
A Shared Fragments Analysis System
for Large Collections of Web Pages

Junchang Ma and Zhimin Gu

Department of Computer Science and Engineering,
Beijing Institute of Technology, Beijing 100081, China

swiftma@bit.edu.cn, zmgu@x263.net

Abstract. Dividing web pages into fragments has been shown to pro-
vide significant benefits for both content generation and caching. How-
ever, the lack of good methods to analyze interesting fragments in large
collections of web pages is preventing existing large web sites from us-
ing fragment-based techniques. Fragments are considered to be interest-
ing if they are completely or structurally shared among multiple web
pages. This paper first gives a formal description of the problem, and
then presents our system for shared fragments analysis. We propose a
well-designed data structure for representing web pages, and develop an
efficient algorithm by utilizing database techniques. Our system is unique
in its shared fragments analysis for large collections of web pages. The
system has been built and successfully applied to some sets of large web
pages, which has shown its effectiveness and usefulness, and may serve
as a core building block in many applications.

1 Introduction

The amount of information on the World Wide Web continues to grow at an
astonishing speed, and the proportion of dynamic and personalized versus static
documents is increasing day-by-day. To efficiently serve and deliver such dy-
namic and personalized content, several efforts have been made, among which
fragment-based publishing and caching of web pages stands out. J. Challenger
et al [1] presents a fragment-based publishing system for efficiently creating dy-
namic web content, which provides a method for web site designers to specify
and modify inclusion relationships among web pages and fragments. Fragment-
based caching features have already been offered by some products to optimize
dynamic content processing on server side, e.g. BEA WebLogic [2], Oracle9iAS
[3], Microsoft ASP.NET [4], and IBM WebSphere [5]. Many Java application
servers allow programmers to mark a part of a page as cacheable using JSP
tags. In ASP.NET such fragment can be explicitly put into a user control, which
has its own cache parameters and can be included by pages or other user con-
trols. [6] also uses tags to support fragment caching on a reverse proxy. Proxy+
[7] proposes an approach to enable ASP.NET fragment caching at enhanced web
proxies. ESI [8] proposes to cache fragments at CDN stations to reduce net-
work traffic and response time. ESI is a markup language that developers can

H. Bunke and A.L. Spitz (Eds.): DAS 2006, LNCS 3872, pp. 390–401, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Shared Fragments Analysis System for Large Collections of Web Pages 391

use to identify content fragments for dynamic assembly at network edge servers.
Therefore, only those non-cacheable or expired fragments need to be fetched
from origin servers, thereby lowering the need to retrieve complete web pages
and decreasing the workload of origin servers. These schemes have been shown
to accelerate dynamic content generation and reduce network latency.

While performance benefits are important factors to consider, issues such
as engineering complexity are of even higher priority. Fragment-based solutions
typically rely on the web administrator or the web page designer to manually
fragment the pages on the web site. Manual markup of fragments is both labor-
intensive and error-prone, and may require considerable reengineering effort.
Furthermore, the identification of fragments by hand becomes unrealistic and
infeasible as the number of the existing web pages approaches tens of thousands.
Thus there is a growing demand for techniques and systems that can automati-
cally detect interesting fragments in web pages, and that are efficient and scalable
enough for large collections of web pages.

In this paper, we consider fragments to be interesting if they are completely
or structurally shared among multiple web pages, and we present a system that
can automatically analyze shared fragments that are cost-effective for fragment-
based techniques in large numbers of web pages.

The outline of the paper is as follows: in the next section we present a formal
description of the problem. In section 3, we describe the fragments analysis
system in detail. In section 4, we evaluate the system. In section 5, we discuss
related work. In section 6, we conclude.

2 Problem Definition

Up to now, we have discussed the problem of shared fragments analysis loosely.
In this section, we define it precisely. First, we introduce some definitions and
notations.

Definition 1. (Nodes Relations) Two nodes in HTML DOM [9] tree are called
similar iff all the following conditions are satisfied:

– They have the same type and name.
– They both or neither have attributes and children node.
– They have the same set of attribute names (if have).
– Their children nodes lists (if have) have the same length, and all the pairs

of children node with the same index in the lists are similar.
They are called equal iff they satisfy all the following conditions:
– They are similar.
– They both or neither have values, if have, their values are same.
– They have the same attribute value for each of the attribute names (if have).
– All the pairs of children nodes (if have) with the same index in their parent’s

children nodes list are equal.

Both definitions are recursive with the base condition being that leaf nodes have
no children node and can be compared directly.

392 J. Ma and Z. Gu

Definition 2. (Fragment) For a web page d, let T (d) denotes the HTML DOM
tree of d, a primitive fragment of d is defined as a node in T (d) of type Element,
and two or more adjacent primitive fragments with the same parent are called a
composite fragment. Both primitive fragment and composite fragment are called
fragment. Let FN(d) be the number of fragments in d, associate each fragment
in d with a distinct number ranging from 1 to FN(d), which is called its fragment
id. Let f(d, x) denotes the fragment of fragment id x in d, and the set of all the
fragments in d is denoted by F (d), F (d) = {f(d, x)|x ∈ [1, FN(d)]}.
Definition 3. (Fragments Relations) Two primitive fragments are called simi-
lar/equal iff their corresponding nodes are similar/equal. Two composite frag-
ments are called similar/equal iff they have the same number of primitive frag-
ments and all the pairs of them are similar/equal. Let similar(f, f ′)/equal(f, f ′)
denote two fragments f and f ′ are similar/equal. Fragment p is called an ances-
tor fragment of fragment f , or equivalently, f is called a descendant fragment of
p, iff p directly or transitively contains f . The set of all the ancestor fragments
of f is denoted by PF (f), and the set of all the descendant fragments of f is
denoted by DF (f).

The similar relation defined above captures the characteristics of structurally
shared fragments, and the equal relation captures the characteristics of com-
pletely shared fragments. Having discussed the necessary definitions and nota-
tions, we now present the problem formally.

Problem Statement. Given a set of web pages D, Di ∈ D, where i ∈ [1, |D|],
and AF (D) denote the set of all the fragments in D, AF (D) =

⋃|D|
i=1 F (Di).

Two relations Rcs(Complete Share Relation) and Rss(Structural Share Relation)
are defined on AF (D): Rcs = {(f, f ′) ∈ AF (D) × AF (D)|equal(f, f ′)},Rss =
{(f, f ′) ∈ AF (D) × AF (D)|similar(f, f ′)}. It is easy to see that both of them
are equivalence relations. Fix a parameter M(M > 1) called Minimum Shared
Number, a fragment f in AF (D) is called a complete shared fragment iff |[fRcs]| ≥
M , where fRcs is the equivalence class of f on Rcs, and f is called a maximal
complete shared fragment iff it is a complete shared fragment and satisfies one of
the following conditions:

– ∀f ′ ∈ [f]Rcs , ¬∃p ∈ PF (f ′) and p is a complete shared fragment.

– ∃H ⊆ [f]Rcs , f ∈ H, |H | ≥ M, ∀f ′ ∈ H, ¬∃p ∈ PF (f ′), and p is a maximal
complete shared fragment.

The definition is recursive with the first condition as the base condition. struc-
tural shared fragment and maximal structural shared fragment can be defined sim-
ilarly. Let CSF (D) denotes the set of all the maximal complete shared fragments
in AF (D), and SSF (D) denotes the set of all the maximal structural shared
fragments in AF (D). Similarly to Rcs and Rss, two equivalence relations R′

cs

and R′
ss are defined: R′

cs = {(f, f ′) ∈ CSF (D) × CSF (D)|equal(f, f ′)},R′
ss =

{(f, f ′) ∈ SSF (D) × SSF (D)|similar(f, f ′)}. The problem is to find the parti-
tion of CSF (D) induced by R′

cs and the partition of SSF (D) induced by R′
ss.

A Shared Fragments Analysis System for Large Collections of Web Pages 393

3 Shared Fragments Analysis

In this section, we present the system for the problem defined in section 2. The
working process of the system is divided into the following three steps:

1. Parse the given web pages one by one, and store their digest informa-
tion needed for the analysis into database. We propose a data structure
that is suitable for storing in database and efficient for fragment analy-
sis, and provide the steps to transform web pages, which are detailed in
section 3.1.

2. Find maximal shared fragments. This step is divided into two sub-steps.
First, find the maximal shared primitive fragments. Second, merge the prim-
itive fragments to find the maximal shared composite fragments. It’s feasi-
ble because any set of maximal shared composite fragments can be viewed
as multiple sets of maximal shared primitive fragments. We provide de-
tailed explanation on the algorithms and implementations in section 3.2
and 3.3.

3. Collect share information. Statistics about fragments and web pages are col-
lected in this step, e.g., size andpopularity of fragments, number of shared frag-
ments included by a web page, and the proportion of shared parts contained
in a web page. We will not further discuss this step because it is application-
specific and relatively easy in terms of implementation.

The system can, although can’t simultaneously, analyze both complete and struc-
tural shared fragments. The processes are basically same, and the differences are
explained at section 3.1.

3.1 Data Structure

A well-designed data structure for representing web pages is critical to efficient
shared fragments analysis in large collections of web pages. The most popu-
lar document model is the Document Object Model (DOM) [9]. However, the
memory-based DOM tree structure is infeasible for analysis of large collections of
web pages, besides, the nodes of DOM tree don’t contain sufficient information
needed for efficient fragments analysis. These motivate us to store the fragments
in DOM tree with augmented information into database, utilizing the mature
database techniques in handling large relational data.

The DOM tree of a reasonably sized HTML page may have a few thousand
elements. To limit the overhead of storing the elements and exclude very small
segments of web pages from being detected as shared fragments, we introduce
a parameter MIN FRAG SIZE (Minimum Fragment Size), which specifies the
minimum size of the primitive fragment to be stored. Composite fragments are
not stored because they can be composed of primitive fragments. Each fragment
is stored in the database ‘digest’ table with some fields explained below. For ex-
plain convenience, fragment normally means the stored fragment in the following
paragraphs.

Now we discuss what fields about a primitive fragment are stored in database.

394 J. Ma and Z. Gu

First, some basic information about a fragment is stored. Concretely: (1) ID,
the primary key of ‘digest’ table (2) DocID, the identifier of the web page this
fragment belongs to (3) FragID, fragment id of this fragment. When a DOM
tree is being traversed in pre-order, each fragment is numbered an increasing
integer starting from 0 (4) StartLineNum, StartColumnNum, EndLineNum and
EndColumnNum, the number of the start line, start column, end line and end
column of the fragment in the web page respectively.

Second, the relations among fragments are stored. Concretely: (1) Parent-
FragID, the FragID of the fragment that directly contains this fragment (2) Sib-
lingFragID, the FragID of the (supposed) next sibling fragment of this fragment
(if it hasn’t), which has an obvious but important property, namely, a fragment
is a descendant fragment of the current fragment iff they share the same DocID
and its FragID is between the FragID, exclusive, and the SiblingFragID, exclusive,
of the current fragment.

Third, information for efficiently comparing fragments and detecting maximal
shared fragments are stored. Concretely: (1) HashLow and HashHigh, the lower
and higher 8 bytes of the MD5 hash value of the fragment. When finding complete
shared fragments (CSF), the hash method is DOMHASH [10], and fragments
with the same hash value can be safely called equal. While when finding structural
shared fragments (SSF), the text data of Text node and attribute value of Attr
node are not taken into consideration for hash, and fragments with the same
hash value can be safely called similar (2) CompleteSize, the size of the data
participating in the DOMHASH when finding CSF, which represents the actual
size of the fragment (3) StructuralSize, the size of the data participating in
DOMHASH in spite of CSF or SSF is currently being detected. Similar fragments
may have different CompleteSize but are certainly have identical StructuralSize.
StructuralSize has an important property, namely, if a fragment f is of maximal
StructuralSize and is a complete/structural shared fragment, then it is a maximal
complete/structural shared fragment. This property is based on the following
observation. For each fragment f ′ that is equal/similar to fragment f , f ′ has
identical StructuralSize with f , so f ′ is also of maximal StructuralSize, if there
exists a fragment that is an ancestor fragment of f ′, its StructuralSize must be
greater than the maximal StructuralSize, which is impossible.

Having discussed what information is stored, we now present the process to
get the information and store it in database. Given a set of web pages, for each of
them, the process is divided into four steps. First, associate each web page with a
DocID (Document Identifier). Second, transform the web page to its DOM tree.
The DOM parser used by us is based on CyberNeko HTML Parser [11], however,
it has been revised so that it can provide the StartLineNum, StartColumnNum,
EndLineNum and EndColumnNum fields about a fragment. Third, augment the
DOM tree with MD5 hash, CompleteSize and StructuralSize. MD5 hash and
StructuralSize are different based on CSF or SSF is being detected. Finally, as-
sign FragID, ParentFragID and SiblingFragID to fragments whose StructuralSize
not less than MIN FRAG SIZE, and insert them into database.

A Shared Fragments Analysis System for Large Collections of Web Pages 395

Since the web pages are converted one by one, the total time needed for this
step increases linearly with the number and the total size of the given web pages.
Moreover, the maximal memory consumption depends only on the largest web
page. Thus, this step is very scalable and can effectively handle large collections
of web pages.

3.2 Primitive Fragments Analysis

The process of primitive fragments analysis can be roughly divided into two
steps. First, delete non-shared fragments. Second, find maximal shared primitive
fragments by repeatedly using the property of StructuralSize.

A fragment is called a non-shared fragment iff the number of fragments having
share relation with which is less than M (Minimum Shared Number). Deleting
these fragments can facilitate and speed up the shared fragments analysis. The
deletion can be done by grouping all the fragments by hash value and deleting
the fragments that are belong to the group whose member count less than M .
The pseudo SQL statement of fragments selection is “select ID from digest group
by HashLow, HashHigh having count (*)< M”, and fragments deletion is “delete
from digest where id in (list of IDs separated by comma)”.

After the first step has been done, all the left fragments are shared frag-
ments. According to the property of StructuralSize, the fragment of maximal
StructuralSize is a maximal shared fragment, so are the fragments having the
same hash as it, and they constitute an equivalence class of maximal shared
fragments. To get all the fragments in the class, the hash value of the frag-
ment of maximal StructuralSize is first obtained by the SQL statement “select
HashLow,HashHigh from digest order by StructuralSize limit 1”, and then all the
fragments having the specified hash value are obtained by the pseudo SQL state-
ment “select ID, DocID, FragID, ParentID, SiblingFragID, CompleteSize, Start-
LineNum, StartColumnNum, EndLineNum, EndColumnNum from digest where
HashLow=specified hash low and HashHigh=specified hash high”. To speed up
the queries, indexes for StructuralSize and HashLow are created on ‘digest’table.

Once obtaining an equivalence class, it is recorded into database. Two kinds
of information are recorded, one is class-level information, and the other is the
information of the fragments in the class. Concretely, class-level information is
recorded into ‘class’ table with fields: (1) ClassID, the primary key of ‘class’
table (2) AvgSize, the average CompleteSize of the fragments in the class (3)
ShareNum, the number of fragments in the class (4) LocHash, which will be
introduced in the merging process. Information about each fragment in the class
is recorded into ‘msfrag’ table with fields: (1) MSID, the primary key of ‘msfrag’
table. (2) ClassID, the identifier of the equivalence class this fragment belongs to
(3) DocID, FragID, SiblingFragID, CompleteSize, StartLineNum, StartColumn-
Num, EndLineNum and EndColumnNum.

After recording the equivalence class, the fragments in the class need to be
removed from further consideration. In addition, since all the descendants of
them cannot be maximal shared fragments, they also need to be removed. All
the descendants of a fragment f can be easily found by the pseudo SQL state-

396 J. Ma and Z. Gu

ment “select id from digest where DocID=f.DocID and FragID between f.FragID
and f.SiblingFragID”. To speed up this query, a multi-column index for DocID,
FragID on ‘digest’ table is created. After removing, an originally shard frag-
ment may not be any more because some of the fragments shared with it are
removed for they have ancestors that are maximal shared fragments. So, in the
later iteration, the fragments of maximal StructuralSize may not be maximal
shared fragments, whereas, their descendant fragments may be. To avoid this
complexity, an extra step to delete non-shard fragments can be added in this
step, however, which is too expensive simply for this target. We choose to ex-
amine whether the detected fragments are real maximal shared fragments, and
if not, do not record them, and delete them but remain their children.

To improve database update performance, all the above insertions and dele-
tions are batched, and all the important queries are accelerated by indexes.
So, by utilizing the database techniques, this step can handle large numbers of
fragments.

3.3 Merging Primitive Fragments

The optimized algorithm to merge maximal shared primitive fragments into
maximal shared composite fragments is still an open issue. However, we have
the following observations:

Let C1, C2, . . . , CM denote the ClassIDs of M(M > 1) equivalence classes of
primitive shared fragments, if each of the classes have N(N > 1) fragments,
and the list of all their fragments sorted by DocID and FragID is denoted by
LF (C1, C2, . . . , CM)=(f1,1, . . . , fM,1, f1,j, . . . , fM,j, f1,N , . . . , fM,N). If ∀fi,j , i ∈
[1, M], j ∈ [1, N], fi,j.ClassID = Ci and ∀fi,j , fi+1,j , i ∈ [1, M − 1], j ∈ [1, N],
fi,j .SiblingFragID = fi+1,j .F ragID. Then ∀j ∈ [1, N],f1,j,f2,j ,
. . . ,fM,j can be merged into one fragment. This is illustrated in Fig. 1.

Let d(fi,j) denotes the DocID of fragment fi,j, pi,j denotes the ParentFragID
of fi,j , and DPL(Ci) denotes the sorted d(fi,j),p(fi,j) list of all the fragments
belonging to class Ci, i.e. DPL(Ci) = (d(fi,1), p(fi,1), . . . , d(fi,N), p(fi,N)). In
the above conditions, all the adjacent fragments share the same DocID and

C1 C2 CM . . .

f1,1 f2,1 fM,1 . . . f1,N f2,N fM,N . . .
. .

Fig. 1. C1, . . . , CM can be merged into one class, f1,j , . . . , fM,j can be merged into one
fragment

A Shared Fragments Analysis System for Large Collections of Web Pages 397

ParentFragID, hence DPL(C1) = . . . = DPL(CM), which can be used as heuris-
tic information when finding equivalence classes for merging. To ease the task
of finding such classes, when each class is being recorded in primitive fragments
analysis, the 32 bits Rabin [12] hash value of its DPL is stored in the LocHash
field. The reason to choose Rabin hash is that it has rare conflict and can be
implemented efficiently [12].

The first step of merging primitive fragments is to get the set of LocHash for
merging, which can be done by the SQL statement “select LocHash from class
group by LocHash having count(*)> 1”. Then, for each LocHash in the set, get
the corresponding list of fragments for merging, this can be done by the SQL
statement “select msf.* from class c, msfrag msf where c.ClassID=msf.ClassID
and c.LocHash=LocHash order by DocID, FragID”. To accelerate this query, two
indexes are created, one for LocHash on ‘class’ table and the other for ClassID on
‘msfrag’ table. Afterwards, try to merge the selected fragments into one class. If
succeed, delete old classes and fragments and insert merged class and fragments
into database. Otherwise, try to merge part of the fragments. The later case
is illustrated in Fig. 2. Due to space limitations, detailed implementations are
skipped.

. .

C1 C2

f1,1 f2,1 f4,1 f1,N f2,N f4,N

C3 C4

f3,1 f3,N

pf1 pfN

Fig. 2. Classes C1, C2, C3, C4 have the same LocHash and can’t be merged into one,
but C1 can be merged with C2, and C3 can be merged with C4

In this merging process, database queries are accelerated and updates are
batched. In the worst case, this step takes much time, which may occur when
one web page has a long list of adjacent maximal shared primitive fragments but
none of them can be merged, however, it’s very rare in practice. So, this step
can also handle large numbers of fragments.

4 Evaluation

In this section, we first evaluate the performance of the system, and then present
some fragment-level web content characteristics. The evaluations are performed
on many large collections of web pages, which were downloaded from known web
sites using GNU Wget (http://www.gnu.org/software/wget/wget.html). Due to
space limitations, our discussions are restricted to the sina (www.sina.com.cn)
and yahoo (www.yahoo. com) web sites. sina and yahoo are the most popular

398 J. Ma and Z. Gu

web site in china and US respectively (reported in http://www.cwrank.com and
http://www.comscore.com/metrix/). The sina data set contains 130,672 files and
1846M bytes, and the yahoo data set contains 7,379 files and 195M bytes. The
parameter M (Minimum Shared Number) and MIN FRAG SIZE are set to 2 and
256 bytes respectively. For each data set, two experiments are performed, namely,
structural shared fragments analysis (denoted by suffix s) and complete shared
fragments analysis (denoted by suffix c). The four experiments are denoted by
sina c, sina s, yahoo c, and yahoo s respectively.

4.1 Performance

Table 1 provides a synopsis of the time consumed of the four experiments. The
total time needed for sina c, sina s, yahoo c, yahoo s is 366, 295, 42, 41 minutes
respectively. Considering that the number and total size of the web pages are very
large, and the task is inherently complex, the time consumed is very reasonable.
Moreover, it can be seen that the total time needed approximately increases
linearly with the number and total size of web pages, which is reasonable and
acceptable. So, the system is expected to be able to effectively handle larger set
of web pages.

Table 1. Breakdown of Analysis Time. Experiments Configuration: Intel Celeron CPU
2.4GHz, 512MB RAM, 40GB IDE DISK, Windows 2000 OS, MySQL 4.1.8 Database.

Steps sina c sina s yahoo c yahoo s
Transforming Web Pages (s) 13,254 12,490 2,248 2,198
Primitive Fragments Analysis (s) 8,703 5,189 263 284
Merging Primitive Fragments (s) 32 12 12 6
Total (s) 21, 989 17, 691 2, 523 2, 488

The total time is divided into three parts: Transforming Web Pages, Primitive
Fragments Analysis, and Merging Primitive Fragments. The transforming step
takes the most time among the three steps. Fortunately, which is very scalable,
since it simply parses web pages one by one. Time for merging is insignificant,
one reason may be that our merging algorithm isn’t optimized and doesn’t find
all the worthy fragments. Time for primitive fragments analysis depends on the
concrete characteristics of web pages, and the further analysis is skipped.

4.2 Fragment-Level Web Content Characteristics

Having discussed the performance, we now present some of the web content
characteristics detected by our system, which are illustrated in Fig. 3. It can
be observed that the structural shared fragments analysis has obvious differ-
ent characteristics from the complete shared fragments analysis except in a).
However, many common behaviors can also be observed.

It can be seen from d) that a large percentage of web pages contain a great
quantity of shared portions, and only a few web pages contain a small percentage

A Shared Fragments Analysis System for Large Collections of Web Pages 399

(a) class number distribution versus class
ShareNum

(b) class number distribution versus class
AvgSize

(c) web page number distribution versus
shared fragments number

(d) web page number distribution versus
shared size percentage

Fig. 3. Various CDF(Cumulative Distribution Function) for different experiments col-
lected from the analysis result. a) CDF of the number of classes versus class ShareNum.
b) CDF of the number of classes versus class AvgSize. c) CDF of the number of web
pages versus the number of shared fragments contained in web pages. d) CDF of the
number of web pages versus the size percentage of shared portions in web pages.

of shared portions. Besides, it can be observed from c) that the number of shared
fragments found in a large proportion of web pages is small, and only a fraction
of web pages contain large number of fragments. This indicates that our system
is appropriate to be used as an automatic fragment tool for fragment-based
techniques.

It is clear from a) and b) that a large percentage of classes have relatively small
ShareNum and AvgSize, while a few classes have large ShareNum and AvgSize.
It should be noted that, since web content characteristics are not the focus of
this paper, our findings are very preliminary. However, further studies based on

400 J. Ma and Z. Gu

the algorithm proposed in this paper are expected to find some underlying laws
that can provide help to various researches.

5 Related Work

There has been significant work in identifying web objects that are identical [13],
but they work at the granularity of entire pages. Various detection techniques
for identical or similar code portions in source files have been proposed [15],
which are related to our research on shared portions analysis, but the input
to their algorithms are source code files which are not tree-like structures, and
their line-based or function-based approaches are unfit for tree-like HTML pages.
Numerous work on different aspects of analysis of web pages have been proposed,
exemplified by discovering and extracting objects from web pages [14]. However,
none of their work addresses the problem of shared fragments analysis.

The work by Lakshmish Ramaswamy et al [16] is the most related to our
research. They also discuss the problem of shared fragments analysis in web
pages for fragment-based caching. However, our work differs from theirs on three
major aspects:

1. We give a formal description of the problem, and have considered the con-
dition of composite fragments, while they don’t.

2. We propose to store augmented DOM trees to database, and utilize database
techniques to handle large numbers of web pages, while they develop a
memory-based tree structure and algorithm to analyze shared fragments.
Their solution may be more efficient than us when the number of web pages
is small, but is infeasible for large collections of web pages.

3. They rely on the shingles fingerprinting [13] method to compare the relations
between DOM nodes. Shingles is popular in estimating the resemblance of
documents, however, which is based on random sampling techniques and
improper for small texts that are popular in HTML nodes. While we rely
on the semantic information of HTML structure and MD5 Hash to compare
their relations, which is more proper.

6 Conclusions and Future Work

This paper makes several contributions:

– We give a formal description of the problem of shared fragments analysis. We
have considered both primitive and composite fragments, and both complete
and structural share relations.

– We propose a well-designed data structure for representing web pages, and
provide the steps to transform the web pages. The structure is efficient for
fragments analysis, and the transforming steps are scalable.

– We present an efficient algorithm for shared fragments analysis. We divide
the algorithm into two steps, and describe the implementation steps and
optimization strategies by utilizing database techniques.

A Shared Fragments Analysis System for Large Collections of Web Pages 401

– We evaluate the system through a series of experiments, showing its effec-
tiveness in handling large set of web pages and usefulness in fragment-based
techniques and studies of web content characteristics.

Our system is unique for its shared fragments analysis and ability to handle
large numbers of web pages. However, the merging algorithm has not been op-
timized, and we will work on this issue in the near future. In addition, based
on this system, we also plan to develop refactoring tools for assisting the adop-
tion of fragment-based techniques, and study web characteristics at fragment
granularity.

References

1. J. Challenger, etc.: A Publishing System for Efficiently Creating Dynamic Web
Content. Proceedings of INFOCOM’00, Mar.2000.

2. BEA WebLogic Server. http://www.bea.com/products/weblogic/server/.
3. Oracle9iAS. http://www.oracle.com/appserver/.
4. Microsoft. Caching Architecture Guide for .NET Framework Applications, 2003.
5. IBM WebSphere. http://www-3.ibm.com/software/webservers/appserv/.
6. Datta A, etc.: Proxy-Based Acceleration of Dynamically Generated Content on the

World Wide Web: An approach and Implementation. Proceeding of ACM SIGMOD
Intl. Conf. on Management of Data, Jun.2002, pp. 97-108.

7. Chun Yuan, Zhigang Hua, Zheng Zhang.: Proxy+: Simple Proxy Augmentation for
Dynamic Content Processing, WCW’03.

8. ESI Consortium. Edge Side Includes. http://www.esi.org.
9. Document Object Model – W3C Recommendation. http://www.w3.org/DOM.

10. Network Working Group. Digest Values for DOM (DOMHASH). RFC2803,
Apr.2000.

11. CyberNeko HTML Parser. http://people.apache.org/ andyc/neko/doc/index.html.
12. A.Z. Broder.: Some Applications of Rabin’s Fingerprinting Method. In R. Capoc-

elli, A. De Santis, and U. Vaccaro, editors, Sequences II: Methods in Communica-
tions, Security, and Computer Science, pages 143-152. Springer-Verlag, 1993.

13. A.Z. Broder. On the Resemblance and Containment of Documents. Proceedings of
SEQUENCES-97, 1997.

14. D. Buttler and L. Liu. A Fully Automated Object Extraction System for the World
Wide Web. In Proceedings of ICDCS’2001, 2001.

15. T. Kamiya, etc.: CCFinder: A Multilinguistic Token-Based Code Clone Detection
System for Large Scale Source Code. IEEE Transactions on Software Engineering.
Jul.2002.

16. Lakshmish Ramaswamy, Arun lyengar,Ling Liu, Fred Douglis.: Automatic Detec-
tion of Fragments in Dynamically Generated Web Pages. WWW2004, New York,
May.2004.

	Introduction
	Problem Definition
	Shared Fragments Analysis
	Data Structure
	Primitive Fragments Analysis
	Merging Primitive Fragments

	Evaluation
	Performance
	Fragment-Level Web Content Characteristics

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

