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Abstract. We introduce a formal model, which we call the Bounded
Retrieval Model, for the design and analysis of cryptographic protocols
remaining secure against intruders that can retrieve a limited amount
of parties’ private memory. The underlying model assumption on the
intruders’ behavior is supported by real-life physical and logical consid-
erations, such as the inherent superiority of a party’s local data bus over
a remote intruder’s bandwidth-limited channel, or the detectability of
voluminous resource access by any local intruder. More specifically, we
assume a fixed upper bound on the amount of a party’s storage retrieved
by the adversary. Our model could be considered a non-trivial variation
of the well-studied Bounded Storage Model, which postulates a bound
on the amount of storage available to an adversary attacking a given
system.

In this model we study perhaps the simplest among cryptographic
tasks: user authentication via a password protocol. Specifically, we study
the problem of constructing efficient password protocols that remain se-
cure against offline dictionary attacks even when a large (but bounded)
part of the storage of the server responsible for password verification is
retrieved by an intruder through a remote or local connection. We show
password protocols having satisfactory performance on both efficiency
(in terms of the server’s running time) and provable security (making
the offline dictionary attack not significantly stronger than the online
attack). We also study the tradeoffs between efficiency, quantitative and
qualitative security in these protocols. All our schemes achieve perfect
security (security against computationally-unbounded adversaries). Our
main schemes achieve the interesting efficiency property of the server’s
lookup complexity being much smaller than the adversary’s retrieval
bound.

1 Introduction

Partially motivated by the recent press attention to intrusions from both external
attackers and insiders into databases containing highly sensitive information
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(e.g., [27, 28]), we initiate a rigorous study of cryptographic protocols in the
presence of intruders, under a novel and reasonable assumption on their power.
This leads us to define a new formal model which we call the Bounded Retrieval
Model since we assume a bound on the amount of a party’s stored data that
can be retrieved by the adversary. In practice, this bound would be due to both
physical and logical considerations, as we now explain. With respect to internal
attackers, this bound may result from the capabilities of a simple Intrusion
Detection System (IDS), which can easily monitor any large and repeated access
to the party’s stored data. With respect to external attackers, this bound is
further minimized as a consequence of the inherent gap between the (smaller)
availability of bandwidth due to physical limits and the (larger) availability of
storage memory: an attacker needing a large amount of time to retrieve large
amounts of sensitive data will most likely be unable to maintain an unauthorized
connection for enough time without being detected.

Our model could be considered a non-trivial variation of the well-studied
Bounded Storage Model, introduced in [13] (see, e.g., [12, 14] and references
therein for further studies of several cryptographic tasks, such as key-agreement,
encryption, oblivious transfer, time-stamping, etc). This model postulates a fixed
upper bound on the storage capacity (but no bound at all on the computational
power) of the adversary attacking a cryptographic protocol. Thus, with respect
to the standard model used in the security analysis of most cryptographic prim-
itives, where the adversary is assumed to have a polynomial upper bound on
both storage and computational power, this model achieves much higher secu-
rity at the expense of a stronger assumption on the adversary’s storage capability.
Analogously, our model also avoids upper bounds on the computational power
of the adversaries at the expense of a stronger assumption on the adversary’s
retrieval capability, which we argued before as being supported by reasonable
considerations.

In this paper we use this model to analyze possibly the simplest cryptographic
task: entity authentication via password verification, which we will briefly call a
‘password protocol’ in the rest of the paper.

Password Protocols. Despite their often noticed weaknesses, password proto-
cols remain the most widely used method for authenticating computer users. In
traditional UNIX-like password schemes, the server stores some one-way func-
tion of users’ passwords in a single password database. In order to verify a login
attempt, the server simply computes the same one-way function on a putative
password supplied by the user attempting to login, and compares it to the stored
value in the database. If the values match, the user is allowed to log in. An adver-
sary trying to impersonate an authorized user can always try an “online attack”
by entering different passwords in correspondence to the user’s login name. How-
ever, if the user’s password is chosen with enough entropy or randomness, each
attempt is extremely unlikely to succeed, and modern servers are programmed
to close the authentication session after just a few unsuccessful attempts. Unfor-
tunately, the password database itself is typically small, and can be quickly and
easily retrieved by any attacker capable of minimally compromising the security
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of the server. Although the password database does not directly contain any of
the user’s passwords, it opens up the possibility of an “offline dictionary attack”
to the adversary. In such an attack, the adversary can utilize the information
contained in any single record of the password database by attempting to apply
the appropriate one-way function to every word in a dictionary in the hopes
that it will match the content of that record (due to the users’ tendency to sup-
ply dictionary words for their passwords). Although too large to be efficiently
searched by a human, dictionaries are typically small enough so that they are
efficiently searchable by a computer, thus making this offline dictionary attack
quite feasible.

In this paper we explore the following simple but intriguing question: can
we design a scheme so that an adversary is required to access many records
when trying to carry out these attacks? Storage is a static, cheap resource,
that is very available today (such that a server can easily provide it in huge
quantities). External bandwidth, a time-dependent resource, is certainly much
less available than storage. Furthermore, the bandwidth available to a remote or
local attacker may be easily controlled by physical means (or even by monitoring
traffic at the server’s interface to the outside world). By using this gap between
server’s storage capacity and the adversary’s ability to retrieve stored data, we
show how to realize a significant server’s security advantage over the adversary,
thus making the off-line dictionary attack just slightly more powerful than the
(practically unsuccessful) online attack.

Analysis in the Bounded Retrieval Model. Intuitively, we propose to con-
struct password database files that are so large that either (1) they cannot be
retrieved in their entirety by a local or remote intruder in any reasonable time
(due to access or bandwidth limitations), or (2) any such huge retrieval oper-
ation is easily detected. Note that (2) can be obtained using very simple and
efficient intrusion detection mechanisms (see, e.g., [1] for a survey and [5] for
a theoretical model of intrusion detection). Specifically, a huge retrieval would
be considered an anomalous event, thus triggering actions such as closing the
adversary’s access port or preventing access to the storage area from any in-
sider. Furthermore, note that there are several typical scenarios where (1) can
be true. The simplest is clearly that of an adversary with relatively limited band-
width. In fact, this limitation is already present in existing networks, as even the
high bandwidth connections commonly available today may require minutes to
transfer modest data amounts such as 1 gigabyte. (See Appendix A for detailed
numerical examples.) As another typical scenario, assume the server is distribut-
ing the password database in several locations and that the adversary is either
unaware of the position of some of them, or cannot physically access some of
them.

Formally, we place a bound on the quantity of information from the server’s
storage area that is retrieved by the adversary during an attack. Analogously
to [13], security in our model can be information theoretic in nature, which
is quite desirable due to the brute-force nature of off-line dictionary attacks.
We consider two main classes of attacks in this model: (1) static retrievals,
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modeling the case where the adversary must pre-select the data he wishes to
collect prior to the beginning of the actual data retrieval phase; and (2) adaptive
retrievals, modeling an adversary selecting each single location to be retrieved
based on the content of all previously retrieved locations. In both cases the total
information retrieved by the adversary is bounded by a fixed parameter. Each
of these two classes of attacks models a real world scenario. For example, static
intrusions model any situation where the adversary may receive blocks of data
chosen independently of their contents, such as data recovered from a damaged
and discarded hard disk. Adaptive intrusions model the most general scenario,
where the adversary may have arbitrary access to data blocks of its choice, such
as retrieving data interactively from an insecure network file server (for example,
via FTP). Although it would seem that an adversary, if possible, would always
choose to perform an adaptive retrieval attack, one should keep in mind that
adaptivity also requires the adversary to expend time to examine the information
that is being retrieved and therefore may actually provide the adversary with
less information than in the case of a static retrieval. We note that in this model
access to the entire data file by the adversary is not ruled out, as it can be easily
prevented using intrusion detection techniques. On the other hand, we caution
the reader that the model does not include the case in which the server is totally
compromised by an attacker, where the latter would actually be able to directly
observe the passwords received from users during their login attempts anyway.

Our results. In designing password protocols in the bounded retrieval model,
we pay attention to various parameters for security (e.g., the adversary’s ad-
vantage over the online attack success probability, and the adversary’s retrieval
strategy) and efficiency (e.g., the server’s lookup complexity). This allows us to
appropriately set target goals for both. To that purpose, it is useful to keep in
mind the following two important issues about parameters:

Adversary’s advantage vs. online attack success probability. Although it is cer-
tainly desirable to have a password scheme with 0 or exponentially small adver-
sary’s advantage probability, in practice it is essentially just as desirable to have
a password scheme with the adversary’s advantage comparable to the online at-
tack success probability (as the overall attacker’s success probability is the sum
of the two values).

Server’s running time vs. adversary’s retrieval bound. Although intuitively it
would seem easier to design provably secure password schemes where at each user
registration or verification the server reads more locations than the adversary is
ever allowed, this severely restricts the efficiency of the scheme and its practical
applicability.

Summarizing, the combination of efficiency and security properties we de-
sire requires the adversary’s advantage to be provably comparable to the online
attack success probability, and the server’s running time (as measured by the
number of data blocks read) to be significantly smaller than the adversary’s.

Towards this goal, our first result is a lower bound on the advantage of the
adversary, which, among other things, relates the advantage to the adaptivity



Perfectly Secure Password Protocols in the Bounded Retrieval Model 229

of the server’s lookup strategy. We then start by exploring what schemes can be
constructed using well-known cryptographic tools such as secret sharing schemes
and all-or-nothing transforms. These result in schemes P1 and P2, having the
smallest possible adversary’s advantage (0 and exponentially small, respectively)
in the strongest adversarial model (adaptive attacks), but requiring the server’s
running time to be larger than the adversary’s retrieval bound.

Our main protocols, denoted as P3 and P4, achieve high efficiency in that
the server’s lookup complexity is much smaller than the adversary’s retrieval
limit. Protocol P3 is based on dispersers and pairwise-independent hash func-
tions, and guarantees both security against adaptive adversaries and that the
adversary’s advantage is not significantly larger than the online attack success
probability. Because of our previous lower bound, this protocol achieves an opti-
mal bound on the adversary’s advantage (up to a constant) for typical values of
the adversary’s retrieval bound (e.g. whenever the adversary’s retrieval bound
is a constant fraction of the storage). Protocol P4 is based on t-wise indepen-
dent hash functions and strong extractors and achieves security against static
retrieval attacks, ensuring exponentially-small adversary’s advantage without
any computational assumption. Protocols P3 and P4 can be combined, resulting
in a single scheme that simultaneously enjoys both of their desirable security
properties.

A more detailed account of our protocols’ properties is in Figure 1. We note
that none of our protocols is proved secure by assuming the existence of random
oracles (we thus removed this assumption from one protocol in [7]).

Protocol Adversary’s Adversary’s Server’s Server’s Storage
name advantage strategy complexity strategy constraints
P1 0 adaptive l > q non-adaptive n ≥ 2td

P2 O(2−λ) adaptive l > q non-adaptive n ≥ 2d

P3 O(m3/(m − q)2l2d) adaptive l < q non-adaptive n ≥ 2d + 1
P4 (2t + 4) · 2−λ static l < q adaptive n ≥ O(λ) + 2d

none 2−λ static l < q non-adaptive

Fig. 1. Any two protocols in the above table are incomparable, in the sense that each
one is better in some features than the other. Specifically, protocol P1, based on secret
sharing, is of interest as it achieves 0 adversary’s advantage. Protocol P2, based on
all-or-nothing transforms, is of interest as it achieves exponentially small adversary’s
advantage while improving storage constraints. Protocol P3, based on dispersers and
pairwise-independent hash functions, is of interest as it achieves security against adap-
tive adversaries and server’s lookup complexity l smaller than the adversary’s retrieval
bound q. Protocol P4, based on strong extractors and t-wise independent hash func-
tions, is of interest as it achieves the efficiency property of P3 as well as exponentially
small advantage against static adversaries. At the end of the paper we also discuss
a protocol that combines features from protocols P3 and P4. The last line in the ta-
ble points out that achieving exponentially small advantage against adaptive or static
adversaries is impossible when the server’s lookup strategy is non-adaptive, due to a
lower bound in Section 3. Formal definitions, including parameters and performance
measures used in the table, are given in Section 2.
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Related work. The Bounded Retrieval Model is a novel variation of the Bounded
Storage Model of [13], and furthermore in some of our solutions we use strong ex-
tractors, which are a common tool for protocols in the Bounded Storage Model.
However, we point out that solutions and analysis for our password protocol
problems have to address quite non-trivial obstacles, even given such tools. A
bounded-retrieval notion similar to ours was also used implicitly in [10], in the
context of smart cards with slow memory access. Whereas [10] studied the prob-
lem of token based authentication in a bounded retrieval context, we consider
the problem of password based authentication.

The importance of securing the server’s password file has been well-known for
many years, and is discussed in detail, for instance, in [20, 8]. Various aspects of
password protocols have been studied in the security literature. One important
area is that of securing password protocols where the communication goes over
an insecure network (e.g., see [9] for schemes based on public-key encryption
and [2, 3, 18, 26] for heuristic schemes not using public keys). While this aspect
is orthogonal to the server compromise security considered in our work, we stress
that many of the cited results can be modularly combined with results in this
paper to obtain network password protocols secure against bounded retrieval
attacks. Other work on password-related protocols includes well-studied areas
like password- authenticated key exchange, that are even farther from the scope
of this work.

2 Model and Formal Definitions

We start by presenting the scenario for password protocols. We discuss the
entities involved and the assumed connectivity among them, the phases, the
(sub)protocols, and finally the requirements that a password protocol has to
satisfy to be declared secure in the bounded retrieval model.

Entities, connectivity, resources. An arbitrary system (or network) contain-
ing a number of resources can be accessed locally or remotely through a password
protocol controlled by a server S. The users, denoted as U1, U2, . . . , Ut for some
integer t, are any entities that need resources in the system, and thus may require
access to it. Although potentially all users are connected to each other as well as
to the server through some communication link, for practical purposes, we are
interested in password protocols where each user only interacts with the server,
and not necessarily at the same time. For simplicity, we will assume that the
communication link between each user and the server is private or not subject
to attacks, although we note that the model in which this link is also subject
to adversarial attacks is of orthogonal focus and can be separately studied (but
will not be studied in this paper). The server’s storage area contains a password
file, that we denote as F , with m locations, each containing a record of n bits.
We denote as F [i] the content of the i-th location of F and, as F [L] the set
{F [i] : i ∈ L}.
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Subprotocols and Phases. A password protocol can be divided into four main
algorithms or subprotocols: a setup algorithm, a password sampling algorithm, a
registration algorithm and an identification subprotocol.

A setup algorithm, that we denote as Set, is only run by the server. On input
a security parameter λ in unary, algorithm Set returns an m-location password
file F , for some m = poly(λ) in time at most polynomial in λ.

A password sampling algorithm, that we denote as Sample, is run by users to
select their passwords. We will only consider the algorithm Sample that, on input
parameter 1d, returns a uniformly chosen string from {0, 1}d. (In each of our con-
structions, by properly using tools such as extractors, we can modularly reduce to
this casemore general cases such as that of users choosing passwords from a smaller
dictionary of stringswith knownmin-entropy.)We will think of the password length
d as a constant, this being much smaller than the security parameter λ.

The registration algorithm, denoted as Reg, is a possibly probabilistic poly-
nomial time (in n) algorithm that takes as input a user’s login name logi, her
password pwi, and the password file F , and returns an output F for S. Here,
logi denotes a login name somehow generated by S or by Ui (we won’t deal with
the details on how this happens but just assume that each user has a distinct
login name that is, for simplicity of notation, d-bit long), and the output F is
an updated version of the password file.

During an identification subprotocol, a user Ui sends both logi and pwi to
S, which runs a deterministic polynomial time (in λ) algorithm Ver on input
logi, pwi, F , in addition to the various parameters and all login names, and re-
turns accept (briefly, 1) or reject (briefly, 0), according to whether the user has
been positively identified or not.

We will denote a password protocol as a quadruple of probabilistic algorithms
P = (Set,Sample,Reg,Ver), and we will assume, for simplicity, that an exe-
cution of P can be divided into three phases: first, an initialization phase, where
the server runs the setup algorithm; then, a registration phase, where each among
the t users U1, . . . , Ut chooses a password using Sample and runs subprotocol
Reg with server S; finally, an identification phase: at any time, any among
U1, . . . , Ut can run the identification subprotocol with S. We denote as Param
the list of parameters (represented in unary) associated with P , that can be
any subset among: the password length d, the number of users t, the number
of locations m, the location size n, the security parameter λ, which have been
defined above, and the lookup complexity l, and the retrieval bound q, which will
be defined later.
Correctness requirement. A basic requirementwe expect from a passwordpro-
tocol is that, at any time, a server positively identifies previously registered users.

Definition 1. Let P = (Set,Sample,Reg,Ver) be a password protocol with
parameters Param = (d, t, m, n, l, q). The correctness requirement for P is as
follows: for each j ∈ {1, . . . , t}, and any login-name logj, it holds that

Pr
[

F ← Set(1n); {pwi ← Sample(1d); F ← Reg(logi, pwi, F )}t
i=1 :

Ver(Param, {logi}t
i=1, logj, pwj , F ) = 1

]
= 1.
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Bounded Retrieval security requirement. All our results consider an ad-
versary A that is not time-bounded. This is not only an interesting byproduct
of our results but also an especially desired requirement in our model, as we
want to withstand adversaries who can run dictionary attacks. Moreover, the
adversary is given knowledge of all users’ login names, and is allowed to retrieve
up to q entries from the server S’s password file F . We consider two levels of
adaptivity (that is, dependency on the content of F ) that the adversary can
use in choosing the q entries from F . In practical applications, the adaptivity
level plays an important role, as adaptivity may slow down the retrieval rate for
the adversary. Specifically, we will restrict the adversarial attack to one of the
following two types:

1. Static Retrieval: First, the adversary must select a set of at most q locations
L = {l1, . . . , lq}, without observing any of the data in the password file
F . Then the adversary is given the contents F [l1], . . . , F [lq] of the selected
locations. Finally, the adversary returns a pair (logj , pw′

j), trying to guess
the password of user Uj .

2. Adaptive Retrieval: As before, except each of the q locations can be selected
by the adversary after seeing the contents of the previously selected ones.

Formally, for x ∈ { static, adaptive }, we say that a bounded retrieval attack of
type x is successful if the experiment EP,A

x returns 1, where

1. if x = static then EP,A
x = EP,A

static

2. if x = adaptive and EP,A
x = EP,A

adaptive,

and, for all parameters Param = (d, t, m, n, l, q) described in unary and all login
names {log1, . . . , logt}, the experiments are defined as follows (here, the notation
y ← Alg(x1, x2, . . .) denotes the process of running the (possibly probabilistic)
algorithm Alg on input x1, x2, . . . and the necessary random coins, and obtaining
y as output):

EP,A
static(Param, {logi}t

i=1)
1. F ← Set(1n)
2. for i = 1, . . . , t,

pwi ← Sample(1d)
F ← Reg(logi, pwi, F )

3. p ← (Param, {logi}t
i=1)

4. {l1, . . . , lq} ← A(p)
5. (log′, pw′) ← A(p, {li, F [li]}q

i=1)
6. if Ver(p, log′, pw′, F ) = 1 then

return: 1
else return: 0.

EP,A
adaptive(Param, {logi}t

i=1)
1. F ← Set(1n)
2. for i = 1, . . . , t,

pwi ← Sample(1d)
F ← Reg(logi, pwi, F )

3. i ← 0; p ← (Param, {logi}t
i=1)

4. repeat
i ← i + 1
li ← A(p, {lj , F [lj]}i−1

j=1)
until i = q

5. (log′, pw′) ← A(p, {li, F [li]}q
i=1)

6. if Ver(p, log′, pw′, F ) = 1 then
return: 1 else return: 0.

We are now ready to define the security requirement for password protocols in
the bounded retrieval model.
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Definition 2. Let P = (Set,Sample,Reg,Ver) be a password protocol with
parameters (d, t, m, n, l, q). For x ∈ { static, adaptive }, we say that P is
ε-secure against a bounded retrieval attack of type x if for any algorithm A,
all login names {log1, . . . , logt}, and any j = 1, . . . , t, it holds that

Pr
[
b ← EP,A

x (Param, {logi}t
i=1) : b = 1 ∧ log′ = logj

]
≤ 1

2d
+ ε.

Remarks. In the above definitions we only have addressed the most basic and
practically relevant variant of a number of definitions that one could come up
with. For instance, one could strengthen the security requirement by defining an
adversary to be successful even if it obtains any nonzero information about the
joint values of all passwords, rather than just being able to successfully login, as
defined above. (This requirement seems stronger than what’s desired in practice.)

Performance Metrics. In addition to the above different adversarial models,
when designing password protocols secure under bounded retrieval attacks, we
also consider various performance metrics, which we will now discuss in detail. In
the rest of the paper we will present a lower bound on the adversary’s advantage,
denoted as ε, and protocols that exhibit tradeoffs between all these metrics, in
the effort of balancing their security and efficiency.

Time, lookup strategy, storage complexity. An obviously important metric is the
time complexity of algorithms Set,Reg and Ver; in particular, we will pay
attention to the (possibly parallel) time complexity of Ver, as it is run more
frequently in applications. Additionally, we will pay special attention to the
lookup strategy of algorithm Ver, and specifically, to whether it is adaptive or
non-adaptive; that is, based on location content or not. Also related to time
complexity is the storage complexity; that is, the amount of storage used by the
server during the initialization phase. Although storage is today an easily avail-
able resource, we will ensure that even a large increase in the storage complexity
does not make the time complexity impractical.

Lookup complexity. Additionally, we will pay special attention to the lookup
complexity of algorithms Reg and Ver, which we denote as l, and defined as
the maximum number of locations from F that is read or written by either
algorithm Reg during its execution on an input logi, pwi, F or algorithm Ver,
when run on an input log, pw, F , in addition to all parameters and login-names.
We will assume, without loss of generality, that this number is the same for all
inputs to Reg and Ver. (We note that all algorithms Reg,Ver can be simply
modified so that this holds).

Adversary’s breaking advantage. Our model is of information-theoretic nature, as
we will consider security against adversaries that are not time-bounded. Therefore,
we will be interested in constructions that achieve adversary’s advantage ε either =
0 or exponentially small (in the security parameter λ). Additionally, given that an
on-line attack is always available in practice to an adversary, we will be interested
in constructions that achieve ε = O(2−d), where d is the length of a password.
(Note that 2−d may not be exponentially small in the security parameter.)
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Lookup complexity vs. Retrieval Bound. Given lookup complexity l and retrieval
bound q for the adversary, it is of interest to achieve constructions that have the
smallest possible value for l and the highest possible for q, in combination with
satisfactory performance on the above metrics.

3 A Lower Bound on the Adversary’s Advantage

We present a lower bound on the security of password protocols having lookup
complexity smaller than the adversary’s retrieval bound. This will be used to
prove the protocol in Section 5 optimal up to a multiplicative constant.
Some definitions. Let P = (Set,Sample,Reg,Ver) be a password protocol
and let l denote the lookup complexity of the verification subprotocol Ver.
We now define t distributions LocDj , for j = 1, . . . , t, where each LocDj is
the distribution of the locations in F accessed by the algorithm Ver on fixed
input (Param, {logi}t

i=1, logj, pwj , F ) generated as in experiment EP,A
static. For-

mally, we first define algorithm LVer as the algorithm that, given an input
(Param, {logi}t

i=1, logj, pwj , F ), returns the set L of locations from F accessed
during an execution of algorithm Ver on the same input. Then we can define,
for j = 1, . . . , t, the distribution LocDj as

{run steps 1, 2 of EP,A
static ; L ← LVer(Param, {logi}t

i=1, logj, pwj , F ) : L};

that is, the distribution of locations read by the server during a login by Uj. Note
that both Ver and LVer are deterministic algorithms, and therefore the actual
probability space for distribution LocDj is given by the randomness contained in
the public file F obtained during the execution of experiment EP,A

static; and, specif-
ically, by how the locations accessed by Ver change, if at all, as an effect of such
randomness. For instance, in the case of a non-adaptive lookup strategy, by defi-
nition, L can be a single value and therefore the distribution LocDj trivializes to
having a single value in its support. Recall that for a distribution D over support
X , the collision probability cp(D) is defined as

∑
x∈X(Pr [x′ ← D : x′ = x ])2;

where we note that if a distribution has a single value in its support, then its
collision probability is 1.
Lower Bound Statement and Discussion. Informally, the following lower bound
formalizes the intuition that if the servers’ lookup complexity is smaller than
the adversary’s retrieval bound then the larger the amount of adaptivity in the
server’s lookup strategy, the harder is the adversary’s job in finding a password.
More formally:

Theorem 1. Let P = (Set,Sample,Reg,Ver) be a password protocol with
parameters (d, n, t, l, m, q), and assume that P is ε-secure against a bounded re-
trieval attack of static type. If l ≤ q then it holds that

ε ≥ max
j∈{1,...,t}

(⌊q

l

⌋
· 1
2d

· cp(LocDj)
)

,

where cp(LocDj) is the collision probability of distribution LocDj defined above.
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We note that in the case of non-adaptive lookup strategy from Ver, distribution
LocDj returns a single value, its collision probability is equal to 1, and the bound
in the above theorem becomes ε ≥ �q/l� · 2−d, under the hypothesis l ≤ q. As
in practice, work in the order of 2d may be efficiently performed, we derive that
non-adaptive strategies for Ver can only result in password protocols ε-secure
for values of ε that are not smaller than the on-line attack success probability
(e.g., ε = Ω(2−d)).

The formal proof of Theorem 1 follows by showing an adversary that can
run some modified version of the server’s algorithm and always finds a password
that would be accepted by the server with probability equal to the lower bound
on ε in the statement of the theorem. Specifically, the adversary creates a new
password file F ′ identically and independently distributed from the real one;
then it starts an off-line dictionary attack by trying several passwords from the
dictionary, as follows. For each password, it runs the server’s registration and
verification algorithms on input F ′ to determine the set of locations read or
written by the server; then, it queries the same set of locations from the real file
F , and runs the verification algorithm to see if that password would be accepted
by the server. Details of the proof appear in the full version of the paper.

4 Strongly-Secure Constructions with Large Lookup
Complexity

The purpose of this section is to present two very basic constructions of pass-
word protocols secure against bounded retrieval attacks, and show that they
achieve very strong security at the expense of requiring an inefficient lookup
strategy from the server. Specifically, these constructions achieve essentially the
best possible security properties: the adversary’s advantage can be 0 in one con-
struction and exponentially small in the other one. Furthermore, these values
are achieved against an adaptive adversary. The server’s lookup strategy in these
constructions is also non-adaptive. On the other hand, in both constructions the
server’s lookup complexity is larger than the adversary’s retrieval bound. In fact,
in one of the two constructions the server has to access the entire password file
in order to verify a user’s identity. (Constructions in the next sections will lower
the server’s lookup complexity and at the same time obtain desirable security
properties.) Formally, we obtain the following:

Theorem 2. For i=1, 2 there exist protocols Pi =(Seti,Samplei,Regi,Veri)
with parameters (n, t, d; mi, qi, li), that are εi-secure against a bounded retrieval
attack of adaptive type, and such that

1. ε1 = 0, m1 ≥ l1 ≥ q1 + 1 and n ≥ 2td.
2. ε2 = O(2−λ), m2 = l2 ≥ q2 + min(λ, o(q2)), and n ≥ 2d.

Note that in both constructions li ≥ qi. For practical applications, the fact that
the server’s lookup complexity is large constrains the size of the password file so
that it is not very large (or otherwise the identification phase would not be effi-
cient). As a consequence, the adversary’s retrieval bound cannot be large either,
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which restricts the applicability of these schemes to settings where the adversary
has a small retrieval rate (e.g., if the adversary has a slow connection). The two
schemes satisfying Theorem 2 are based on secret sharing schemes for threshold
access structures, as in [22] (using polynomial interpolation), and on adaptively-
secure all-or-nothing transforms, as in [6] (using adaptively-secure exposure-
resilient functions). Very informally, in the first scheme, the entire password file
contains the shares of a threshold scheme, where the secret is the concatenation
of all login names and passwords, and the threshold is set as strictly larger than
the adversary’s retrieval bound. Analogously, in the second scheme, the pass-
word file can be seen as an all-or-nothing transform of the concatenation of all
login names and passwords. We provide a formal description of these schemes in
the full version of this paper.

5 A Secure Construction with Small Lookup Complexity

The constructions in Section 4 showed how to achieve strong security (in terms
of both the adversary’s advantage and the attack type) and non-adaptive server
lookup at the expense of a large lookup complexity. In this section we start
exploring what security we can achieve if we target constructions with low lookup
complexity, while still maintaining non-adaptive lookup. The lower bound of
Section 3 implies that the best security that can be obtained under this setting
is comparable to the security against on-line attack. In the rest of the section we
give a construction that achieves this security level and is therefore essentially
optimal (up to lower-order multiplicative factors) for this setting. We present
a password protocol secure against bounded retrieval attacks, which we also
call SCS, since the server’s storage algorithm in this protocol is based on three
basic actions: Select, Combine and Store. Specifically, on an input consisting of
a login and a password, the server carefully selects several locations from the
password files, combines their content according to some function, and stores
the result of this function as a tag that can be associated with this password.
We instantiate the ‘select’ action of the SCS scheme by using dispersers, and the
‘combine’ action using a pairwise-independent hash function. Our construction
has server’s lookup complexity lower than the adversary’s retrieval bound, and,
moreover, the following properties: adversary’s advantage comparable with the
security against on-line attack; non-adaptive server’s lookup strategy; constant
parallel time complexity; and security against adaptive adversaries. Formally, we
obtain the following:

Theorem 3. There exists a password protocol P3 = (Set,Sample,Reg,Ver)
with parameters Param = (n, t, d, m, q, l), that is ε-secure against a bounded
retrieval attack of adaptive type, and such that, for any t, d, m, q, it holds that
ε = m3

l·(m−q)2 · 1
2d , for n ≥ 2d + 1 and l = 2b, where

b = log2(d) · poly(log log d) + (log d) · (log(m/(m − q))).

Note that the value of ε in the theorem matches (up to a constant) the
bound from Theorem 1 in the typical case q = cm, for 0 < c < 1. We also
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note that the constant factor c here can be made arbitrarily close to 1. We now
prove Theorem 3.
A first tool: t-wise independent hash families. Informally, t-wise indepen-
dence requires that for any fixed set of t elements, a uniformly selected function
from the hash family will map those elements to t uniformly distributed and
independent outputs. A formal definition of t-wise independent hash functions
follows.

Definition 3 (t-wise Independent Hash Function). A family H of func-
tions hw : {0, 1}a → {0, 1}b is t-wise independent if, for any distinct elements
x1, . . . , xt ∈ {0, 1}a, and any r1, . . . , rt ∈ {0, 1}b, we have that

Pr
w

[hw(x1) = r1, . . . , hw(xt) = rt] = (2−b)t

A commonly used t-wise independent hash function is defined, when c = a = b,
by simply evaluating a t − 1 degree polynomial over GF (2c). Specifically, define
the following family H, where x, w1, . . . , wt are viewed as elements of GF (2c),
the field over which the computation is to be performed:

H = {hw1,...,wt | hw1,...,wt(x) =
t∑

j=1

wjx
j−1}

In our constructions we will use this construction of t-wise independent hash
families both in the case a > b (in this section, when t = 2) and in the case
a < b (in the next section, for larger values of t) where, in both cases, we set
c = max(a, b) and we use trivial padding or truncation operations to satisfy
length consistencies. We note that a function from this family can be indexed
by exactly t strings of c bits each.

A second tool: Extractors and dispersers. Extractors and dispersers were
first introduced in [17] and [24], respectively, and have received a significant
amount of attention in several areas of computer science, mostly in the deran-
domization literature, but also in other areas including combinatorics, network
theory and security. Both extractors and dispersers are often defined as bipar-
tite graphs, while in this paper it will be easier to use their functional definition,
which we now recall.

The statistical distance between two distributions D1, D2 over the same space
S is defined as sd(D1, D2) = 1

2 Σx∈S | Pr [x ← D1 ]−Pr [ x ← D2 ] |. We say that
distributions D1, D2 are δ-close if it holds that sd(D1, D2) ≤ δ. We say that a
distribution D is δ-close to uniform if it holds that sd(D, U) ≤ δ, where U
denotes the uniform distribution over the same space S. The min-entropy of a
distribution D over space S is defined as H∞(D) = minx{− log2(Pr [x ← D ])}.

A function Ext: {0, 1}a×{0, 1}b → {0, 1}c is called a (k, δ)-extractor if for any
distribution D on {0, 1}a with min-entropy at least k, the distribution N(D) is
δ-close to uniform, where N(D) = {x ← D; e ← {0, 1}b; y ← Ext(x, e) : y}.

A function Disp: {0, 1}a × {0, 1}b → {0, 1}c is called a (k, δ)-disperser if for
any A ⊆ {0, 1}a such that |A| ≥ 2k, it holds that |N(A)| ≥ (1 − δ)2c, where
N(A) = {z | z = Disp(x, y), x ∈ A, y ∈ {0, 1}b}.
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We refer to [16, 23] for surveys of applications, constructions and related re-
sults for extractors and dispersers. (We use the formal definition of dispersers
that appears in [16]; other papers such as [23] use a slightly different definition.)

Construction of protocol P3. The protocol P3 = (Sample,Set,Reg,Ver)
uses a polynomial-time computable function Select : {0, 1}d × {0, 1}d → [m]l,
that we later instantiate using extractors, and a family H of pairwise-independent
hash functions hw : {0, 1}nl+2d → {0, 1}n (selection of which parameterizes the
Reg and Ver algorithms). We first describe algorithms Set, Reg, and Ver,
and then one instantiation of the function Select.
Algorithm Set. Formally, algorithm Set, on input parameters d, t, n, l, m, q in
unary, returns an m-location password file F , which can be parsed as F = X ◦T
with |X | = mx and |T | = t (and thus m = mx + t). X is initialized as an array
of values X [1], . . . , X [mx] uniformly chosen from {0, 1}n, and T is initialized as
an empty array of t locations.
Algorithm Reg. The registration algorithm maps a login and a password to a
subset of locations in the set of locations containing random elements, combines
their content by computing a tag as their sum, and stores the tag. Formally, on
input logi, pwi, F , algorithm Reg runs the following steps:

1. compute (loc1, . . . , locl) = Select(logi, pwi);
2. compute tagi = hw(logi|pwi|X [loc1]| · · · |X [locl]),
3. store tagi into T by setting T [i] = tagi.

Algorithm Ver. The verification algorithm recomputes the tag corresponding to
the input login and password and checks that it is equal to the tag stored during
the registration phase. Formally, on input Param, {logi}t

i=1, log
′, pw′, F , where

F = X |T , algorithm Ver runs the following steps:

1. compute (loc′1, . . . , loc
′
l) = Select(log′, pw′);

2. let j ∈ {1, . . . , t} be such that logj = log′;
3. if there exists no such j then return: 0 and halt;
4. verify that T [j] = hw(log′|pw′|X [loc′1]| · · · |X [loc′l]);
5. if so, return: 1; else return: 0.

Instantiation of function Select. For our construction we only need to apply
dispersers, but since (k, δ)-extractors are also (k, δ)-dispersers (this can be seen
by setting D equal to the uniform distribution over subset A), and given that
extractors have been much more studied in the literature, we will apply (a cer-
tain kind of) extractors. In particular, we are interested in extractors that firstly
maximize the parameter c, denoting the extractor output, so that it is as close
as possible to the sum of the min-entropy of the source and the number of real
random bits used. Secondly, it is of interest to minimize the value of parameter
b for that to happen. This choice criterion is based on that of minimizing the
adversary’s advantage first, and then, further minimizing the server’s sequential
running time. We note that in this scheme the parallel running time is constant
with respect to the lookup complexity l, regardless of which extractor we choose.
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A recent survey [23] summarizes most known results about extractors, and we
can plug in some of the results in Table 1, pp. 11 of [23] to obtain a function
Select with satisfactory performance. Bearing in mind the aforementioned cri-
terion, we will use the following fact (obtained from Corollary 6.15 of [21]):

Fact 4. [21] For any 0 ≤ α < a and δ > exp(−α/(log∗ α)O(log∗ α))), there exists
an explicit (k, δ)-extractor Ext: {0, 1}a×{0, 1}b → {0, 1}c such that k = a−α, b =
O(log2(a) · poly(log log a)+(log a) · (log(1/δ))) and c = k+b−2 log(1/δ)−O(1).

Informally, we can instantiate Select as the function returning all outputs of
the above extractor, when given the password as a first input and all possi-
ble l values as a second input. (In the graph-based formulation, these would
be all neighbors of the node associated with the password). More formally, for
any parameters n, t, d, m, q, where m = mx + t, we can instantiate Select
as follows. For log ∈ {0, 1}d and pw ∈ {0, 1}d, we define Select(log, pw) =
(loc1, . . . , locl), where locj = Ext((log|pw), j), for j = 1, . . . , l; algorithm Ext:
{0, 1}a ×{0, 1}b → {0, 1}c is the (k, δ)-extractor guaranteed from Fact 4, where
α = d, a = 2d; b = O(log2(2d) · poly(log log 2d) + (log 2d) · (log(m/(m − q))));
c = log m; l = 2b; δ = 1 − q/m; and k = log m − l − 2 log(m/(m − q)) − O(1).

Proving the security of the SCS protocol. Proving the security property of
P3 makes crucial use of the properties of dispersers and of pairwise-independent
hash functions. The main intuition is that if the adversary queries q locations
from F , possibly using an adaptive querying strategy, even if he tries to run
an off-line password attack, he will be able to test only a very small number of
passwords. More specifically, we observe the following facts, using the proper-
ties of pairwise-independent hash functions: (1) the probability that the server
accepts a false password, is very small. Then we observe that the content of the
locations queried by the adversary define t partitions of the set of passwords
into two sets: the set of passwords that are mapped to locations queried by the
adversary and its complement. Furthermore, (2) the size of the first set is small,
(i.e., O(m3/l(m − q)2)), and (3) any password in the second set does not give
a significant advantage to the adversary in being successful; where (2) uses the
properties of the disperser from Fact 4 and (3) uses the definition of pairwise-
independent hash functions. The security property of P3 follows by combining
the three mentioned facts.

6 Strong Security with Small, Adaptive Lookup
Complexity

In the previous section we showed that it is possible to construct password
protocols secure against bounded retrieval attacks by adaptive adversaries, and
simultaneously have low lookup complexity. The adversary’s advantage in the
previous construction is not significantly larger than the on-line attack success
probability, and essentially meets the lower bound in Section 3. In this section we
investigate the possibility of achieving even smaller adversary’s advantage (say,
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exponentially small) while maintaining an efficient lookup complexity. Since the
server’s lookup strategy will be adaptive, the lower bound in Section 3 does
not apply. The scheme remains incomparable to the scheme in previous section
though, as it is only secure against static adversaries. We call our new scheme
HE, for Hashing and Extraction, according to the strategy used by the server’s
registration algorithm. Formally, we obtain the following:

Theorem 5. There exists a protocol P4 = (Set4,Sample4,Reg4,Ver4) with
parameters Param = (n, t, d, m, q, l), that is ε-secure against a bounded retrieval
attack of static type, and such that, for any t, d, q, m, it holds that
ε = (2t + 3) · 2−λ, m > q + t ≥ [ l = t + O(d + λ) ] and n = O(λ) + 2d.

We stress that in P4 the server uses an adaptive lookup strategy and therefore
the exponentially small upper bound on ε does not contradict the lower bound
of Theorem 1. We now sketch the proof of Theorem 5.

Tools used by our HE protocol. The construction uses two tools: t-wise
independent hash functions (see Definition 3), where t is the number of users,
and locally computable and strong extractors.
Locally-computable and strong extractors. We recall two additional properties
that extractors (defined in Section 5) may satisfy. Intuitively, the definition of
strong extractors requires that the extractor’s output remains statistically close
to random even when conditioned on the value of the random seed; furthermore,
the definition of locally computable extractors requires that the extractor reads
only a small subset of the bits contained in the (large) input distribution that the
entropy is to be extracted from (this is for efficiency reasons only). The formal
definitions follow.

A function Ext: {0, 1}a × {0, 1}b → {0, 1}c is called a strong (k, δ)-extractor
if for any distribution D on {0, 1}a with min-entropy at least k, the distribution
U(b) × N(D, U(b)) is δ-close to distribution U(b) × U(c), where N(D, U(b)) is
defined as {x ← D; e ← {0, 1}b; y ← Ext(x, e) : y}, and, for any z, U(z) denotes
the uniform distribution over {0, 1}z.

An extractor Ext: {0, 1}a × {0, 1}b → {0, 1}c is �-locally-computable if for any
R ∈ {0, 1}b, the value of R uniquely determines the bit locations in x ∈ {0, 1}a

used while computing Ext(x, R) and the number of such locations is at most �.
We will use the following strong and locally-computable extractor, guaranteed

from Theorem 8.5 in [25]:

Fact 6 ([25]). Let ρ, σ be arbitrary constants > 0. For every a ∈ N,
δ > exp(−a/2O(log∗ a)), c ≤ (1 − σ)aρ, there is an explicit �-locally computable
and strong (k, δ) extractor Ext : {0, 1}a × {0, 1}b → {0, 1}c such that:

1. k = aρ
2. b = log a + O(log c + log(1/δ))
3. � = (1 + σ)kc/n + log(1/δ))

Construction of protocol P4. We assume, for simplicity, that the algorithm
Sample just uniformly and independently selects a password from {0, 1}d.
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Algorithm Set. Let the data block size n = 2d + λ, where λ is the security
parameter. Set initializes a t-location array W with a uniformly chosen t-wise
independent hash function hw : {0, 1}d → {0, 1}n. Set then initializes X as an
array of mx locations containing uniformly and independently chosen values in
{0, 1}n. Additionally, Set initializes an empty array T with t empty locations
of n bits each, and then sets F = T ◦ W ◦ X . Observe that the total number of
data blocks in F is m = 2t + mx.
Algorithm Reg. The registration algorithm first hashes the login name and the
password to a random value using the t-wise independent hash function specified
by the W component of F , to produce a seed value R. (Note that this step makes
the server’s lookup strategy adaptive, as the computation of R depends on the
contents of W , and subsequent lookup operations in X will depend on R.) The
extractor is applied to the X component of F using the previously computed seed
R in order to produce a (nearly) uniform random output. The resulting output
R′ may then be used as the tag associated with this password, and is stored in
the T component of F . Formally, on input i, logi, pwi, F , where F = T ◦ W ◦ X ,
algorithm Reg does the following:

1. set w = (W [1], . . . , W [t]) and R = hw(logi | pwi).
2. set R′ = Ext(X, R);
3. store tagi = R′ in location T [i].

Algorithm Ver. The Ver algorithm is essentially identical to the Reg algorithm,
only after computing tagi, rather than storing it in the T [i] location in F , the
value is compared with the previously stored value in T [i], and the result of
the comparison is output. The total number of lookups performed by Ver is
l = t+�+1. Formally, Ver, on input Param, {logi}t

i=1, log
′, pw′, F = T ◦W ◦X ,

does the following:

1. set w = (W [1], . . . , W [t]) and R = hw(log′ | pw′).
2. let j ∈ {1, . . . , t} be such that logj = log′;
3. if there exists no such j then return: 0 and halt;
4. set R′ = Ext(X, R);
5. if T [j] = R′ then return: 1 else return: 0

Proof that P4 satisfies Theorem 5. Proving the security property of P4 makes
crucial use of the properties of strong extractors and of t-wise independent hash
functions, as follows. We use the properties of strong extractors to show that the
first tag is statistically indistinguishable from a uniformly distributed tag, even
conditioned on the value of all other tags and on the value of the hash function
used to generate the seed for the extractor. In proving that the conditioning on
the value of all other tags does not affect the statistical indistinguishability, we
use the indistinguishability of the extractor’s output from random, even condi-
tioned over the result of a bounded-output function over the extractor’s input.
In proving that the conditioning on the seed does not affect the statistical in-
distinguishability, we use the extractor’s ‘strong’ property. Then we replace the
first tag with a random tag and repeat the analogous argument over the second
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tag, etc. (Note that independence of the R values used to compute each tag is
guaranteed for up to t users by the t-wise independent hash function.) Finally,
we compute an upper bound on the adversary’s advantage when all tags are
random by computing an upper bound on collisions on the t-wise independent
hash function and on the extractor used. A formal proof is available in the full
version of the paper.
An extension: Combining protocols P3 and P4. Recall that protocol P3 is
secure against adaptive adversaries but allows the adversary to achieve a non-
negligible advantage (which is optimal in the setting of adaptive intrusions).
Furthermore, protocol P4 only allows the adversary to achieve at most negligible
advantage, but is only secure against static adversaries. We would like to achieve
the “best of both worlds” with a single scheme that limits the adversary to a
negligible advantage in case of static intrusions, but remains secure even under
an adaptive attack.

Fortunately, such a solution is indeed possible. We simply modify the con-
struction of P3, replacing the input pwi with the tagi computed as in protocol
P4. That is, the the final tagi values computed using P3 will now be based on
“password” inputs taken from the tagi values computed via P4 using the user’s
actual password. It can be shown that the resulting scheme achieves security
comparable to that of P4 under static intrusion attacks, and comparable to that
of P3 under adaptive intrusion attacks.
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A Numerical Examples

Some typical parameters for instantiating protocol P4 might be as follows. Set
O(λ) = 176 for a dictionary of size ≈ 2d, where, say d = 40 (this yields a
dictionary of approximately 1 trillion words). We have that n = 2d + O(λ) =
80 + 176 = 256 = 28 (assuming a small constant under the O notation). This
requires that data be read from storage in chunks not less than 48 bytes in size.

For a system with t ≈ 212 = 4096 maximum users, we can achieve the fol-
lowing parameters. Letting m = 2t + m̂ = 213 + 235 ≈ 235, we obtain a total
storage requirement of mn = 28235 = 243 bits, or approximately 1 TB (ter-
abyte). It should be noted that 1 terabyte of storage can currently be purchased
at very reasonable cost (under $1000). Given storage of this size, we can safely
set β = 0.99, allowing the adversary to retrieve up to 99 percent of the storage,
which is about 990 MB (megabytes) of data. If we limit the server to an out-
going bandwidth of 8192 bits/sec = 1024 bytes/sec, it will take the adversary
over 30 years to download that much data. With an outgoing bandwidth of 1024
bytes/sec, the server can process approximately 32 logins/sec. The lookup com-
plexity will be l = t + O(d + λ) ≈ 212 + C(40 + 176) ≈ 213, which is about 8000
blocks of 256-bits each, per login (a total of less than half a megabyte of data).
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