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Abstract. We present a static analysis technique for the verification
of cryptographic protocols, specified in a process calculus. Rather than
assuming a specific, fixed set of cryptographic primitives, we only re-
quire them to be specified through a term rewriting system, with no
restrictions. Examples are provided to support our analysis. First, we
tackle forward secrecy for a Diffie-Hellman-based protocol involving ex-
ponentiation, multiplication and inversion. Then, a simplified version of
Kerberos is analyzed, showing that its use of timestamps succeeds in
preventing replay attacks.

1 Introduction

Process calculi [16] have been extensively used for cryptographic protocol speci-
fication and verification, exploiting formal methods. Several of these calculi (e.g.
Spi [2]), however, use a specific set of cryptographic primitives, which is often
entwined with the definition of the process syntax and semantics, e.g. by intro-
ducing pattern matching on encrypted messages. On the one hand, this simplifies
the presentation of the calculus; also the verification tools only need to consider
a given set of primitives. On the other hand, protocols using different primitives
cannot be specified in the calculus as it is: one has to suitably extend it and to
adapt existing tools to cope with the extensions. Of course, the new tools also
needs new, adapted soundness proofs.

The applied pi calculus [I] instead does not fix the set of primitives. Its pro-
cesses can exchange arbitrary terms, that are considered up to some equivalence
relation. This relation can be defined by the user through an equational theory.
In this scenario, adding primitives is done by adding the relevant equations to
the theory, without changing the syntax of the processes. In other words, the
applied pi effectively separates the semantics of the processes, which is fixed, from
the semantics of the terms, which is user-defined.

In this paper, we present a technique for the static analysis of protocols spec-
ified in a (slight) variant of the applied pi. In our calculus, term equivalence is
instead specified through an arbitrary rewriting system R. Indeed, we do not
put any restrictions on R: it needs neither to be confluent nor terminating.
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Our technique borrows from the control flow analysis (CFA) approach [19,[5]
and from the algorithms for non-deterministic finite tree automata (NFTA)
[10,21]. As in the CFA, we extract a number of constraints from a protocol spec-
ification, expressed as a process. Then, we solve the constraints using the com-
pletion algorithm in [23], which turns out to be very similar to the one in [10,21].
The result is a NFTA F describing a language which is an over-approximation of
the set of terms exchanged by the protocol, in all their possible equivalent forms
according to R. Finally, the automaton F can be inspected to check a number
of security properties of the protocol. Essentially, ours is a reachability analysis.

Exploiting this technique, we analyzed protocols using both standard crypto-
graphic primitives, such as encryptions and signatures, as well as more “prob-
lematic” primitives such as exponentials and XOR. Exponentials are hard to
deal with because their equational theory has many equations, and therefore
equivalent terms may assume very different shapes. As a consequence, it is hard
to find an accurate over-approximation for them. The literature often reports
on studies carried out assuming only a few equations. For instance, from the
web page of the AVISPA project [3] one sees examples with three equations for
exp and inversion (e)~! over finite-fields, analyzed through the tool in [6]. In
the example of Sect. I we consider exp, x, 1, and (e)~!, axiomatizing their
interactions with twelve equations. Yet, our implementation of the presented
analysis was able to prove the forward secrecy property for a protocol based on
the Diffie-Hellman key exchange [§].

Our technique also offers a limited treatment of time. Here we report on the
success of our tool for the verification of a simplified version of the Kerberos
protocol [20,[18], involving timestamps. In our specification, we allow the disclo-
sure of an old session key, mimicking a secret leak. The tool was able to prove
the secrecy of messages exchanged in newer sessions, confirming the protocol is
resilient of replay attacks with the compromised old key.

Finally, our technique allows for some composition of results. Albeit with some
limitations, it is possible to analyze the components of a system independently,
and then merge the results later to derive a sound analysis for the whole system.

A related approach to ours is in [4]. However, they only consider certain
equational theories, e.g. without associativity, and define a semi-algorithm to
obtain rewriting rules with “partial normal forms.” They then use ProVerif to
check processes equivalent, thus establishing security properties. Also, some de-
cidability results for (a significant fragment of ) the exponential theory are in [15].
Other applications of NFTA to security can be found in [I2,[IT]. There, protocols
are specified through rewriting, rather than process calculi. Another interesting
work is by Goubault [13], dealing with exponentials through rewriting. There,
however, only exponentials with a fixed base are considered. Monniaux in [I7]
also uses NTFA for verifying protocols, when crypto primitives can be expressed
through left-linear rewritings. Finally, there is an earlier analysis for the applied
pi calculus in [22]. However, it only applies to free terms, subject to no rewriting.

Summary. In Sect. Bl we introduce background and notation. We present our
calculus in Sect. Bl defining its dynamic semantics in Sect. @l The same section
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has the Diffie-Hellman example. Sect. [l describes the static analysis and its ap-
plication to Diffie-Hellman and Kerberos. In Sect. [Glwe discuss compositionality.

2 Background and Notation

A non-deterministic finite tree automaton (NFTA) A is determined by its finite
set of states Q@ = {@a, @b,...} and its set of transitions. Transitions have the
form @q — T, where T is a generic term built using function symbols and states
in Q. For example, we consider the following A:

@ — 0 Ga—1 @a — 2
@b — nil @b — cons(@a, @b) @c — fst(@b)

In the above the function symbols are 0, 1,2, nil (nullary), fst (unary) and cons
(binary). States Q are {@a, @b, @c}. Each state @q has an associated language
[@q] 4, given by the set of the state-free terms reachable through transitions.
For example, we have @ — cons(@a, @) — cons(@a, cons(@a,@b)) — cons(0,
cons(@a, @b)) — cons(0, cons(1,@b)) — cons(0, cons(1,nil)) = T, and therefore
T e [@b]A.

A term rewriting system R is a set of rewriting rules, having the form L = R,
where L, R are terms built using function symbols and variables. For example,
the usual rewriting rules for pairs are:

fst(cons(X,Y)) = X snd(cons(X,Y)) =Y

In [23] an algorithm is described for computing the R-completion of an automa-
ton A. The result is another automaton F such that its languages 1) include
those of A, and 2) are closed under rewriting. Formally, F is such that whenever
@q —%—% T also @q —% T for any @q, T'. For instance, completing the 4 above,
we obtain an F such that @c —7% 1. A very similar algorithm was presented in
[10]. Once such an F is computed, it is possible to verify properties about the
languages of A up-to rewriting by inspecting their over-approximations in F.

For our purposes, we also want F to satisfy a set of intersection constraints Z,
provided as an input to the algorithm. These constraints have the form @aneb C
@c, meaning that the intersection of the languages [@a]z and [@b]r must be
included in [@c]z. The algorithm in [23] was adapted to handle Z and is the
basis for our analysis tool.

The time complexity of the completion algorithm is polynomial (assuming
that the depth of each left hand side in any rewriting rule is constant).

3 Syntax

Our process calculus is a simplified version of the applied pi calculus [I], in
that processes exchange values using a global public network channel. Values
are simply represented as terms, up to the equivalence specified by a rewriting
system R. We write 7 for the set of terms. We also use X' as a set of variables.
The syntax of our calculus is rather standard.
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mu=inz |out M |[x=y||letz=M |newx |repl|chk
Pu=nil|n.P|(P|P)

We now briefly describe our calculus: its semantics will be given in Sect.
Intuitively, nil is a process that performs no actions; 7.P executes the prefix
7 and then behaves as P; Py|P, runs concurrently the processes P; and Ps.
Prefixes perform the following actions: in  reads a term from the network and
binds x to it; out M sends a term to the network; [x = y] compares the term
bound to z and y and stops the process if they differ; let x = M simply locally
binds z to the value of M; new x generates a fresh value and binds x to it;
repl spawns an unlimited number of copies of the running process, which will
run independently; chk is a special action that we use to model certain kinds of
attacks, which we will address in Sect.

Note that match [z = y] is only allowed between variables. This is actually
not a restriction, since matching between arbitrary terms, e.g. [M = N].P can
be expressed by let © = M let y =N .[xz = y|.P.

As usual, the bound variables in a process are those under a let,new, or in
prefix; the others are free. A process with no free variables is closed.

Given a process, we use addresses 0 € {n,|,r}* to point to its subprocesses.
Intuitively, n chooses the continuation P for a process mw.P, while | and r choose
the left and right branch of a parallel P;|Ps, respectively. An address 0 is a
concatenation of these selectors, singling out the subprocess PQf as defined
below. We write ¢ for the empty string.

P@e =P (P,|Py)@fl = P,@f
m.PQfn = PQH (P1|P2)@9I’ = P2@9

4 Dynamic Semantics

Given a closed process P, we define its semantics through a multiset rewriting
system [I4[7]. A state is a multiset o of parallel threads. Each thread is formed
by an environment p € X — 7 and a continuation address 6 singling out a
subprocess of P. We write such a thread as (p, ). Intuitively, (p,0) runs the
process PQ@Q6 under the bindings in p. The initial state is (0, €).

We extend p homomorphically to terms: p(M) replaces variables in M with
the value they are bound to in p. Also, as a handy convention, if PQf = P | P,
we write (p, ) for the multiset {(p,10), (p,r0)}, or its further expansion, so that
threads in the state never have continuation addresses ¢’ such that P@#’ has
the form P;|Ps.

Our semantics is given by the rules in Fig.[Il Local rules only care about one or
two elements of the current state: these elements are rewritten independently of
the rest of the state, which does not change. All the rules fire a prefix, advancing
the current continuation address 6 to nf, except for rule Rew.

Rule Comm performs communication between threads. Rule Out outputs a
term to the external environment. Since out M may be handled by either Comm
or Out, there is no guarantee that outputs have a corresponding input; instead,
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LocAL RULES

P@f, =inz.P" PQf; =out M .P" pl =pi[z— p2(M)]

Comm comm 01,02,p2(M) <
omm Y1,v2,p21 ),

<p1?91>7<p2792> p/1:n91>><172>n92>

PQf =out M .P’

Out ou
(p,0) 222200, (5, no)
PQf =[x =y].P" p(x) = p(y) PQO =let x =M .P’
Match - Let -
(p,0)—(p,n0) (p,0)—(plx — p(M)],n0)
— /
Repl PQ@ = repl.P Rew p(x) -r M

(p,0)=(p,0), (p,nd) (p,0)=(plz — M],0)

GLOBAL RULES

PQ@ = new z .P’ 4§ = genFresh() PQ@@ = chk.P’
New T N Chk chk
o, (p,0) 220, {ple > 2], n6) 0, (p,0) % (o, )

Fig. 1. Multiset Rewriting Rules

they may simply cause a barb, i.e. an action observed only by the external envi-
ronment. Note that there is no rule for input, and therefore processes can never
receive a value from the environment — for studying security issues our processes
will explicitly contain an adversary.

Rule Match, allows a process to continue only if x and y are bound to the
same term. Rule Let simply updates p with the new binding. Rule Repl allows
for spawning a new copy of P’. In Rew, the thread rewrites the term bound by
x, thus performing an internal computation step; note that these internal steps
may lead a matching to succeed.

Global rules instead look at the whole state. Rule New is not completely
standard, and it generates a fresh value & for the variable x. Here we postulate
that 1) a constant (nullary function) symbol Z exists for each variable bound by
new in P, and 2) two function symbols val, next exist, subject to no rewriting
in R. Note that we only need a finite number of such Z, since there are only
finitely many variables in P and we have no a-conversion. When rule New is
applied, the & is generated by a genFresh() primitive, which we assume to choose
among val(Z), val(next(Z)), val(next(next(Z))), . ... To make it possible to track
new-generated values to their new prefix in P, we require that all new-bound
variables are distinct, and therefore so are their related constants Z. Note that
this representation prevents an adversary Adv to deduce any instance of & from
other instances he knows, even if Adv can use val and next.

Rule Chk is peculiar: when a chk prefix is fired all the other threads are
aborted, and the thread continues its execution alone. For simplicity, we admit
only one firing of chk. We use this special prefix to model some kind of attacks.
For instance, suppose we want to study the case in which the adversary learns
some secret term S, maybe by corrupting some participant to the protocol. A
straightforward way to model this attack would be simply adding out S to the
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protocol, disclosing S. While this would work, in many cases giving this kind of
power to the adversary might allow for trivial attacks. Instead, to keep the game
fair, we could restrict the interaction between the adversary and the participants
after the disclosure of S. For example, we could imagine that it would take a
long time for the adversary to obtain S, and meanwhile the participants have
terminated the protocol run, either normally or because of a time-out.

A possible usage of chk is the following. The adversary, after having learnt
S, is only allowed to run alone, and possibly use this new knowledge to decrypt
messages it learnt in the past. In our calculus, we model this scenario as

(Proto|Adv)|in know .chk.(out know .out S .nil|Adv)

Usually, the process Adv is chosen independently of the protocol, modeling the
capabilities of any adversary, as we shall do in our examples.

Note that we include the adversary process twice. First, the adversary can
interact with the protocol. Later, when chk is fired, the adversary can learn S
and go on with its computation, without being able to communicate with the
protocol participants. Since we want to allow the adversary to keep its knowledge
across the chk firing, we simply save it in the variable know before the chk, and
make it again available to the adversary later on. Note that, while know is only
a single term, it can be a cons-list of all the terms known by the adversary.
Therefore know actually can bring all the old adversary knowledge into the new
world, provided we have a primitive for pairing. In the next section, we show
such a use of chk.

Another interesting use of chk we found is for modeling timestamps, as we
will show in Sect.

4.1 Diffie-Hellman Example

We consider the following key-exchange protocol, based on Diffie-Hellman [§].

1.A—all:g 4. A— B :{m}gs
Q.AHB:{ga}kl 5. ...
3.B— A :{g’he 6. A — all: k1, k2

Initially, the principals A and B share two long term secret keys k1, k2, and agree
on a public finite field GF[p] (where p is a large prime), and public generator g
of GF[p]*. In the second step, principal A generates a nonce a and sends B the
result of g?(mod p), encrypted with the key k1. In the third step, B does the
same, with its own nonce b and key k2. Since both principals know the long
term keys, they can compute (g°)? = g2® = (g2)® (mod p) and use this value as
a session key to exchange the message m in the fourth step.

We study the robustness of this protocol against the active Dolev—Yao [9] ad-
versary (such an adversary has full control over the public network, can reroute,
discard or forge messages; further, he can apply any algebraic operation to terms
learnt before). The adversary we use runs all the available operations in a non-
deterministic way. Doing this, its behaviour encompasses that of any arbitrary
Dolev-Yao adversary.
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More in detail, we are interested in the forward secrecy of the message m.
That is, we want m to be kept secret even though later on the long term keys
k1,k2 are disclosed (last step).

We define the algebra by adapting the rewriting rules for encryption, multi-
plication, exponentiation, and inversion from [I5]:

dec(enc(X,K),K) = X
fst(cons(X,Y)) = X  snd(cons(X,Y)) =Y
x(1,X)=X exp(inv(X),Y) = inv(exp(X,Y))

”— (X, V)= xY,X) x(X,x(Y,2))=x(x(X,Y),2)

) exp(X,1)=> X exp(1, X) =1

inv(inv(X)) = X exp(exp(X,Y), Z) = exp(X, x(Y, Z))
inv(l) =1 exp(x(Y,Z), X) = x(exp(Y, X),exp(Z, X))
x (X, inv(X)) =1 inv(x(X,Y)) = x(inv(X),inv(Y))

Note that the algebra A defined by the above rewriting rules is not the same
algebra of GF[p]*. In fact, A satisfies more equations than the ones that hold
in GF[p]*. For instance, operations in .4 do not specify which modulus is being
used; e.g., inversion modulo n is simply written as inv(X) rather than inv(X,n).
Therefore, we have (a) x(X,inv(X)) = 1 and () exp(Y, x(X,inv(X))) = Y.
However, (a) holds in GF[p]* only if inv(X) is performed modulo p, while (b)
holds only if inv(X) is performed modulo ¢(p) = p — 1 (where ¢ is the Euler
function). In spite of A being not equal to the GF[p]* algebra, the equations that
hold in GF[p]* do hold in A.
We use the following process:

P =new g .(DY|new k1 .new k2 .(Proto|Chk))
Chk =in know .chk.(out know .out k1 .out k2 .nil|DY"))
Proto =A|B
A =repl.new a .out enc(exp(g, a), k1) .in x .
let k = exp(dec(zx, k2),a) .out enc(m, k) .nil
B =repl.new b .in = .out enc(exp(g, b), k2) .
let k& = exp(dec(z, k1),b) .in n .out hash(dec(n, k)) .nil

DY =repl.((new nonce .out nonce .nillout g .out 1 .nil)|
in z .in y .out enc(x,y) .out dec(z,y) .out exp(z,y) .
out X(z,y) .out inv(x) .out cons(z,y) .out fst(z) .out snd(z) .

out hash(x) .out val(z) .out next(z) .nil)

The specification P combines the protocol participants with the DY adversary.
The principal B outputs the hash of the exchanged message, just as a witness.
We also add a C'hk process for the explicit disclosure of the secret keys: of course,
this only happens after the chk prefix is fired.

We expect P to ensure the secrecy of the message m. Further, we expect this
secrecy property to still hold even after the chk fires and thus the long term keys
k1, k2 are disclosed. This is the forward secrecy property.
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5 Static Semantics

Our analysis over-approximates the values that processes exchange at run-time.
These sets of values result from solving a set of constraints generated from a
given process P.

We decided to represent these sets of values as the languages associates with
the states of a finite tree automaton. Some of the constraints extracted from P
can be expressed as transitions (e.g. {f(g(z),y)|lz € X Ay € Y} C Z becomes
0z — f(g(@x),Qy)), forming an automaton .A. The others are intersection con-
straints, and form a set Z, with typical element @a N @b C @c. Of course, we also
require our sets of values be closed under rewritings in R.

Our tool, supplied with A,Z, R, computes an automaton F such that its
languages include those of A, satisfy Z, and are closed under R. Once done that,
we can check a number of properties about P by simply inspecting F.

We first give some intuition behind the construction of A and Z. Roughly,
we follow the data-flow between processes depicted in Fig. 2l In the figure, the
arrows towards/from processes represent inputs and outputs, respectively, while
bullets represent the data-flow points which we focus on in our analysis. For each
bullet, we compute an approximation for the set of values that flow through it.

More in detail, we generate a dedicated state of A for each bullet, and add
transitions between states following the arrows in the figure. Formally, the states
of A are:

Q@in, Qout, @chk-in, @chk-out;

— @in-bf and @out-bl, for each 0 such that PQO = P;|P,, and b € {I,r};
— @in-nf and @out-n#, for each # such that PQ# = repl.P’;

@inters-0, for each 6 such that PQf = [x = y].P’;

— @x and @x-val, for each new = occurring in P;

— @x, for each let t = M and in x occurring in P.

We generate the transitions of the automaton A and the intersection constraints
7 using the gen function, recursively defined in Fig. The expression gen

out out out out out chk—out
e T T = M
nil inx.P outM.P letx=M . P chk . P
in_.l in 1 in 1 in 1 &'l ichk—in
out out out out
N val(x), val(next(X)), ...
o [ ‘
v v
P 1Q repl . P [x=y] . P newx.P——

in in

Fig. 2. Data Flow
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gen(0,nil, ¢, in, out) = 0
gen(0,in = .P, (,in,out) = (6x — in), gen(nb, P, {[x — @x], in, out)
gen(0,out M .P,(,in,out) = (out — ((M)), gen(nb, P, (,in, out)

(0, (P|Q), ¢, in, out) = (out — @out-10), (out — @out-rh),

(@in-10 — in), (@in-10 — @out-rh), (@in-rf — in), (@in-rf — Gout-l6),
gen(l6, P, ¢, @in-10, @out-10), gen(rf, Q, ¢, @in-rf, Qout-rh)

gen

gen(0,repl.P, ¢, in, out) = (out — @out-nh), (@in-nh — in),
(@in-nf — @out-nfh), gen(nb, P, (, @in-nf, @out-nbh)
gen(0,let x = M .P,(,in,out) = (6x — ((M)), gen(nf, P, {[x — @x],in, out)
gen(0,new z .P, (,in, out) = (@x — val(@x-val)),
(@x-val — %), (6x-val — next(@x-val)), gen(nf, P, {[x — @x], in, out)
gen(0, [x = y].P, (,in,out) = ({(x) N ¢(y) C @inters-0),
gen(n@, P, ([z,y — @inters-0],in, out)
gen(0, chk.P, ¢, in, out) = gen(nf, P, (, @chk-in, @chk-out)

Fig. 3. Extraction of A, Z from a process

(0, P, ¢, in,out) generates the transitions and intersection constraints for P’ =
P@@, a subprocess of HY. The static environment ( € X - Q keeps track of
which state of A is used to approximate the sets of values that can be dynam-
ically bound to each variable in scope. The in and out parameters define the
states for the approximation of the values that can be received and sent by P’,
respectively. Initially, gen is called as gen(e, P, 0, @in, @out) to generate A, Z for
the whole process P.

No productions are generated for nil. For in z .P’, we generate a new state
@x, and a transition from it to in to include inputs in its language. Then, we
update ¢ (the dotted line in Fig. 2]) by binding x to @x, and proceed recursively
with the continuation P’. Outputs as out M .P’ generate a transition from the
out state to ((M), the term obtained by replacing all the variables in M with
their corresponding states; we then proceed recursively for P’. For example, the
generated transitions for P = in x .out f(z) .out g(x) .nil are @x — @in, Gout —
f(@x), @ut — g(@x). Note that each output contributes to the language of @out
by adding transitions to those already generated. This is depicted in Fig. 2l by
the out arrow going straight from left to the right and collecting possible outputs
from below. As seen in the figure, this happens for all processes, except for chk.

Parallel processes such as P|@Q are handled by creating four dedicated states
for input and output of the left and right branch, then adding transitions to
cross-connect inputs and outputs as in Fig. 2l Replication repl.P is done in a
similar fashion, with a loopback transition.

For let bindings, we simply create a new state for the approximation of the
bound value, and update ¢ accordingly. A new z .P’ causes the generation of

! The parameter P’ of gen is actually redundant since it is determined by 6, but its
presence allows for a simple definition.
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transitions for the language val(Z), val(next(Z)), val(next(next(z))), ... using the
two states @x and @x-val; then, we update ¢ to bind = to this language.

A match [x = y].P’ creates a new state @inters-¢ for the (approximation
of the) intersection of values hold by z and y, together with the associated
intersection constraint; in the analysis of P’ we use this new state for both ((z)
and ¢(y).

When a chk is fired, the continuation runs in an isolated world, therefore
in the analysis we simply reset in, out to new independent states and proceed
recursively. Note that { is not changed, and that bound variables bring their
values into the new world (e.g. in  .chk.out z .nil).

Note that our analysis generates no transitions for states @in and @chk-in:
their language is therefore empty. In fact, top-level processes receive no value
from their environment; this reflects the absence of an input rule.

Matching and Precision. Consider the following process:

P, =out cons(0,0) .out cons(1,1) .nil |
inz let f=fst(x) .let z=0 .[f = z].out snd(x) .nil

At run-time, the last out snd(z) can output 0, only. However, our analysis of
the match [f = z] does only refine the approximation of f and z, and not that
of x. Therefore, in the analysis, a single state is used for the values of = before
and after the match. The result of the analysis is that the last out may output
either 0 or 1.

A more precise result can be obtained by using instead the following pattern:

P, =out cons(0,0) .out cons(1, 1) .nil |
in z .let y = cons(0,snd(x)) .[x = y].out snd(z) .nil

Here the analysis of the match refines the approximation of z itself, and therefore
deduces that the last output can only be 0. We will use this style of matching
in our examples.

5.1 Subject Reduction

Here, we establish the soundness for our analysis.

First, we define an address compatibility relation ~ over addresses. Roughly
speaking, 67 ~ 65 means that at run-time a thread running P@Q6@; could commu-
nicate with a thread running P@@,. The actual ~ over-approximates run-time
communication, and simply checks if the two addresses point to processes either
at different branches of the same parallel, or under the same replication. We also
take into account the presence of the chk prefix, since its continuation cannot
interact with previously spawned threads.

More in detail, we say that chk occurs between 6 and 6’0 iff for some 6,, 0, we
have 0’ = 0,0, and PQ#,0 = chk.P’. Then, the address compatibility relation ~
is the minimum relation such that
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— if chk does neither occur between 10 and 6,16, nor between rf and 6,.rf, then
0,10 ~ 0,.r6

— if PQ6O = repl.P’ and chk does neither occur between 6 and 016, nor between
0 and 650, then 616 ~ 0,0

The following lemma ensures that the relation ~ actually encompasses all run-
time communications. Its proof can be done by induction on the number of
computation steps.

« comm 01,62,M
- =

Lemma 1. If P— , then 01 ~ 05.

Input and output states related to compatible addresses satisfy the following
inclusion property. The proof of this lemma is by structural induction on P.

Lemma 2. If 01 ~ 0, then we have [@out-01]F C [@in—0s]x, provided these
states exist.

The following theorem ensures that our analysis is sound, relating the dynamic
semantics to the static one.

Theorem 1 (Subject Reduction). Given P, let F be the automata resulting
from the analysis. Assume (D, €)—* 0, (p,6).

1. Yz € dom(p). p(x) € (@]
2. if a = (out @ , M) and chk was not fired before o, then M € [@out|r
3. if a = (out @ , M) and chk was fired before «, then M € [@chk-out|x

Proof (Sketch). By induction on the number of computation steps. First, we
consider property ([II): for this, we only need to check the rules that update the
environment p.

When the Comm rule is applied, yielding to comm 61, 02, p2(M), by Lemmalll
we have 07 ~ 03. We look for the transitions for in x and out M generated
by gen(). These transitions have the form @x — in and out — ((M), where
in = @in-60; and out = @out-0,. The addresses 0;,0,, in general, are not the
same as 01,605, but they are strictly related so that we have also 0; ~ 0,. By
Lemma 2] p)(z) = p2(M) € [@out-0,]F C [@in-6;]x C [0x]|z, provided that
¢(M) is a correct approximation of pa(M ). For this last proof obligation, we note
that when there is no match involving variables in M, we have ((z) = @x, so
inductive hypothesis and structural induction on M suffices. Otherwise, if there
is a match, we have ((x) = @inters-0,, for some x occurring in M. Here we
first proceed by structural induction on P, obtaining ps(x) € [@inters-6,,]r,
and then continue as for the no-match case. This shows that property () is
preserved by Comm.

We now tackle property (0l for the other rules. The Let case is straightforward:
we generated the transition @x — (M), so we have p(M) € [0x]z. Rule New
also poses no problem, because the fresh term returned by genFresh() is chosen
among the terms in the language of @x. Finally, environment updates by rule
Rew are harmless, the languages of F being closed under rewritings.
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For properties ([2I8]), only rule Out may cause out 6, M. Here, structural in-
duction on P is sufficient to show that M € [@out-6']x, where PQY’ ranges from
P@# to i) the enclosing chk.P’, if any, or otherwise to ii) the top level P. From
this, we deduce M € [@out]r or M € [@chk-out]s, depending on whether ii) or
i) applies, respectively. O

5.2 Diffie-Hellman Example (Continued)

We ran the above analysis on the protocol specified in Sect. Il computing the
result F. Our tool generated an F having 47 states and 865 transitions. Our
analysis was able to establish forward secrecy, as m ¢ [@out—chk] .

5.3 Kerberos

We now study a protocol involving timestamps. We chose a simplified version of
Kerberos [20118].

In this protocol, a key exchange is performed by an authentication server
AS, a client C' and a server S. Initially, the authentication server shares long
term keys with the client (kc) and with the server (ks). Upon request from the
client, AS generates a fresh key kcs and sends it to the client encrypted with kc.
Further, AS also provides a certificate for the freshness of kcs, made of the kcs
key itself and the current time, both encrypted by ks. The server S can decrypt
the certificate and ensure that kcs is indeed fresh by checking the timestamp.
After that, C' and S use kcs to exchange a session key ksess, and then proceed
exchanging messages encrypted with ksess.

We study the role of timestamps in the protocol. To that purpose, we intro-
duce a vulnerability in the server S. In our implementation, we let the server to
disclose kcs, potentially mining the security of the protocol. However, to keep
the game fair, disclosure may only happen after a long time since the times-
tamp for kcs has been generated. We model this through the occurrence of a
chk. Hopefully, if timestamps are properly checked, disclosing a old kcs will not
disrupt new sessions of the protocol.

In our specification, we abstract the actual timestamps values with two con-
stants before and after. Initially, the protocol uses only before: any other times-
tamp value is considered not valid, being in the far past or far future. After chk,
the before timestamp has expired, and the protocol has moved to newer times-
tamps, represented by after. Similarly, we use msgl and msg2 for the messages
exchanged by C' and S before and after the chk, respectively.

We expect this faulty protocol implementation not to disclose msgl until a
chk occurs. After chk, we do expect msgl to be disclosed, but we hope any new
msg2 messages to be kept secret.

We specify the above as follows: (we omit parentheses in Pi|---|P, for read-
ability)

P =DY|new kc .new ks .(AS|C|S)
AS =repl.new kcs .in nonce .out enc(cons(nonce, kcs), kc) .

out enc(cons(kcs, before), ks) .nil
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C =repl.new nonce .out nonce .in ticket .in cert .
let ticketCorrect = enc(cons(nonce, snd(dec(ticket, kc))), kc) .
[ticket = ticketCorrect].let kes = snd(dec(ticket, kc)) .
new ksess .out enc(ksess, kcs) .out cert .out enc(msgl, ksess) .nil
S =repl.in tsess .in cert .let sess = dec(cert, ks) .
let sessCorrect = cons(fst(sess), before) .[sess = sessCorrect].
let ksess = dec(tsess, fst(sess)) .in m .out hash(dec(m, ksess)) .Chk
Chk =in know .chk.(out know .out sess .nil|AS’|C’|S'| DY)
DY =repl.out before .out after .new nonceDY .out nonceDY .nil|
repl.in  .in y .out cons(z,y) .out fst(z) .out snd(x) .

out dec(z,y) .out enc(x,y) .out hash(x) .out val(z) .out next(x) .nil

where AS’,C’, S’ are the same as AS,C, S except that before is replaced with
after, msgl is replaced with msg2, and C'hk is replaced with nil. As in the Diffie-
Hellman example, our specification, once exchanged a message msgl or msg2,
output its hash.

Using our tool, we generated F (77 states, 1424 transitions) and verified that
msgl ¢ [@out]r and msg2 ¢ [@out-chk], thus establishing the wanted properties.
On a side note, we also have msgl € [@out-chk], as it should be, since msgl is
actually disclosed and our analysis is sound.

6 A Bit of Compositionality

Real-world systems often run many different protocols in a concurrent fashion.
However, one usually studies the security properties of each protocol indepen-
dently. This may not be enough to ensure the integrity of a system, since two
otherwise safe protocols may have unwanted interactions, especially if the pro-
tocols share secrets. One would rather be able to derive properties about P |Ps
from the studies of P; and P.

Our analysis offers some opportunities for composing security results. Assume
P; and P, were analyzed beforehand, yielding the automata F; and F5. We can
build an F for P;|P» by merging the transitions of F; and F» and adding

@in; — Q@in @in; — Qouts
@iny — @in @iny, — Q@outy
Q@out — Qout Qout — Qouts

just as it happens for the analysis of the parallel. Such an F is sound, provided
that [@outy]r7, C [@ing]s, and [@outs]r, C [@in;]s,. This last proof obligations
might be checked by static analysis. If the obligations do not hold (or cannot
be proved), the completion algorithm can be restarted from the above F to
compute a sound approximation. This could be less expensive than rebuilding
the approximation from scratch, since parts of the work have been already done

when computing F; and Fo.
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7 Conclusion

We presented a simple model for the specification of cryptographic protocols,
based on process calculi and term rewriting. We stress that we allow any rewrit-
ing system for defining the cryptographic primitives. Further, the model deals
with some basic temporal aspects, and therefore it is suitable to express certain
security properties involving time, such as forward secrecy.

We defined a static analysis for the verification of protocols so that it is closed
under rewritings. The analysis focuses on foreseeing the protocol behaviour be-
fore and after a selected point in time, represented by the firing of chk. Also, we
explored some opportunities for composing results of our analysis.

We implemented the analysis, and used our tool to check some significant
protocols. The tool confirmed that we can handle complex rewriting rules, such
that those of exponentials, and protocols involving timestamps.
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