GHz
Intel Pentium-IV processor and 1024 MB memory under Linux. For each formula, we
indicate the number of nodes in the dag representation of the formula, the number of
distinct atoms that occur in the formula, and the number of conflict clauses produced by
haRVey. We also indicate the times taken by haRVey to refute the formula and output
the proof trace, and by Isabelle to parse the proof trace and check the proof.

For all these examples, the running time it took for haRVey to find a refutation is neg-
ligible (less than a second). For formulas of small size, the number of conflict clauses

Towards Combining SMT Solvers and Interactive Proof Assistants 179

Table 2. Running time for proof reconstruction for congruence closure

Formula Size # confl. Times (s)
nodes atoms clauses haRVey Isabelle
SEQO004-size5 18795 6967 143 0.41 115.68
SEQO11-size2 7355 3471 73 0.02 9.69
SEQO15-size2 331 47 20 0.02 3.10
SEQO020-size2 7963 3775 74 002 7.16
SEQO032-size2 255 43 20 0.01 2.66
SEQO042-size2 947 293 49 0.09 11.17
SEQO050-size2 779 213 105 0.11 3242

produced is up to 20 clauses. In those cases, proof reconstruction succeeds within one
to five seconds. For larger test cases, we make use of some of the benchmark problems
used in the SMT 2005 competition. Note that “small problems” in the competition are
actually quite large formulas, in comparison to the kind of lemmas shown in Sect.
We see that the times taken for proof reconstruction in Isabelle are again more than
two orders of magnitude larger than the running times of haRVey, and that they depend
mostly on the number of conflict clauses produced (remember also that each conflict
clause is justified by a number of low-level reasoning steps).

None of these examples succumbs to Isabelle’s existing automatic proof methods.
Isabelle 2005 contains a preliminary implementation, without proof reconstruction, of
the combination of resolution-based theorem provers and Isabelle described by Meng et
al. [16], and we have not succeeded in using this implementation to prove the examples
of Tab.[2} for the larger examples, the first-order prover did not complete within 5 min-
utes. For the smaller examples, Isabelle was unable to parse the result of the prover,
which also took orders of magnitude longer than haRVey. This experiment seems to in-
dicate to us that the combination with an SMT solver can be useful for certain problems.

6 Conclusion

We have proposed a technique for combining interactive proof assistants and proof-
producing SMT solvers. Because proofs are certified by the trusted kernel of the interac-
tive prover, theorems established in this way come with the same soundness guarantees
as those theorems established interactively. The combination with an efficient exter-
nal reasoner allows us to significantly raise the degree of automation while retaining
the expressiveness of the input language for specification. Our current implementation
combines Isabelle/HOL with the fragment of haRVey that handles quantifier-free first-
order logic with uninterpreted function and predicate symbols. However, the overall
approach extends to other interactive provers and to other decidable fragments of first-
order logic. In particular, we plan to address linear arithmetic along the same lines by
making haRVey output compact proof traces that can be replayed within Isabelle/HOL.

On the implementation level, we observe that the time Isabelle takes to replay a
proof trace significantly exceeds the time taken by haRVey to find the proof, although
basically no proof search is required. We believe that a significant part of this run-time

180 P. Fontaine et al.

penalty comes from the overhead incurred by the support for higher-order abstract syn-
tax, but more investigation will be necessary into this matter. It also remains to be seen
whether efficiency of proof reconstruction is a big issue for those verification condi-
tions that we expect to see in practical applications (where we are mostly interested in
stronger theories). Also, proof reconstruction can be done off-line, whereas an oracle-
style combination should be sufficient for interactive proof.

On a conceptual level, we propose to study and identify uniform formats for proof
traces for SMT solvers, akin to the SMT-LIB input format, to enable comparisons be-
tween different solvers and to standardize the interface towards interactive proof assis-
tants (and, in fact, independent proof checkers).

Acknowledgements. We are grateful to Kamal Kant Gupta, who contributed to the syn-
tactic translation from Isabelle to the SMT format, and to Tjark Weber for his help with
integrating and maintaining our code for SAT proofs within the Isabelle distribution.

References

1. M. Baaz, U. Egly, and A. Leitsch. Normal form transformations. In J. A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume 1, chapter 5, pages 273—
333. Elsevier Science B.V., 2001.

2. C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating validity
checker. In CAV, volume 3114 of LNCS, pages 515-518. Springer, Apr. 2004.

3. D. Barsotti, L. Prensa-Nieto, and A. Tiu. Verification of clock synchronization algorithms:
Experiments on a combination of deductive tools. In Proc. of the Fifth Workshop on Auto-
mated Verification of Critical Systems (AVOCS), ENTCS, 2005. to appear.

4. M. Bezem, D. Hendriks, and H. de Nivelle. Automated proof construction in type theory
using resolution. J. Autom. Reasoning, 29(3-4):253-275, 2002.

5. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz, and R. Se-
bastiani. The MathSAT 3 System. In CADE, volume 3632 of LNCS, pages 315-321, Tallinn,
Estonia, 2005. Springer.

6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Comm.
of the ACM, 5(7):394-397, 1962.

7. D. Déharbe and S. Ranise. Light-weight theorem proving for debugging and verifying units
of code. In Software Engineering and Formal Methods (SEFM), pages 220-228. IEEE Comp.
Soc., Sept. 2003.

8. P.J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpressions problem.
Journal of the ACM, 27(4):758-771, 1980.

9. N. Eén and N. Sorensson. An extensible SAT-solver. In E. Giunchiglia and A. Tacchella,
editors, SAT, volume 2919 of LNCS, pages 502-518. Springer, 2003.

10. J.-C. Filliatre, S. Owre, H. RueB, and N. Shankar. ICS: integrated canonizer and solver. In
G. Berry, H. Comon, and A. Finkel, editors, CAV, volume 2102 of LNCS, pages 246-249.
Springer, 2001.

11. P. Fontaine. Techniques for verification of concurrent systems with invariants. PhD thesis,
Institut Montefiore, Université de Liege, Belgium, Sept. 2004.

12. P. Fontaine and E. P. Gribomont. Using BDDs with combinations of theories. In M. Baaz
and A. Voronkov, editors, LPAR, volume 2514 of LNCS, pages 190-201. Springer, 2002.

13. J. Hurd. Integrating Gandalf and HOL. In Theorem Proving in Higher-Order Logics
(TPHOLSs’99), volume 1690 of LNCS, pages 311-322, Nice, France, 1999. Springer.

14

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

Towards Combining SMT Solvers and Interactive Proof Assistants 181

A. Mahboubi. Programming and certifying the CAD algorithm inside the coq system. In
T. Coquand, H. Lombardi, and M.-F. Roy, editors, Mathematics, Algorithms, Proofs, volume
05021 of Dagstuhl Seminar Proceedings, Schloss Dagstuhl, Germany, 2005.

A. Meier. TRAMP: Transformation of machine-found proofs into ND-proofs at the assertion
level. In D. McAllester, editor, CADE, volume 1831 of LNCS, pages 460-464, Pittsburgh,
PA, 2000. Springer.

J. Meng, C. Quigley, and L. C. Paulson. Automation for interactive proof: First prototype.
Information and Computation, to appear.

D. G. Mitchell. A SAT solver primer. EATCS Bulletin, 85:112-133, 2005.

G. Necula and P. Lee. Efficient representation and validation of logical proofs. In Logics in
Computer Science (LICS’98), pages 93—104. IEEE Press, 1998.

G. C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, Oct. 1998.
Available as Technical Report CMU-CS-98-154.

G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure. Journal
of the ACM, 27(2):356-364, 1980.

Q. H. Nguyen, C. Kirchner, and H. Kirchner. External rewriting for skeptical proof assistants.
J. Autom. Reason., 29(3-4):309-336, 2002.

R. Nieuwenhuis and A. Oliveras. Union-find and congruence closure algorithms that produce
proofs. In C. Tinelli and S. Ranise, editors, PDPAR, 2004.

T. Nipkow, L. Paulson, and M. Wenzel. Isabelle’HOL. A Proof Assistant for Higher-Order
Logic. Number 2283 in LNCS. Springer, 2002.

S. Ranise and C. Tinelli. The SMT-LIB standard : Version 1.1, Mar. 2005.

J. H. Siekmann and many others. Proof development with OMEGA. In CADE, pages 144—
149, 2002.

A. Tiu. Formalization of a generalized protocol for clock synchronization in Isabelle/HOL.
Archive of Formal Proofs: http://afp.sourceforge.net, 2005.

G. S. Tseitin. On the complexity of derivation in propositional calculus. In A. O. Slisenko,
editor, Studies in Constructive Mathematics and Mathematical Logic, volume 11, pages 115—
125. 1970.

T. Weber. Using a SAT solver as a fast decision procedure for propositional logic in an
LCF-style theorem prover. In J. Hurd, E. Smith, and A. Darbari, editors, Theorem Proving
in Higher Order Logics (TPHOLs 2005), Emerging Trends, pages 180—-189. Oxford Univ.
Comp. Lab., Prog. Res. Group, 2005. Report PRG-RR-05-02.

L. Zhang and S. Malik. The quest for efficient Boolean satisfiability solvers. In A. Voronkov,
editor, CADE, volume 2392 of LNCS, pages 295-313. Springer, 2002.

L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-based
checker. In Design, Automation and Test in Europe (DATE 2003), pages 10880-85, Mu-
nich, Germany, 2003. IEEE Comp. Soc.

	Introduction
	Motivation for Tool Integration
	Proof Reconstruction for Propositional Logic
	Proof Traces from SMT Solvers
	SAT Solvers Beyond Boolean Logic
	Improving Efficiency
	Congruence Closure

	Proof Reconstruction for Congruence Closure
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

