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Abstract. We introduce a new method of achieving intrusion-resilience
in the cryptographic protocols. More precisely we show how to preserve
security of such protocols, even if a malicious program (e.g. a virus) was
installed on a computer of an honest user (and it was later removed).
The security of our protocols relies on the assumption that the amount of
data that the adversary can transfer from the infected machine is limited
(however, we allow the adversary to perform any efficient computation
on user’s private data, before deciding on what to transfer). We focus
on two cryptographic tasks, namely: session-key generation and entity
authentication. Our method is based on the results from the Bounded-
Storage Model.

1 Introduction

In the contemporary Internet environment, computers are often exposed to at-
tacks of malicious programs, which can monitor the machines and steal the secret
data. This type of software can be secretly attached to seemingly harmless pro-
grams, or can be installed by worms or viruses. In order to protect against these
threats a user is usually advised to use virus and spyware removal tools. These
tools need to be frequently updated (as the new viruses spread out very quickly).
Nevertheless, for an average PC user it is quite inevitable that his computer is
from time to time infected by a malicious process (which is later removed by an
appropriate tool).

This phenomenon can be particularly damaging if the user runs some crypto-
graphic programs on his machine. This is because in most of cryptographic tasks
(encryption, authentication) the user needs to posses (and store somewhere) a
secret key s. If the user does not store s outside of the machine (e.g. on a trusted
hardware that will later participate in the protocol), then it seems that there
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is little that can be done to preserve the security, as the malicious process can
always steal s (and then impersonate the honest user, or decrypt his private com-
munication). If the protocol is based on a password memorized by the user then
the virus can wait until the password is typed and then record the key-strokes.

In this paper we propose a method for constructing intrusion-resilient crypto-
graphic protocols, i.e. such protocols that remain secure even after the adversary
gained access to the victim’s machine (and later lost this access). The security of
our protocols is based on a novel assumption that the amount of data that the
adversary is allowed to transfer from the victim’s machine is limited (however,
we allow the adversary to perform any efficient computation on user’s private
data, before deciding on what to transfer). In the security proofs we make use
of the theory of the Bounded Storage Model (see Section 3).

1.1 Previous Work

Intrusion-resilience was introduced in [IR02] (see also [DFK+03]) and can be
viewed as a combination of forward and backward security.1 A cryptosystem is
forward-secure if an exposure of a secret key at some particular time t does not
affect the security of the sessions of the protocol that ended before t. It was
studied in context of key-exchange (see e.g. [DvOW92,Kra96]), digital signa-
tures (this research was initiated by Ross Anderson, see [And02]) and public-key
encryption [CHK03]. A cryptosystem is backward-secure if the exposure of a se-
cret key at time t does not affect the security of the sessions of the protocol that
started after t. So far this was achieved by distributing the secret key among a
group of participants (e.g. in [IR02] this group consist of two players: a signer
and a home base). One has to make an assumption that the entire group is never
compromised by the adversary at the same time.

Cryptosystems that remain secure even in case of a partial leakage of the
secret key were already studied in the area of Exposure-Resilient Cryptography
(see e.g. [Dod00]). The differences from our model are as follows: (1) they con-
sider only the leakage of individual bits of the secret keys and (2) the keys in
their protocols are short.

Our model can be viewed as a generalization of the model of Kelsey and
Schneier [KS99]. In their model the adversary is allowed to access individual
bits of the secret key (this is justified by an assumption that the access to the
memory is slow). In this model they show a simple authentication protocol (the
secret key is a long random string of bits; in order to verify the authenticity of
the client the server asks for the values of some randomly chosen positions of the
secret key). In Sect. 5.2 we show that this protocol is also secure in our model.

Independently2 (but earlier) a similar model was introduced by Dagon et al.
[DLL05]. They propose a system (called VAST ) for securely storing secret data
on devices that can be subject to an intrusion e.g. by a virus. They assume that
1 There seems to be some confusion in the literature about the terminology. What is

called forward security in [And02] is called backward security in [IR02,DFK+04]. In
this paper we use the terminology of [IR02].

2 We became aware of this work after submitting our paper to TCC.
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such data is encrypted by a weak (human-memorized) password (let T denote
the resulting ciphertext and let π be the password). To prevent the adversary
from downloading T and cracking the password (i.e. performing a dictionary
attack on π) on his own machine, they design their protocols so that T is too
large to be fully downloaded. In order for this to make sense they need to assume
that the computing power of the virus is limited (so the virus cannot perform the
password-cracking on the victim’s machine). This is in contrast to our model,
where we can grant the virus a right to perform an arbitrary (polynomial-time)
computation on the victim’s data. Another difference is that they assume that
the adversary does not have a full access to the victim’s machine. In particular
when the user is interacting with VAST the virus should not have access to the
keyboard. This is because when the user enters the password π to the machine
the virus can learn π by recording the key-strokes.

1.2 Our Contribution

We propose a new method for constructing intrusion-resilient protocols for the
session-key generation and entity authentication (the main novelty of our ap-
proach is the new method of achieving backward-security; the forward-security
is achieved in a fairly standard way). The assumption that we make is that
the secret key is of huge size (e.g. K is of size 5 GB). More precisely, we will
grant the adversary the power to break into the honest user’s machine and take
full control over it. We will assume that the adversary is able to perform arbi-
trary (efficient) computation on victim’s data. Clearly, during the period of the
break-in one cannot hope for much security, since the adversary has a complete
knowledge about the behavior of one of the honest users (and hence she can
e.g. impersonate the user or steal the session key). So the intrusion-resilience
is the maximum what we can hope for. We achieve it by assuming that the
amount of data that the adversary can retrieve is much smaller than K (say
it is 0.5 GB). This assumption may be quite practical as in many situations
transmitting unnoticeably 0.5 GB of data is hard. Observe that if the secret
key is of size 1 KB then the virus can e.g. post it on some Usenet group, so
that the author of the virus can download it anonymously. Clearly this is much
harder if the secret is huge.

Another motivation is that protocols that are secure in our model have a
high level of resiliency against side-channel analysis [KSWH00]. Recall that the
side-channel attacks allow the adversary to obtain some information about the
users’ secrets by observing the behavior of the implementation of the protocol.
In practice the full protection against such attacks is hard, and we can only
hope for minimizing the amount of leaked information. The assumptions that
we make in our model guarantee that even if some information about the secrets
is leaked, the protocols are still secure.

Our method is based on the theory of the Bounded-Storage Model (see Sect. 3).
In the BSM one constructs protocols secure under the assumption that the amount
of data that the adversary can store is smaller that the amount of data that can be
broadcasted (e.g. by a satellite). The fact that he theory of the BSM has applica-
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tions here may seem surprising at the first sight, as in some sense the assumptions
in the BSM are opposite to ours. However, as it turns out, these models show sim-
ilarities and in fact theorems that were proven in the BSM are useful for us.

Our exposition is rather informal, as we mostly aim at introducing the model
and showing its power, not at providing ready to use practical solutions for con-
crete problems. For the same reason we do not provide numerical examples and
we do not give comparisons between security levels of different schemes presented
in the paper. Nevertheless, we believe that the protocols provided here (or their
variants) may find practical applications.

Finally, let us note that our results are proven in the random oracle model (see
Sect. 2.4).

1.3 The Contribution of [CDD+05]

The entity authentication protocol that we present in our paper was indepen-
dently constructed and analyzed by Cash et al. [CDD+05]. Moreover, they im-
prove our results by constructing a session-key generation protocol without the
random oracle assumption. They also provide some concrete numerical examples
of the parameter values that can be used in practical implementations.

2 Preliminaries

2.1 Probability Theory

The min-entropy of a probability distribution PX is defined as

H∞(X) := min
x∈X

(− log2(PX(x))).

If X is a random variable and A is an event then PX is the distribution of X and
PX|A is a conditional distribution of X given A. In this case we define H∞(X) :=
H∞(PX) andH∞(X |A) := H∞(PX|A). For more on min-entropy and its relation
to the standard Shannon entropy see e.g. [Cac97].

Let the statistical distance between random variablesX andX ′ distributed over
the same set X be defined as

δ(X,X ′) :=
1
2

∑
x∈X

|X(x) −X ′(x)|

We will also say that X is δ(X,X ′)-far from X ′. If U is a random variable with
uniform distribution over X then define d(X) := δ(X,U). The above notation
extends in a natural way to probability distributions.

2.2 Message Authentication Codes

We will use the following (simplified) security definition of the Message Authen-
tication Codes (MAC s). For a more complete definition the reader may consult
e.g. [Gol04]. MAC is an algorithm which takes as an input a security parameter 1k,
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a random secret key S ∈ {0, 1}λ(k) (where λ is some polynomial) and a message
M ∈ {0, 1}∗. It outputs an authentication tag MACS(M, 1k)) (we will sometimes
drop 1k). It is secure against an adaptive chosen-message attack if any probabilis-
tic polynomial time (PPT ) adversary (taking as input 1k) has negligible3 (in k)
probability of producing a valid pair (M,MACS(M, 1k)), after seeing an arbitrary
number of pairs

(M1,MACS(M1, 1k)), (M2,MACS(M2, 1k)) . . .

(whereM �∈ {M1,M2, . . .)), even whenM1,M2, . . . were adaptively chosen by the
adversary.

2.3 Public-Key Encryption

A public-key encryption scheme is a triple (G, encr , decr), where G is a PPT key-
generation algorithm taking as input 1k and returning as output a (private-key,
public-key) pair (E,D), encr is an polynomial-time algorithm taking as input
1k, a message M ∈ {0, 1}∗ and a public key E and returning a ciphertext C =
encrE(M), and decr is an algorithm taking as input a private key D a cipher-
text C and returning a message M ′ = decrD(C). We require that always M =
decrD(encrE(M)). Let E be a polynomial time adversary which is given 1k andE.
Her goal is to win the following game. She produces two messages M0 and M1 (of
the same length). Then, she is given a ciphertextC = encrS(Mr), where r ∈ {0, 1}
is random. She has to guess r. We say that (G, encr , decr) is semantically secure
[GM84] if any polynomial time adversary has chances at most negligibly (in k)
better that 0.5. More on the definitions of secure public-key encryption can be
found e.g. in [Gol04].

2.4 Random Oracle Model

We prove the security of our protocol in the Random Oracle Model [BR93]. More
precisely, we will model a hash function H : {0, 1}i → {0, 1}j as a random oracle,
i.e. a black box containing a random function h : {0, 1}i → {0, 1}j. We assume
that every party (including the adversary) has access to this oracle, i.e. can ask it
for the value of h on any (chosen by her) arguments.

3 Bounded Storage Model

We will use the results from the Bounded-Storage Model, introduced by Maurer in
[Mau92]. So far, this model was studied in the context of information-theoretically
secure encryption [ADR02, DM04b, Lu04,Vad04, Din05], key-agreement
[CM97, DM04a], oblivious transfer [CCM98, Din01, DHRS04] and time-
stamping [MSTS04]. In this model one assumes that a random t-bit stringR (called
a randomizer) is either temporarily available to the public (e.g. the signal of a deep

3 A function f : N → R is negligible (in k) if for every c ≥ 1 there exists k0 such that
for every k ≥ k0 we have |f(k)| ≤ k−c.



212 S. Dziembowski

space radio source) or broadcast by one of the legitimate parties. We assume that
the memory s of the adversary is smaller than t and therefore she can store only
partial information about R. It has been shown in [ADR02, DM04b, Lu04, Vad04]
that under this assumption the legitimate parties, Alice and Bob, sharing a short
secret key Y initially, can generate a very long n-bit one-time padX with n ) |Y |
about which the adversary has essentially no information.

More formally, Alice and Bob share a short secret initial key Y , selected uni-
formly at random from a key space Y, and they wish to generate a much longer
n-bit expanded key X (i.e. n ) log2 |Y|). In a first phase, a t-bit random string R
is available to all parties, i.e., the randomizer space is R = {0, 1}t. Alice and Bob
apply a known key-expansion function

f : R × Y → {0, 1}n

to compute the expanded key as X = f(R, Y ). Of course, the function f must be
efficiently computable and based on only a very small portion of the bits of R, so
that Alice and Bob need not read the entire string R.

The adversary Eve E can store arbitrary s bits of information aboutR, i.e., she
can apply an arbitrary storage function

h : R → U

for some U with the only restriction that |U| ≤ 2s. The memory size during the
evaluation of h does not need to be bounded. The value stored by Eve isU = h(R).
After storing U , Eve looses the ability to access R. All she knows about R is U . In
order to prove as strong a result as possible, one assumes that Eve can now even
learn Y , although in a practical system one would of course keep Y secret.

A key-expansion function f is secure in the bounded-storage model if, with
overwhelming probability4, Eve, knowing U and Y , has essentially no informa-
tion about X . To be more precise, let us introduce a security parameter k which
is an additional input of f and of Eve. Let us assume that the length of the ran-
domizer, the size of Eve’s memory and the length of the output of f are functions
of k, i.e. t = τ(k), s = σ(k), and n = ν(k) (with ν(k) ≥ k). Also, assume that
the set of the initial keys is always equal to {0, 1}μ(k), for some function μ. We say
that function f is (σ, τ, ν, μ)-secure in the bounded-storage model if for any Eve
(with memory at most σ(k)) the statistical distance of the conditional probabil-
ity distribution PX|U=u,Y =y from uniform distribution over the ν(k)-bit strings is
negligible, with overwhelming probability over values u and y. Above we assumed
that the adversary and the function f are deterministic, but note that we would
not loose any security by allowing them to be randomized.5

4 Formally, a sequence of probabilities p0, p1, . . . is overwhelming if the function f(k) =
1 − pk is negligible.

5 Formally we could do it by allowing E and f to take extra random inputs rE and rf ,
resp. This does not give any extra power to the adversary, for the following reasons:
(1) the input rf is obsolete since if E is randomized then having rf clearly does not
change anything as E can simply choose rf herself and encode it into the description
of f ; (2) the input rE is obsolete since a computationally unbounded E can always
(for any value of k) find the optimal rE .
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Several key expansion functions were proven secure in the past couple of years
(see for example [ADR02, DM04b,Lu04, Vad04]). In the next section we present
an example of such a function, taken from [DM04b]. We have chosen the function
of [DM04b] because we believe that it is the simplest one. The reader familiar with
the BSM literature can safely skip the next section.

3.1 The Scheme of [DM04b]

The randomizer R ∈ R = {0, 1}t is interpreted as being arranged in a matrix
with m rows, denoted R(1), . . . , R(m), for some m ≥ 1 called the height of the
randomizer. Each row consists of l+ n− 1 bits, for some l ≥ 1 called the width of
the randomizer. Hence t = m(l+n−1) and R can be viewed as anm× (l+n−1)
matrix (see Fig. 1). The initial key Y = (Y1, . . . , Ym) ∈ Y = {1, . . . , l}m selects
one starting point within each row, and the expanded key X = (X1, . . . , Xn) is
the component-wise XOR of the m blocks of length n beginning at these starting
points Yi, i.e.,

X = f(R, Y ),

where f : R×Y → {0, 1}n is defined as follows. For r∈R and Y =(Y1, . . . , Ym)∈Y,

R(1) Y1
...

R(m) Ym

block of length l + n − 1

block of length n

height

width l

m

Y2

Fig. 1. Illustration of the scheme for deriving an expanded n-bit key X = (X1, . . . , Xn),
to be used as a one-time pad, from a short secret initial key Y = (Y1, . . . , Ym). The
randomizer R is interpreted as a m × (l + n − 1) matrix with rows R(1), . . . , R(m) of
length l+n−1. The expanded key X is the component-wise XOR of m blocks of length
n, one selected from each row, where Yi is the starting point of the ith block within the
ith row R(i).

f(R, Y ) :=

(
m⊕

i=1

R(i, Yi), . . . ,
m⊕

i=1

R(i, Yi + n− 1)

)
, (1)

where R(i, j) denotes the jth bit in the ith row of R. This is illustrated in Fig. 1.
The above function f was proven secure in [DM04b], assuming that memory

of the adversary has a size that is a constant fraction c < 1 of the randomizer.
For the practically looking parameters this constant should be around 8%, i.e.
σ(k) := τ(k) · 0.08. See [DM04b] for details.
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4 Intrusion-Resilient Session-Key Generation

By session-key generation we mean a protocol that allows two parties (that share
a long-term symmetric key) to agree securely on a session key even in presence of
a malicious adversary that can obstruct their communication. Below, we describe
what we mean by intrusion-resilient session-key generation.

4.1 An Informal Description of the Model

First, let us fix the basic terminology. The honest users Alice A and BobB will be
attacked by a (polynomially bounded) adversary Eve E . The adversary is allowed
(1) to eavesdrop and to store the entire communication between Alice and Bob (2)
to fabricate messages or to prevent them from arriving and (3) to (periodically)
install malicious programs on the honest user’s machines (see below). Such a pro-
gram will be called a virus. We assume that the honest users share a long-term
secret keyK generated randomly. The time is divided into sessions T1, T2, . . . (the
number of sessions will be bounded). At the beginning of the session the users are
allowed to get some fresh random input. At the end of each session Ti the users
output a new session key κi. (In practice, once κi is generated, the users will uti-
lize κi for secure communication.) For simplicity assume that each execution of
the protocol is always initiated by Alice. After being installed, the virus can do
the following.

1. Read all the internal data of the victim.
2. Compute an arbitrary function Γ on this data. We will model it by asking

the adversary to produce a description of Γ as a boolean circuit. The only re-
striction that we put on Γ is that the length of its output is limited (observe
however that since Eve is polynomially-bounded the size of Γ has to be polyno-
mial). Note also that we do not need to consider the case of interactive viruses
(that would be allowed to engage in a interactive massage exchange with the
adversary), since the circuit may contain the description of the entire state of
the adversary.

3. Send the result of the computation back to the adversary.

Note, that we assume that the adversary is not allowed to modify the programs
running on the users’ machines. Informally speaking the goal of the adversary is
to successfully break some test session Ttest (of her choice), by achieving one of the
following goals:

1. learn κtest ,
2. convince at least one of the players to accept some κ′test about which the ad-

versary has some significant information, or
3. make A and B agree on different keys.

Clearly, if the adversary installs a virus on one of the users’ machines in session
Ttest then she can instruct the virus to retrieve κtest (since in a usual scenario
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the session key κi is short6). Therefore, we are interested only in the adversary
breaking those sessions Ttest during which no virus was installed (neither on the
machine of A nor on the one of B).

Traditionally when considering forward security (see e.g. [Kra96]) one allows
the adversary to learn all the session keys except of the challenge key κtest . In our
model this ability of E comes from the fact that the adversary can compromise
all sessions except of Ttest (we will actually allow the adversary to ,,compromise
a session” that has already ended some time ago). Finally, let us remark that in
this model we assume that the players can reliably erase their data (in particular,
after the session Ti the players would erase κi). Actually, we will assume that the
only data that is not erased between the sessions is the secret key K.

4.2 A More Formal Description of the Model

We are now going to define the model more formally. Our definitions are inspired
by the definitions of the security of key-exchange protocols (esp. [CK01]). For the
sake of simplicity we assume that the protocol is executed just between two fixed
parties, and concurrent execution of the sessions is not allowed, i.e. the users sim-
ply execute one session after another. Giving a complete definition (e.g. in the style
of [CK01]) remains an open task.

The session-key generation scheme is a tuple (A,B, α, β, γ, δ, χ), where α, β, γ,
δ, χ are some polynomials and A and B are interactive Turing machines, taking
as input a security parameter 1k and a secret key K ∈ {0, 1}α(k). The adversary
E is a PPT Turing Machine taking as input 1k. The execution is divided into the
sessions T1, T2, . . . , Tχ(k). The execution of each Ti looks as follows:

1. The machinesA andB receive uniformly (and independently) chosen random
inputs rA ∈ {0, 1}β(k) and rB ∈ {0, 1}β(k) (respectively).

2. Machines start exchanging messages. The adversary can eavesdrop the mes-
sages. She can also prevent some of the messages from arriving to the destina-
tion and fabricate new messages. At the beginning A sends a unique message
start to B (so the adversary knows that a new session started).

3. At the end of the session the machines (privately) output an agreed key κi ∈
{0, 1}δ(k). If the traffic was not disturbed by the adversary then they have to
output the same value.

4. Now the adversary may choose to compromise the session Ti (each session Ti

may be compromised at most once in the entire execution of the protocol). In
this case the following happens.
(a) Eve produces a description of a boolean circuitC (which models the virus)

computing a function Γ : {0, 1}w → {0, 1}γ(k) (w is an arbitrary value).
Clearly we will always have γ(k)χ(k) < α(k), since otherwise Eve could re-
trieve the entire secret keyK. The size ofC is arbitrary (however, it has to
be polynomial in the security parameter, as the adversary is polynomially-
bounded).

6 Even if one would develop a scheme in which κi is too large to be retrieved, the ad-
versary could simply tell the virus to steal the data that is encrypted with κi.
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Note that we assume a uniform bound γ(k) on the amount of bits that
the adversary is allowed to steal in each compromised session. More gen-
erally, one could give a bound on the total number of bits retrieved by the
adversary in all compromised sessions.

(b) Eve learns the value of Γ (rA, rB,K).
Observe that the function Γ ,,has a complete view” of the internal states

of the parties during the session. Thus in particular the value of Γ (rA, rB,K)
may include the encoding of κi (if this is the wish of the adversary). Also note
that our model is actually stronger than what we need in practice (as we as-
sume that Γ has simultaneous access to both A andB, without restricting the
amount of data that she needs to transfer between the parties, to perform the
computation).

5. The adversary may decide to compromise a session (in the same way as in
Point 4) even long time after the sessionTi is finished (one can imagine that the
descriptions of the states ofA andB at the end of Ti are deposited somewhere
and the adversary may decide to access them at any later time). This may
seem an artificial strengthening of the model. However, in fact it simplifies
things, as it allows us to model the fact that κi may become known to the
adversary at some later point. Alternatively, we could introduce a special type
of session-key-queries [CK01] that the adversary may ask to learn κi after the
end of Ti.

Let C be the set of all compromised sessions. Clearly, the adversarywins if for some
session Ti �∈ C users A and B outputted different keys. If this is not the case then
at the end of the execution the adversary decides that some Ttest �∈ C will be her
test-session. In this case her task will be to distinguish κtest from a truly random
key of the same length. Of course we need to require that at least one of A and
B actually outputted some key κtest (by blocking the message flow the adversary
can clearly prevent the parties from reaching any agreement). The distinguishing
game is as follows:

1. Let r ∈ {0, 1} be random.
2. If r = 0 then pass κtest to the adversary. Otherwise generate a random κ′ ∈

{0, 1}δ(k) and pass it to the adversary. The adversary outputs some r′ ∈ {0, 1}.
We say that she won the distinguishing game if r = r′.

Definition 1. We say that a key generation scheme (A,B, α, β, γ, δ, χ) as above
is intrusion-resilient if for any PPT E

1. the chances that in some session Ti �∈ C machines A and B outputted different
keys are negligible (in k), and

2. the chances that E wins the distinguishing game, are at most negligibly (in k)
greater than 1/2.

4.3 The Protocol for Intrusion-Resilient Session-Key Generation

Preliminaries. Let f be (σ, τ, ν, μ)-secure in the BSM. Let MAC be a message
authentication scheme secure against adaptive chosen message attack. Assume
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that for a security parameter 1k the length the secret key of MAC is λ(k). Let
H : {0, 1}ν(k) → {0, 1}λ(k) be a hash function (modeled as a random oracle).
Let (G, encr , decr ) be a semantically secure public-key encryption scheme. In or-
der to achieve forward-security we will use the public-key encryption in a standard
way (see e.g. [DvOW92, Kra96]): Alice will (1) generate an ephemeral (public key,
private key) pair7 and (2) send the public key (in an authenticated way) to Bob,
Bob will generate the session key κ and send it (encrypted with Alice’s public
key) back to Alice (who can later decrypt κ).8 Afterwards, the ephemeral keys
are erased.

The Protocol. Fix some value of the security parameter k. Let R = {0, 1}τ(k)

and let Y = {0, 1}μ(k). Assume that Alice and Bob share a random secret key
K = (RA, RB) ∈ R2 and hence α(k) := 2 · τ(k). In each session Ti the players
execute the following protocol.

1. Alice generates a random YA ∈ Y and sends it to Bob.
2. Bob generates a random YB ∈ Y and sends it to Alice.
3. Both parties calculate S := f(RA, YA) ⊕ f(RB, YB) and S′ := H(S).
4. Alice generates a public key E and sends (E,MAC S′(A:E)) to Bob.
5. Bob verifies the correctness of the authentication tag. If it is correct then he

generates a random κi and sends (encrE(κi),MAC S′(encrE(B:κi)) to Alice.
He outputs κi.

6. Alice verifies the correctness of the authentication tag. If it is correct then she
decrypts κi and outputs it.

7. The players erase all their internal data (including κi and random inputs),
except of the long-term key K.

The role of labels ,,A:” and ,,B:” is to prevent the adversary from bouncing the
message sent by Alice in Step 4 back to her in Step 5.

The Bound on the Amount of Retrieved Data. An important parameter
that needs to be fixed is the amount of data that the virus can retrieve in each
session, i.e. the value of γ(k). If the adversary compromises some sessions than at
any point of the execution of the scheme, then she knows the value of some function
h̃ of K. We can think about h̃ as changing dynamically after each session. After
execution of i sessions the length of the output of h̃ is at most the sum of

• i · γ(k) (since she could have compromised at most i sessions do far), and
• i · λ(k) (since she could have learned i keys of the MAC scheme9)

Since the maximal number of sessions is χ(k) we know that the output of h̃ is of
a length at most

χ(k) · (γ(k) + λ(k)).

7 Ephemeral key is a key that is generated just for some particular session (and it is
erased later).

8 In [DvOW92,Kra96] it is actually done by exchanging Diffie-Hellman ephemeral keys,
i.e. doing authenticated Diffie-Hellman key agreement.

9 We have to add it because the definition of the security of MAC does not imply the
secrecy of all the bits of the key.
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Therefore if we want this value to be at most σ(k) we have to set

γ(k) := σ(k)/χ(k) − λ(k). (2)

This ensures that the information that Eve has about K is at most σ(k) bits.

4.4 The Security of the Protocol

We prove the following.

Theorem 1. The protocol in Sect. 4.3 is intrusion resilient.

Proof (sketch). Fix some uncompromised session Ti. Let us first consider the case
when the adversary wants to break it by disrupting (by stealing and substituting
messages) the communication. Let SA and SB be the values of S computed by A
and B (resp.) in Step 3. If the execution of the protocol was not disturbed by the
adversary then we have SA = SB. By the security of f in the BSM, the adversary
has almost no information about the values SA and SB (i.e. their distribution is
negligibly far from uniform from her point of view). Note that this holds even if
she was disrupting the communication between the parties. The only thing that
the adversary could possibly do is to force SA and SB to be such that they are not
equal, but they are not independent either. For example by modifying the message
YA (sent in Step 1) she could make SA ⊕ SB to be equal to some value S⊕ chosen
by her.10

This is why, before using S, we hash it (in Step 3): S′ := H(S). Let S′
A :=

H(SA) and let S′
B := H(SB). Clearly the chances of E of guessing SA or SB are

negligible. This is because the distributions of SA and SB are negligibly far from
a uniform distribution over {0, 1}ν(k) and we assumed that ν(k) ≥ k. Therefore
(since we model the hash function as a random oracle) we can assume that (except
with negligible probability) from the point of view of E the distributions of the
values S′

A and S′
B are entirely uniform. Moreover, one of the following has to hold

(except with negligible probability):

1. S′
A = S′

B, or
2. S′

A and S′
B are independent.

Assume that the first case holds. Then, the adversary is not able to fabricate mes-
sages in Steps 4 and 5, without breaking the MAC. The security of κi follows
now from the security of the encryption scheme (if the adversary could distin-
guish κi from a random key, then she could clearly break the semantic security of
(G, encr , decr )).

10 Consider for example the scheme from Sect. 3.1. Write YA = (Y1, . . . , Ym). Suppose
the adversary stored the first row (RA(1)) of RA (she should have enough memory to
do it) and she modified YA = (Y1, . . . , Ym) (sent is Step 1) only on the first component
(Y1). Let Y ′

A be the result of this modification. Clearly almost always fA(RA, YA) 	=
fA(RA, Y ′

A); however, fA(RA, YA)⊕fA(RA, Y ′
A) (and hence SA ⊕SB) is known to the

adversary.
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In the second case, the parties easily discover that the adversary was interfer-
ing with their communication. This is because if the adversary wants to prevent
them from discovering this, then she needs to create (in Steps 4 and 5) valid pairs
(message,MAC ), without having any information about the secret keys. Again,
she cannot do it without breaking the MAC .

Now suppose that the adversary wants to distinguish κi from a random key,
after the session is completed. If she compromises some future session Tj then she
can of course recover the key S′ used in session Ti (if she stored YA and YB from
Ti). However, now it is too late (as the key S′ is used only for authentication).
Therefore, the security of κi again follows from the semantic security of the en-
cryption scheme. ��

4.5 An Alternative Protocol

In this section we show another variant of the protocol from Sect. 4.3. The main
difference is that instead of using a BSM-secure key derivation function f , we will
use a function f̃ : R × Y → {0, 1}k that is not BSM-secure, but still works
for our purposes. Again, let k be a security parameter and suppose that the ran-
domizer R is a random element from R = {0, 1}τ(k). Let Y := {(Y1, . . . , Yk) ∈
{1, . . . , τ(k)}k | Y1 < · · · < Yk}. Thus Y can be viewed as a set of all k-element
subsets of {1, . . . , τ(k)}. First, define

ϕ((R1, . . . , Rτ(k)), (Y1, . . . , Yk)) := (RY1 , . . . , RYk
).

Let H be a hash function. We set

f̃(R, Y ) := H(ϕ(R, Y )).

In other words: we just pick random positions of the secret key, concatenate them
and hash the result. Of course usually f̃ is not secure in the BSM as the hash
functions belong to the complexity-theoretic world. However, if we model H as
a random oracle, then the value of f̃(R, Y ) is random from the point of view of
the adversary, unless she managed to guess the value of ϕ(R, Y ). So, if we want
to use f̃ instead of f in the protocol from Sect. 4.3, then we have to show that the
probability of any adversary of guessing ϕ(R, Y ) correctly, is negligible (for the
appropriate choice of the parameters), even when the adversary is given h(R) and
Y (for some h : {0, 1}τ(k) → {0, 1}σ(k) chosen by her). If we model the adversary’s
guess as a function g we can formalize this requirement as follows.

Lemma 1. Suppose σ(k) = (1 − δ)τ(k) − k, for an arbitrary δ > 0. For arbitrary
functions h : {0, 1}τ(k) → {0, 1}σ(k) and g : {0, 1}σ(k) → {0, 1}k we have that

P (ϕ(R, Y ) = g(h(R), Y )) (3)

is negligible.

For the proof we need two other lemmas. The first lemma (proven in [CM97], see
Lemma 3) is quite simple. It roughly states that the knowledge of s bits of a ran-
dom string R reduces its min-entropy by around s, with a high probability.



220 S. Dziembowski

Lemma 2 ([CM97]). Let R be a random variable uniformly distributed over
{0, 1}t. Let h : {0, 1}t → {0, 1}s be an arbitrary function. Then, with probabil-
ity at least 1 − 2k the variable h(R) takes a value u such that

H∞(R | h(R) = u) ≥ t− s− k.

The second lemma (proven in [NZ96], see Lemma 11) is more complicated. Infor-
mally speaking, it states that if R ∈ {0, 1}t is a random string with min-entropy
δ · t and Y ∈ Y is chosen uniformly at random, then ϕ(R, Y ) ∈ {0, 1}k has (with
high probability) a min-entropy close to δ′k, where δ′ is some constant.

Lemma 3 ([NZ96]). Let PR be a probability distribution over {0, 1}t with min-
entropy δt. SupposeR is chosen according toPR. Then, with probability at least 1−ε
(over the choice of y = Y ) the distribution ofPϕ(R,y) is ε-far from some distribution
PX′ whose min-entropy is δ′k where δ′ := cδ/ log(δ−1) and ε := max(2−ck, 2−cδ′l)
for some constant c.

Actually, the lemma that is proven in [NZ96] is stronger, as it does not require Y
to be entirely uniform (see [NZ96] for details). We are now ready for the proof of
Lemma 1.

Proof (of Lemma 1). To simplify the notation we set s := σ(k) and t := τ(k).
First, observe that by Lemma 2 we have that (except with a negligible probability
2−k) the variable h(R) takes a value u such that

H∞(R | h(R) = u) ≥ t− s− k = δt. (4)

So, suppose that such u was selected. We are now going to apply Lemma 3. Thus
set δ′ = cδ/(log δ−1) and ε = max

(
2−ck, 2−cδ′k

)
(where c is some constant).

Observe that δ′ is constant and ε is negligible. Therefore (by Lemma 3) we know
that with overwhelming probability Y took a value y such that the conditional
distribution of

Pϕ(R,Y ) | h(R)=u,Y =y (5)

is at most ε-far from a distribution PX′ with min-entropy δ′t. Assume that this
indeed happened. If we want to maximize (3) we have to let g choose an element
with the maximal probability according to the distribution Pϕ(R,Y ) | h(R)=u,Y =y.
Clearly this probability is at most 2−H∞(PX′ )+ε = 2−δ′t+εwhich is negligible in k.

5 Intrusion-Resilient Entity Authentication

In this section we informally describe a practical intrusion-resilient method for
entity authentication. In order to achieve such entity authentication one could of
course use the scheme from Sect. 4; however, this is an overkill and for practi-
cal applications a much simpler method suffices. The idea is as follows. We will
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construct an intrusion-resilient scheme that allows a user U to authenticate to a
server S. We will consider only intrusions into U . This corresponds to a practical
situation in which the computers of the users are usually much more vulnerable
for the attacks then the computer of the server.

Assume that the parties have already established a channel C between S and
U that is authentic only from the point of view of the user, i.e. U knows that
(1) whatever comes through this channel is sent by U and (2) whatever is sent
through it can be read only by U . Now, the user wants to authenticate to the
server. This is a typical scenario on the Internet, where C is established e.g. us-
ing SSL (and the server authenticates with a certificate). In practice usually U
authenticates to S by sending his password over C. This method is clearly not
intrusion-resilient because once a virus enters the machine of U he can retrieve
the password (or record the key-strokes if the password is memorized by a
human).

In this section we propose an authentication method that is intrusion-resilient
(in the same sense as the protocols in the previous sections). Again, we will use
the assumption that the secret key K of the user is too large to be fully down-
loaded. We allow the virus to perform arbitrary computations11 of the victim’s
machine.

5.1 Our Protocol

Let f be a function that is (σ, τ, ν, μ)-secure in the BSM. Fix some security pa-
rameter k. The secret key K is simply the randomizer R ∈ {0, 1}τ(k). The key is
stored both on the user’s machine and on the server. The protocol is as follows (all
the communication is done via the channel C).

1. The server selects a random Y ∈ {0, 1}μ(k) and sends it to Bob.
2. Bob replies with f(R, Y ).
3. Alice verifies the correctness of Bob’s reply.

Now assume that the adversary retrieved at most σ(k) bits of R. More precisely,
assume that the adversary knows a value h(R), where h is a function with the
range {0, 1}σ(k). It is easy to see that (by the security of f) she has negligible
chances of being able to reply correctly to the challenge Y . Observe that if the
adversary replies (in Step 2) with some value X , and Alice rejects this answer,
than the adversary learns exactly one bit of information about R (namely that
f(R, T ) �= X), which should be added to the total number of ,,retrieved” bits (if
one want to achieve the security against multiple impersonation attempts).

Note that since we assume that the server is secure (i.e. there are no intrusions
to him) hence one could generate K pseudo-randomly and just store the seed on
the server. For example: the seed s could be a key to the block-cipher B and one
could set K := (Bs(1), Bs(2), . . . , Bs(j)), for some appropriate parameter j (this
method allows for a quick access to any part of K).

11 The computational power of the virus does not need to be limited in this case.
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5.2 The Protocol of [KS99]

In this section we note that in the protocol from Sect. 5.1 one can use a simpler
function f than the functions secure in the BSM. Namely, the server can simply
ask (in Step 1) for the values of k random positions on K. Formally, the challenge
in Step 1 is a random k-element subset of the set {1, . . . , τ(k)}. The function f in
Step 2 is replaced with ϕ (where ϕ was defined in Sect. 4.5). This is exactly the
protocol of [KS99] (however in that paper it was analyzed in a weaker model where
the adversary is allowed to access only the individual bits of the secret key). The
security of this protocol follows from the analysis in Sect. 4.5.

6 Discussion

The main drawback of our protocols is that during the intrusion the virus can
impersonate the user (and the user may not even be aware that something wrong
is happening). As a partial remedy we suggest that the user could be required
to split the private key into 2 halves K1 and K2, and to store each of them on a
separate DVD disc. In this case the authentication process would require physical
action of replacing one DVD with another (assuming that there is only one DVD
drive in the machine). Note that this method does not work if we assume that the
adversary is able to store large amounts of data on user’s hard-disc (as in this case
she can make a local copy of the DVDs containing the key).

7 Open Problems

It remains an open problem to examine which variant of the protocols described
above is the best for practical applications. We did not provide a comparison be-
tween the protocols based on the BSM key-expansion function and the protocols
based on the function ϕ (Sect. 4.5 and 5.2), as such comparison should depend on
the concrete parameters that one wants to optimize (the size of the communicated
data, computing time, level of security). For some choice of these parameters (long
computing time, high level of security) it may be even practical to use protocols
that perform computations on the entire randomizer. For example in the protocol
in Sect. 4.5 one could use function f̃ that simply hashes the entire randomizer R
concatenated with Y (i.e. set f̃(R, Y ) = H(R · Y )).

Another open problem is to implement other cryptographic tasks (as asymmet-
ric encryption and signature schemes) in our model.
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