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Abstract. Truly autonomic networks ultimately require self-modifying,
evolving protocol software. Otherwise humans must intervene in every sit-
uation that has not been anticipated at design time. For this to become
feasible autonomic systems must ensure non-disruptive on-line software
evolution. We investigate related code steering techniques in two direc-
tions: One is the fully automatic selection of protocol service elements
where, depending on device characteristics and current operation envi-
ronment, each communication entity has to select among a potentially
wide variety of protocol implementations providing similar services. The
other direction relates to the automatic synthesis of new protocol ele-
ments which are the result of optimizing existing implementations for a
specific context. In both cases we look at genetic programming as a tool
to generate new code and software configurations automatically. In this
paper we propose a framework for such a resilient protocol evolution and
report on first exploratory results on the adaptation and re-adaptation
to environmental conditions, and the elimination of superfluous code.

Keywords: protocol synthesis, protocol evolution, genetic programming.

1 Introduction

Managing change in a network and its services is currently a labor intensive
task which is not automated. Any new algorithm must be engineered, then pro-
grammed, and deployed in the network. Today this process is slow and requires
the effort of many people (network managers, engineers, programmers), which is
outside the scope of autonomic networks. Networking software must be able to
adapt and reconfigure – i.e., to evolve – by itself in the most autonomous way
possible.

Ultimately, protocols and algorithms for autonomic networks should evolve
during their own execution, with minimum service disruption. Such long term
run-time automated code evolution is useful in two main situations: a need to
optimize a given network service at run time, that cannot be satisfied by just
optimizing service parameters; in response to steady changes in the environment
or internal errors that require modifications within already deployed code.

At the same time, autonomic networks should be able to resist disruptions
(hence change), including the actions of malicious or erroneous entities which
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try to disturb the network’s functional blocks in any possible way. Ideally, these
blocks would react by detecting and defeating such attacks, and would then
recover and heal themselves to continue providing the required services. In case
of failures, alternative service blocks would replace the non-functioning ones in
a reactive and non-supervised way.

With these problems in mind (simultaneous pressure to evolve and the re-
quirement to resist changes) we describe in this paper our framework for protocol
evolution based on genetic programming. We concentrate on two research direc-
tions: the first one is to automatically select combinations of protocol modules
adapted to given network conditions; the second is the automatic synthesis of
new protocols optimized for a specific context. The contribution of this paper is
to show the feasibility of automatic network software selection based on service
agnostic target functions. This result is based on the introduction of competition
at the level of functional blocks and the use of genetic algorithms to steer the
selection process. We report our experimental results using simple case studies,
still in a simulated, off-line environment, but with considerations and parame-
ters intended to progressively detach the framework from the off-line simulation
out into the real world. We show the feasibility of code trimming, context aware
selection of protocol variants and their re-adaption to changing environments
using the proposed genetic programming framework.

This paper is structured as follows: Section 2 summarizes the state of the art
in program and protocol evolution techniques. Section 3 states our position and
describes our framework for protocol evolution. Section 4 reports the experimen-
tal results obtained so far. Section 5 concludes the paper with our outlook for
this new area.

2 State of the Art and Related Work

Automatic programming or program synthesis refers to any method for auto-
mated generation of a computer program that is able to solve a given problem ex-
pressed in a high-level form. Examples include variations of meta-programming,
deductive program synthesis [1], and evolutionary methods such as genetic pro-
gramming.

Genetic Programming (GP) [2] is a machine learning method to evolve com-
puter programs automatically from random initial code, using genetic operations
such as crossover and mutation, and evolution by natural selection (“survival of
the fittest”) to select the solutions that best satisfy specified criteria. GP is typ-
ically employed when the solution to a problem is not known or very difficult to
program by hand.

Although GP has been mostly applied to off-line solution of problems, it has
also been used to evolve new programs at run-time, in domains such as evolvable
hardware [3] and robotics [4, 5]. However, to the best of our knowledge, on-line
evolution of networking protocol code has not been tried yet.

In [6] genetic algorithms are applied in a decentralized way to evolve agents
that provide network services. Although their work is still implemented via
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simulations, their design aims at on-line evolution. Their results show that evo-
lution can improve agent performance. However, in their scheme, the code itself
does not change. They focus on the evolution of parameters that trigger certain
predefined behaviors.

Protocol synthesis [7] aims to generate a valid protocol specification that sat-
isfies a supplied service specification. A survey of synthesis methods is provided
in [7]. The methods must guarantee the safety and liveness properties of the
synthesized protocols, meaning that these must be guaranteed free from syn-
tactic, logical and semantic design errors. Since these methods must guarantee
error-free code, they are still not feasible for on-line evolution.

Examples of machine learning methods applied to protocol synthesis include
[8, 9, 10, 11, 12]. In [8, 9] an iterative deepening search approach is used to find
protocol specifications that satisfy a given set of security properties.

In [10] genetic search is used to synthesize protocol implementations from
scratch. The synthesized protocols are expressed as communicating finite state
machines. This research is extended in [11] and shows that relatively complex
protocols can be synthesized in this way, and in certain cases these protocols can
even outperform a reference protocol designed and validated by human beings.
However in most cases the fitness of synthesized protocols is significantly lower
than the reference protocol.

In [12] an evolutionary method to synthesize communication protocols is pro-
posed. Similar to [10, 11], it also synthesizes finite state machines. Moreover it
includes a method to derive a set of input/output training sequences that as-
sures semantic correctness of the generated protocol. They show that optimum
protocols can be generated for the simple case of a connection establishment
task.

In most of the existing work, protocol synthesis is regarded as a protocol
engineering method to be applied at the design phase. In contrast, we are in-
vestigating protocol synthesis as a tool for automated protocol evolution, to be
incorporated as part of the tasks that an autonomic network must handle during
run-time, on a routine basis.

3 Evolving Communication Protocols

The main premise underlying our work is that software in an autonomic network
must be self-modifying. If the software was not self-modifying, it would mean
that humans had to cater for the software’s adaption every time that a case
is encountered which was not anticipated at design time. Our aim is to find
a framework where software self-modification is carried out in a goal oriented
and non-disruptive way. Hence, we seek a mechanism which is agnostic to which
function it adapts as long as the mechanism is capable of steering the whole
network into optimal configurations.

We envisage different levels at which self-modification of software takes place
and different time scales at which such modifications can happen. In order to
cope with the constraints of a realistic run-time environment, we aim first at
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optimizing existing working protocol code, as opposed to full protocol synthesis
from scratch. A first step, aimed at a shorter time scale, is the configuration of
function blocks, where the challenge consists in selecting the right combinations
from ready-made modules. Today, this is mostly controlled by standardization
process and interoperability tests. Although several systems able to dynamically
reconfigure software have been proposed, for instance [13, 14], most of these sys-
tems still rely on humans to program exactly what kind of reconfiguration should
be performed under which circumstances. Considerable effort has also been spent
on configurable protocol stacks [15, 16] but here again the reconfigurations were
not fully autonomic.

In the future we imagine that a network “settles” by itself on different protocol
sets without having humans to intervene. For example, depending on the available
hardware, different “stack profiles” could be selected for sensors, PCs or core
routers. This selection process is also applicable at finer time scales where for
example an ad hoc network can switch among different routing algorithms, de-
pending on the current topology. Another example would be the downloading of
networking code, as exemplified by instantiating TCP flavors inside a TCP con-
nection [17], where end nodes have to settle on the optimal combination of options.

At a longer time scale, these self-modification scenarios could in principle be
extended down to the level of single instructions where the autonomic network
would have the power to create new implementation variants, instead of just
manipulating coarse grained functional blocks. At first, these new variants would
emerge out of existing implementations. Eventually, full protocol synthesis from
scratch, at the level of single instructions, could become possible, leading to fully
autonomic networks.

3.1 Resilience and Competition

For such an autonomic selection process to work we need a modus operandi that
permits adaption (medium time scale) as well as evolution (long term). Adap-
tion relates to the configuration of existing functionality while evolution refers
to the modification of old and generation of new functions. We believe that two
attributes of such a system are key for its viability: resilience and competition.

The network must start with inherent resilience, otherwise there is a risk
that (malicious or erroneous) function blocks can be inserted that disrupt the
network’s operation. In other words: adaption and evolution have to be activities
that are running in parallel with the network and which, in the worst case, may
temporarily disturb the network but cannot inhibit its operation.

The second attribute is competition: the autonomic network operates in a con-
stant optimization mode where it picks those function blocks and code variants
which are best suited.

Both attributes are currently implemented by having humans performing the
adaption and evolution, and by writing and selecting those software bundles
which provide the best value. Often, this human activity is not solely based on
detailed analysis but also includes a simple trial–and–error strategy. Our goal is
to rely on the later selection process only and to provide an environment where
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new functionality or function profiles can be evaluated and selected without
disrupting the network.

3.2 Software Hardening and Genetic Programming

We have started to explore the feasibility of self-modifying communication soft-
ware by demonstrating protocol resilience, where protocol implementations can
survive the removal of an arbitrary code line [18]. In the current paper we ex-
plore genetic programming as a tool for modifying, recombining and erasing
protocol modules. Other machine learning methods or heuristics could also be
envisaged, for example, as has been demonstrated for the synthesis of security
protocols [8, 9]. However, plain genetic programming lends itself for our project
because it is agnostic to the functions adapted, and naturally extends to the
finer grained code evolution that enables long-term synthesis and evolution.

Another choice we have made relates to the execution environment for the
protocol software, which should be amenable to genetic programming. Sequential
code, for example, is less suitable than a “chemical soup of rules” execution
model [19, 20] because the executability of a linear code sequence depends on
almost each of its instructions. For our experiments we are currently using our
“Fraglets” chemical model [21], which also permits to express code mobility e.g.,
for evolving code deployment logic. Section 3.5 gives a quick overview of the
Fraglet model and describes its useful properties which make it our model of
choice for protocol synthesis and evolution.

3.3 A Framework for Automated Code Steering

Ideally, a software environment for an autonomic network should feature contin-
uous adaption and evolution: Alternative code variants should co-exist in parallel
with the currently best selection of protocol implementations. In terms of code
steering, there would be a mechanism in place for on-line evaluation and selec-
tion of the alternatives. This on-line evolution has to be a continuously ongoing
process that is decentralized and asynchronous, working on each node and at
many levels inside the graph of functional modules.

Figure 1 shows a conceptual model of how resilience and competition work
together to enable the automatic evolution of protocol implementations and con-
figurations. Applications (or any client protocol) delegate service provisioning to
a resilient protocol implementation, and from time to time or in parallel give
a chance to test candidates. Based on their performance, new service imple-
mentation variants can increase their chance to be selected a next time. Service
variations do include different ways of combining sub-services. Because the eval-
uation and selection mechanism takes into account the overall performance of
a service implementation, it will give preference to the service with the most
optimal internal composition and configuration of sub-services.

Our current implementation of the model of Fig. 1 is still limited to off-line
evolution, i.e. to the case of synchronous evaluation and selection, so there are
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Fig. 1. Conceptual framework for automatic protocol evolution

no concurrent services yet. However we plan to progressively detach it from the
off-line sphere in favor of the long-term goal of on-line evolution.

3.4 Genetic Programming Set-Up for Protocol Evolution

We apply Genetic Programming to evolve communication protocols or protocol
structures, which are regarded as individuals in a GP population. A major differ-
ence between our system and classical genetic programming is that our GP run
starts with a population of working or partially working solutions, which may or
may not be adapted to the task in question. Another difference is that our GP
run is a continuous optimization process: the system must continuously adapt
and readapt. This is in contrast with classical off-line GP where the system runs
until a termination condition is satisfied; it then outputs the solution and stops.

The genotype is the metaphor for the protocol implementation code, and
is manipulated from one generation to the next through well-known genetic
operators such as crossover, mutation and cloning. The crossover operator in
our set-up is a simplified implementation of the genetic concept of homologous
recombination. Homologous recombination states that the exchange of genetic
material can only occur between functionally compatible DNA segments, and is
only triggered when the two DNA strands are completely aligned. This form of
recombination preserves gene functionality, promotes genetic stability, and in-
creases the probability of producing viable offspring. We implement this concept
by dividing the protocol genotype into modules that make up the “genes” of the
individual, and by allowing crossover to occur only at gene (module) boundaries
and between functionally equivalent modules.

Homologous recombination is a step towards program transformations that
formally maintain program properties. If the system starts with a population
of programs that contain only functionally correct modules, then homologous
recombination among these programs can only produce new program variations
that implement similar functionality in different ways (some might be better
adapted to given situations than others), but which are still functionally correct.

The fitness measure is the performance of the protocol as perceived by the
applications. They reward correct behavior and punish incorrect one when de-
tected. For instance, the score of an individual is incremented when it performs
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the correct operation (e.g. successfully delivering a packet), and it is decremented
when an error is detected (e.g. an acknowledgment is issued for a data item that
has never been actually received). Resource consumption, in terms of memory
occupied by the genotype, is proportionally penalized. Fitness evaluation also
helps keeping the system controllable, as humans can steer it through applica-
tions able to translate user input into fitness functions.

We now describe the GP algorithm. For each generation, a tournament selec-
tion is held, as follows:

1. Insert each individual of the population into its execution context (i.e. con-
nect it to its application and network environment), and run each of them
for the same fixed amount of time or execution cycles.

2. Extract the fitness scores for each individual in the population.
3. Select the nb best fit individuals and add them to the population of the new

generation.
4. From the set of nc fittest individuals, with nc > nb, select np ≤ nc/2 pairs

of individuals at random.
5. Perform crossover for each pair, producing 2 · np new output code streams,

which are then added to the pool of new generation individuals.
6. If mutation is enabled, select a small number nm of individuals at random

within the set of nc fittest, and perform a mutation on each of them. Add
the resulting individuals to the population of the next generation.

Traditional genetic programming models perform an off-line genetic search in
which production of offspring is synchronous and fitness evaluation is centralized.
Our current experiments are still limited to an off-line set-up, since we first need
to demonstrate the basic viability of an automatic selection process.

3.5 Fraglets

The Fraglet paradigm [21] has been proposed as part of our search for feasi-
ble ways to achieve automated synthesis of protocol implementations. It is an
instance of Gamma systems [19, 20], a chemical model where “molecules” in-
teract with each other or undergo some internal transformation. A fraglet is a
string of symbols [ s1 : s2 : . . . : sn ] representing data and/or protocol logic.
It is a fragment of a distributed computation, that may be carried in packets
or stored inside a network node. The fraglet processing engine continuously exe-
cutes tag matching operations on the fraglets in the store, in order to determine
the actions that should be applied to them. The fraglet instruction set contains
two types of actions: transformation of a single fraglet, and “chemical reaction”
between two fraglets. The instruction set is described in [21, 18], along with ex-
amples of processing and protocol functions. Table 1 summarizes the reaction
and transformation rules used in the examples of Section 4.

The fraglets model has many relevant properties that must be highlighted in
connection with automated protocol synthesis and evolution. First of all, any
string of symbols is a valid fraglet, therefore fraglets can be split at arbitrary
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Table 1. Fraglet reaction and transformation rules

Reaction Input Output Semantics
match [ match : s : tail1 ], [ tail1 : tail2 ] concatenates two fraglets

[ s : tail2 ] with matching tags
matchp [ matchp : s : tail1 ], [ tail1 : tail2 ] persistent match

[ s : tail2 ] [ matchp : s : tail1 ] (preserves matchp rule)
Transf.
dup [ dup : t : u : tail ] [ t : u : u : tail ] duplicates a symbol
exch [ exch : t : u : v : tail ] [ t : v : u : tail ] swaps two symbols
split [ split : t : . . . : ∗ : tail ] [ t : . . . ], [ tail ] breaks fraglet at ∗ position
send A[ send : B : tail ] B[ tail ] (unreliably) sends fraglet from A to B
wait [ wait : tail ] [ tail ] (after interval) waits a predefined interval
nul [ nul : tail ] [ ] fraglet is removed

places and merged with other fraglets to produce different code. A second prop-
erty is the ability to express code and data in a uniform way. Code is manipulated
just like any other form of data, and it is easy to express rules that generate
and delete code from the running pool. A third aspect is the ability to express
code mobility in a natural way: any fraglet can be regarded as either a set of
packet header tags that can be processed by a header processing engine, or as a
program fragment that is executed at a given node. This facilitates the dynamic
deployment of new code logic.

A fourth property of the fraglet environment stems from its roots in Gamma
systems: it enables programs to be expressed in a highly parallel way that is
very close to their specification, without artificial sequentiality constraints. This
is relevant for automated program synthesis and evolution, in two ways: first,
this parallelism can be used to produce resilient programs as shown in [18], which
tolerate the loss of parts of their code stream, due to fallback alternatives run-
ning in parallel. This can be used to diminish the impact of malfunctioning code.
Secondly, the fact that programs are relatively compact and close to their spec-
ification could open up potential avenues for deterministic synthesis techniques
based on specification.

4 Experiments

We have performed a few experiments using the fraglet environment to verify
whether software configurations can adapt to their environment, by the mere
application of generic and service agnostic GP methods. We start with a de-
scription of the protocols involved in the experiment (Section 4.1), and then
describe the results for three experiments: testing the capacity to eliminate su-
perfluous code (Section 4.2), adaptation to the environment (Section 4.3), and
re-adaptation (Section 4.4).

4.1 Protocol Implementations

A simple case is considered where a reliable delivery service must be provided
over different channel characteristics. The task is to transmit all packets from
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the client application, with acknowledgment of correct delivery. Two types of
underlying transmission channels are considered:

– Perfectly reliable channel: In this case, the protocol does not need to retrans-
mit packets. A simple implementation of this in fraglets is the confirmed de-
livery protocol (CDP) presented in [21]. It simply transmits a given payload
from node A to node B and returns an acknowledgment from B to A.

– Unreliable channel: In this case, the protocol must retransmit lost packets.
A reliable delivery protocol (RDP) has been implemented for this purpose.
It takes an input payload from the application, sends it to the destination,
stores a copy locally, and sets a waiting timer. When the timer expires, and
the corresponding local copy of the information is still stored, the packet
is retransmitted. When an acknowledgment is received, the local copy is
destroyed; this cancels any pending retransmissions scheduled for the item.
For simplification, no losses from sink to source are modeled.

Each protocol is encoded as a fraglet genotype made up of constituent mod-
ules or genes. The genotype is the concatenation of all the modules (and their
constituent fraglets) that implement the protocol. Each module starts with an
“m” marker followed by the module name.

Fig. 2 shows the fraglet code for CDP, both sender and receiver sides. When
presented with an application payload of the form A[data : payload], the first
matchp rule in the send module will be activated, and the resulting reaction
will produce a rule A[send : B : deliver : payload], which will send the fraglet
[deliver : payload] to B, where the deliver tag will cause payload to be delivered
to the application. The application will respond by injecting a B[ack] fraglet,
which will react with the matchp rule of the receive module, causing the ack
to be delivered to the source application on node A. Note that the deliver tag
can be implemented as a predefined rule that takes the tail symbol string out of
the fraglet environment (towards an external application), or can be caught by
a [matchp : deliver : ...] rule as part of a fraglet application.

m send
A[matchp : data : send : B : deliver]

m receive
B[matchp : ack : send : A : deliver : ack]

Fig. 2. CDP implementation in fraglets

The RDP implementation is shown in Fig. 3. It has exactly the same interface
with the application as CDP, so that both protocols can be interchanged in a
transparent way. A [data : payload] fraglet injected by the application activates
the send module, producing two fraglets: [retransmit : payload] and [mack :
payload]. The first one triggers a retransmission loop (retransmit module). The
second one triggers a series of reactions which produce a new rule able to treat
an incoming ack and cancel any corresponding retransmission.

Several variants of CDP and RDP have been implemented to make up a rea-
sonably sized initial population for the GP run. Figures 2 and 3 show examples
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m send
[matchp : data : dup : data3]
[matchp : data3 : exch : data2 : mack]
[matchp : data2 : exch : data1 : ∗]
[matchp : data1 : split : retransmit]
[matchp : mack : exch : mack5 : nul]
[matchp : mack5 : exch : mack4 : ∗]
[matchp : mack4 : dup : mack3]
[matchp : mack3 : exch : mack2 : wait]
[matchp : mack2 : exch : mack1 : split]
[matchp : mack1 : match : ack : split :

deliver : ack : ∗ : match]

m retransmit
[matchp : retransmit : dup : t91]
[matchp : t91 : exch : t92 : t94]
[matchp : t92 : exch : t93 : ∗]
[matchp : t93 : split : transmit]
[matchp : t94 : dup : t95]
[matchp : t95 : exch : t96 : retransmit]
[matchp : t96 : dup : t97]
[matchp : t97 : exch : t98 : ∗]
[matchp : t98 : split : wait : match]
[matchp : transmit : send : B]

Fig. 3. RDP implementation in fraglets (sender side)

of correct implementations. Other correct variants are also present in the ex-
periments, as well as variants that introduce arbitrary delays, consume more
memory, contain useless code segments, pollute the code pool with byproduct
debris of reactions, and so on.

Crossover by homologous recombination is implemented by swapping modules
of the same name in different protocol implementations. Since the interface of
each module is the same regardless of its internal implementation, modules are
compatible and crossover produces viable individuals. Mutation is applied with
a low probability, changing a symbol at random in the fraglet pool.

4.2 Stripping Protocol Implementations

In this first baseline experiment we test whether the system is able to strip
exceeding code, by eliminating garbage that is arbitrarily added to the programs.
We take the CDP implementation and add several modules, some of which are
empty, and some which perform random but non-disruptive actions consuming
CPU cycles.

We generate 10 such “polluted” individuals, and perform repeated GP runs
of 50 generations each, and nb = 4, nc = 8, np = 3, nm = 0. A typical result
from these runs is that roughly 75% of the garbage modules are eliminated.
In a sample run, a relatively clean individual (with a single garbage module
remaining) emerges around the second generation, and progressively propagates
to the rest of the population. By the 7th generation, all individuals have a single
garbage module. In this example the system does not improve beyond that,
because all the individuals have the same garbage module, therefore homologous
crossover is not able to eliminate it.

4.3 Adaptation

The goal of this experiment is to verify whether a mixed population of protocols
is able to adapt to a given environment. Our mixed population is composed of
eight CDP and eight RDP variants. These are alternative implementations of
the same functionality. Some of them are perfect with no known bugs, others
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are deliberately made inefficient to different degrees, for instance, by not retrans-
mitting packets correctly, or retransmitting too much, or spending a lot of time
on bogus tasks.

We insert this population into two GP runs. In the first run, the population
faces a reliable channel with no packet loss. In the second run a rather lossy chan-
nel (25% packet loss) is introduced. For each run we choose nb = 6, nc = 14, np =
4, nm = 2. This results in a population size of N = nb+2·np+nm = 16 individu-
als per generation, which is the same size as the original (hand-made) population.
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Fig. 4. Absolute scores and percentage of high/low scores for different packet loss rates

Figure 4 shows the adaptation of the initially mixed population to these two
loss environments. The upper part shows the fitness scores for the different link
loss rates, and the lower part shows the percentage of high and low-score individ-
uals. A high-score individual is an individual that has achieved a score equivalent
to at least 80% of the best score from its generation. A low-score one scores less
than 40% of the best of its generation.

For the non-lossy channel (Fig. 4 left), the population starts with a low average
score, but after a few generations most of the individuals have a score close to the
best, and the percentage of individuals with very low score is small. In this case,
the best individual is also the optimum (hand-designed), and the GP selection
process succeeds to keep it in the population through the successive generations.
After four or five generations the retransmission code is eliminated, and the
surviving individuals are all instances of CDP.
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In the lossy channel the retransmission code spreads very quickly through the
entire population: all the individuals contain it after the first couple of genera-
tions. In Fig. 4 (top right) we can notice that the best score achieved by RDP
is much lower than its equivalent in CDP. This is because the retransmit logic
and associated timers consume execution cycles. Since all the individuals are
allowed to consume the same amount of cycles, the simple code achieves much
higher score. The adaptation to the environment can be observed in Fig. 4 (bot-
tom right): after roughly 15 generations, more than 80% of the population is
made up of high-score individuals. At the same time, the number of low-score
individuals is reduced to a minimum.

In both lossy and non-lossy cases, mutations are mostly responsible for these
low-performance individuals. The purpose of mutations is to introduce genetic
variability. However, it is well known that most mutations are harmful. In our
case, mutations are kept in the system in order to test its capacity to produce
new code, and its resilience to potentially disrupting code. The production of
new useful code has not been verified in such short runs though. On the other
hand, the fact that the system can still adapt in spite of harmful mutations is
an indication that resilience at the population level is possible even with the
high rate of mutation chosen (nm/N = 12.5%). However this system is obvi-
ously not perfect. There are still clients affected by low-performance individuals:
resilience is not achieved at the individual level. Furthermore, as it adapts, the
population also loses genetic variability (this will be discussed in the next sec-
tion). We believe this sort of drawback can be diminished if resilient individuals
incorporating redundancy are used in place of the current non-resilient ones.

4.4 Re-adaptation

In this experiment we investigate the capacity of a population to readapt to an
environment different from the one where it has originally evolved. We inject a
population evolved in a 25% loss environment into a no-loss and vice-versa, and
repeat the GP run with the same parameters as described in Section 4.3.

Figure 5 shows the obtained scores. These results clearly show that the popula-
tion is not able to readapt. The lost retransmission modules cannot be recreated
in such a short time by genetic operators only. The homologous crossover used
only recombines existing modules, and mutations of individual symbols is simply
a too slow and randomized process. The search space for the solution is far too
vast, even though GP has shown to remarkably focus the search when compared
to pure random search. For example, in the RDP example of Fig. 3, there are
about 20 different symbols that may be placed at about 100 positions, leading
to a search space of size 20100. This is still too vast for short-term on-line GP.
A similar problem may also occur in nature, when genetic variability is lost in
small populations adapted to a fairly stable environment.

Nevertheless, if we inject a single optimally adapted individual in the pop-
ulation, it instantly redeploys and the entire population readapts. This can be
observed in Fig. 6. After about 15 generations, more than 80% of its individuals
achieve scores comparable to those of the best individuals of Section 4.3.
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Fig. 5. Scores for two different re-adaptation situations: Left: from 25% loss to 0% loss.
Right: from 0% loss to 25% loss.
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Fig. 6. Inserting a single adapted individual. Scores (top) and percentage of high/low
scores (bottom) for different adaptation situations: Left: from 25% loss to 0% loss.
Right: from 0% loss to 25% loss.

4.5 Discussion

We can extract several lessons from these early experiments. We first discuss the
aspects related to genetic operators and other GP parameters. We then discuss
future issues of resilience and on-line evolution.
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We have modeled homologous recombination which is generally overlooked in
GP. By restricting crossover to functionally compatible genes only, we have a
high probability of producing viable individuals. In a few earlier experiments we
had tried crossover at arbitrary points, and the result was poor score evolution
combined with the well-known code bloat phenomenon in GP [2, 22], in which
code tends to grow across generations, leading to large, inefficient programs in
the long run. A widespread theory to explain the phenomenon says that GP code
accumulates introns [2], i.e. portions of code that serve no functional purpose.
These introns would then act as a protection against destructive crossover, as
the probability of crossover points falling inside an intron (and therefore not
breaking existing useful functionality) increases with the percentage of introns
in the individual. Experimental results [22] show that code growth occurs even
when crossover within introns is not allowed. However these results are valid only
for tree-based GP, which is not our case. Anyway, independently of the actual
causes of code bloat in a general sense, in our experiments the phenomenon
disappeared as soon as we introduced homologous recombination.

However, homologous recombination in a limited population of simple individ-
uals with few genes, as shown in the experiments, leads to low genetic variability,
and after a few generations most of the variability is lost.

Mutation is usually regarded as the main source of genetic variability in GP
populations [2]. However, the benefits of mutation can only be observed at the
very long run, since most mutations are lethal. In our short-run experiments,
we have not been able to observe really productive mutations. We have to in-
terpret these very preliminary results with caution; nevertheless, they seem to
indicate that new, more intelligent techniques for evolving populations of genetic
protocols need to be devised to make on-line evolution a reality.

The parameters of a GP run clearly have an impact on the evolutionary
process. Adjusting these parameters is a well-known difficult problem in GP.
Some researchers have inserted GP parameters into the genotypes evolved such
that the best combination of parameters can also emerge from the evolutionary
algorithm itself. This is a path we intend to explore in our future work.

In our current experimental set-up, fitness evaluation still has a centralized
component. This prevents the emergence of cheat programs, e.g. programs that
lie about transmitted or acknowledged packets. Fitness evaluation is a non-trivial
issue in a real distributed on-line environment. Perhaps redundancy and repu-
tation mechanisms could be combined to to provide a safe and reliable way to
evaluate the behavior of protocols at run-time.

The next immediate step towards on-line evolution that we are starting to
investigate is how to combine our previous resilience work [18] with genetic
programming in order to add resilience at the level of individuals, as opposed
to the level of entire populations as described in the experiments above. Each
protocol is modeled as tuples of redundant genetic code. This should in prin-
ciple improve resilience, and help preserving genetic variability in small
populations.
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5 Conclusions and Outlook

In this paper we propose an intrinsic approach to the automated evolution
of network software. The goal is to enable automatic code deployment, self-
configuration of functional modules and even automatic synthesis of protocol
implementations in an autonomic network. We argue that the automated selec-
tion of protocols becomes feasible if the networking code is resilient such that
we can have competing protocol variants running in parallel.

Using a concept known as homologous recombination, we have carried out
exploratory adaption experiments using genetic programming. They show that
a networking system can automatically and gradually evolve depending on the
environment it is confronted with, provided that a minimum variability of code
instances is kept. This observation relates both to identifying an optimal proto-
col implementation for a given context, as well as to finding the most efficient
combination of several software modules.

A more complex task, that has yet to be demonstrated, is an on-line ver-
sion where software evolution is a continuous activity. Our experiments have
provided first insights on the obstacles that have to be overcome: For instance,
fitness evaluation in a decentralized and competitive environment is a non-trivial
issue. Another fundamental issue is to devise new and potentially correctness pre-
serving genetic operators beyond homologous crossover which are able to evolve
genuine new code for unforeseen situations.
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19. Banâtre, J.P., Métayer, D.L.: Gamma and the Chemical Reaction Model. Internal
Publication PI-984, INRIA, France (1996)
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