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Abstract. Let S be a set of horizontal line segments, or bars, in the
plane. We say that G is a bar visibility graph, and S its bar visibility rep-
resentation, if there exists a one-to-one correspondence between vertices
of G and bars in S, such that there is an edge between two vertices in G
if and only if there exists an unobstructed vertical line of sight between
their corresponding bars. If bars are allowed to see through each other,
the graphs representable in this way are precisely the interval graphs.
We consider representations in which bars are allowed to see through at
most k other bars. Since all bar visibility graphs are planar, we seek mea-
surements of closeness to planarity for bar k-visibility graphs. We obtain
an upper bound on the number of edges in a bar k-visibility graph. As
a consequence, we obtain an upper bound of 12 on the chromatic num-
ber of bar 1-visibility graphs, and a tight upper bound of 8 on the size
of the largest complete bar 1-visibility graph. We conjecture that bar
1-visibility graphs have thickness at most 2.

1 Introduction

Recent attention has been drawn to a variety of generalizations of bar visibility
graphs [23][6, 57 8L 1T, 12,14,15]. In this note, we report on a new generaliza-
tion of bar visibility graphs called bar k-visibility graphs, and discuss some of
their properties; complete details can be found in [4]. In what follows, we use
the standard graph theory terminology found in [9L17].

Let S be a set of disjoint horizontal line segments, or bars, in the plane. We
say that a graph G is a bar visibility graph, and S a bar visibility representation
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Fig. 1. The bar visibility representation shown is an e-visibility representation of G
and a strong visibility representation of H

of G, if there exists a one-to-one correspondence between vertices of G and bars
in S, such that there is an edge between two vertices x and y in G if and only if
there exists a vertical line segment L, called a line of sight, whose endpoints are
contained in X and Y, respectively, and which does not intersect any other bar
in S. [II2,13,18].

If each line of sight is required to be a rectangle of positive width, then S is
an e-visibility representation of G, and when each line of sight is a line segment,
then S is a strong visibility representation of G [16]. In general, these definitions
are not equivalent; Ks 3 admits an e-visibility representation but not a strong
visibility representation, as shown in Figure [l

Given a set of bars S in the plane, suppose that an endpoint of a bar B
and an endpoint of a bar C in S have the same z-coordinate. We elongate
one of these two bars so that their endpoints have distinct z-coordinates. If S
is a strong visibility representation of a graph G, then we may perform this
elongation so that S is still a strong visibility representation of G. If S is an
e-visibility representation of GG, then we may perform this elongation so that S
is an e-visibility representation of a new graph H with G C H. Since we are
interested in the maximum number of edges obtainable in a representation, we
may consider the graph H instead of the graph G. Repeating this process yields
a set of bars with pairwise distinct endpoint x-coordinates. For the remainder
of this paper, we assume that all bar visibility representations are of this form.

If a set of bars S has all endpoint xz-coordinates distinct, the graphs G and
H that have S as a strong bar visibility representation and an e-visibility repre-
sentation, respectively, are isomorphic. Hence without loss of generality, for the
remainder of the paper, all bar visibility representations are strong bar visibility
representations.

By contrast, suppose that S is a set of closed intervals on the real line. The
graph G is called an interval graph and S an interval representation of G if
there exists a one-to-one correspondence between vertices of G and intervals
in S, such that z and y are adjacent in G if and only if their corresponding
intervals intersect. Suppose we call a set S of horizontal bars in the plane an
x-ray-visibility representation if we allow sight lines to intersect arbitrarily many
bars in S. Then we can easily transform an z-ray-visibility representation into
an interval representation by vertically translating the bars in .S, and vice-versa.
Therefore G is an z-ray-visibility graph if and only if G is an interval graph.

Motivated by this correspondence, we define a bar k-visibility graph to be
a graph with a bar visibility representation in which a sight line between bars
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X and Y intersects at most k additional bars. As a first step on the road to
a characterization of bar k-visibility graphs, since all bar visibility graphs are
planar, we seek measurements of closeness to planarity for bar k-visibility graphs.

2 An Edge Bound for Bar 1-Visibility Graphs

Suppose G is a graph with n vertices, and S is a bar 1-visibility representation
of G. Since we consider S to be a strong visibility representation of G, without
loss of generality, we may assume that all endpoints of all bars in S have distinct
x-coordinates, and all bars in S have distinct y-coordinates.

It will be convenient to use four different labeling systems for the bars in
S. Label the bars 1;, 2;, ..., n; in increasing order of the z-coordinate of their
left endpoint. Label them 1,, 2,., ..., n, in decreasing order of the xz-coordinate
of their right endpoint. Label them 13, 25, ..., np in increasing order of their
y-coordinate. Finally, label them 1;, 2¢, ..., n; in decreasing order of their y-
coordinate. So the bar 1; has leftmost left endpoint, the bar 1, has rightmost
right endpoint, the bar 1, = n; is bottommost in the representation, and the bar
1; = ny is topmost in the representation. We use this notation for the remainder
of the paper.

Remark 1. Suppose S is a bar k-visibility representation of a graph G with n
vertices. We elongate the top and bottom bars of S to obtain a new bar k-
visibility representation S’ of a new graph G’, with the additional property that
1; =1, =1;and 1, = 2, = 2; in S’. The graph G’ has n vertices and contains G
as a subgraph. We may therefore assume that every edge-maximal bar k-visibility
graph has such a bar k-visibility representation.

Lemma 1. If G is a bar I1-visibility graph with n > 4 vertices, then G has at
most 6n — 17 edges.

Proof. Suppose G is a graph with n vertices, and S is a bar 1-visibility repre-
sentation of G. We define the following correspondence between bars in S and
edges of G. Let U be the bar in S associated with vertex u. For every edge {u, v}
in G, let ¢({u,v}) be the vertical line segment from a point in U to a point in
V' whose z-coordinate is the infimum of x coordinates of lines of sight between
U and V. An edge {u,v} is called a left edge of U (respectively V) if £({u,v})
contains the left endpoint of U (respectively V). If £({u,v}) contains neither U
nor V’s left endpoint then it must contain the right endpoint of some bar B
(that blocks the 1-visibility of U from V from that point on). In this case, we
call {u,v} a right edge of B. Note that the right edges of B are not incident to
the vertex b of G corresponding to the bar B. Each bar B can have at most 4
left edges (two to bars above B in S and two to bars below B in S) and at most
2 right edges, as shown in Figure 2

Counting both left and right edges, each bar in S is associated with at most
6 edges. So there are at most 6n edges in G. However, the bars 1;, 2;, 3;, and 4,
have at most 0, 1, 2, and 3 left edges, respectively. Similarly, the bars 1,., 2,., 3,
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Fig. 2. The two right edges associated to bar B

and 4, have at most 0, 0, 0, and 1 right edges, respectively. Therefore there are
at most 4n — 10 left edges and at most 2n — 7 right edges, for a total of at most
6n — 17 edges in G. O

Theorem 1. If G is a bar 1-visibility graph with n > 5 vertices, then G has at
most 6n — 20 edges.

Proof. We improve the bound given in Lemma [I] by using a slightly more so-
phisticated technique. We follow the notation of Lemma [Tl

By Remark [l the edge {1;,15} will always be a left edge. Since the edge
associated with the right endpoint of the bar 4, can only be this edge, the bar
4, must have 0 right edges. So there are at most 2n — 8 right edges in G, and
6n — 18 edges in total. If G has exactly 6n — 18 edges, then bars 1;, 2;, 3;, and
4; must have at least 0, 1, 2, and 2 left edges, respectively.

Suppose that bar 4; has only two left edges. Then it does not have a line of
sight to bar 3;, which can happen only if 3; ends before 4; begins. Then 3; = n,.,
and 3; has 0 right edges. Therefore G has at most 6n — 20 edges. The only
remaining possibility is that bar 4; has exactly three left edges.

If S had at most 4n — 12 left edges, then S would have at most 6n — 20 edges
in total. The remaining possibilities are that S has either 4n — 11 or 4n — 10 left
edges. Since 1, 2;, 3;, and 4; have exactly 0, 1, 2, and 3 left edges, respectively,
all other bars in S must have exactly four left edges, except perhaps for one bar
i1, which may have three left edges. By the same argument, since 1,., 2., 3,., and
4, have no right edges, every additional bar must have exactly two right edges,
except one additional bar, which may have only one.

Consider the four edges e; = {14, 15}, ea = {1+,2p}, es = {24, 14}, and eq =
{24, 2p}. If i; = 2, then the edges e; and es are left edges, but the edges es and
e4 may not be. If 7; = 2;, then the edges e; and es are left edges, but the edges
e3 and ey may not be. If ¢; is neither of these bars, then all four of these edges
are left edges.

Since the bars 2; and 2, have at most one right edge each, one of them must
be bar 3, or bar 4,. Without loss of generality, assume that bar 2, is either
bar 3, or bar 4,. So in the order of the bars 1, through 5, given by increasing
y-coordinate, the bar 5, must appear either second or third. Figure [B] shows the
four possibilities that may occur.

In each of the four cases shown, and for each of the three possibilities for the
bar i;, one can check that 5, has at most one right edge. So the remaining bars
must all have exactly two right edges. Therefore the bars 2; and 2, must be two
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Fig. 3. The four possible arrangements of bars 1,, 2,, 3., 4;, and 5,

of the three bars 3,, 4,., and 5,.. But this implies that any right edge associated
to 5, must be between a pair of the bars 1;, 2;, 15, and 2;. Therefore 5, must
have no right edges, and G has at most 6n — 20 edges in total. g

Corollary 2. The graph Kg is not a bar 1-visibility graph.

Proof. Any bar 1-visibility graph with 9 vertices has at most 34 edges, whereas
Ky has 36 edges. a

Corollary 3. If G is a bar 1-visibility graph, then x(G) < 12.

Proof. We proceed by induction. Assume that all bar 1-visibility graphs with
n — 1 vertices have x < 12, and suppose that G is a bar 1-visibility graph
with n vertices. By Theorem [I] ZUGV(G) deg(v) < 12n, so the average degree
of a vertex in G is strictly less than 12. Then there must exist a vertex v in
G of degree at most 11. We consider the graph G — v. Although this graph
may not be a bar 1-visibility graph, it is a subgraph of the graph G’ with bar
1-visibility representation obtained from a representation of G' by deleting the
bar corresponding to v. Therefore the edge bound in Theorem [ still applies to
H. By the induction hypothesis, we may color the vertices of H with 12 colors,
replace v, and color v with a color not used on its neighbors. a

Corollary 4. There are thickness-2 graphs with n vertices that are not bar 1-
visibility graphs for all n > 15.

Proof. Note that there are no thickness-2 graphs with n vertices and more than
6n—12 edges, since if G has thickness 2 then G is the union of two planar graphs,
each of which have at most 3n— 6 edges. Consider the graph G = C5XC5 formed
by replacing each vertex in C5 with C3 and taking the join of neighboring Cj’s.
G has 15 vertices and 6 - 15 — 12 = 78 edges. Since G is the union of the two
planar graphs shown in Figure @, G has thickness 2.

Let G15 = G and suppose L and Lo are the two plane layers of G15. Let
{a,b,c} be afacein L; and {d, e, f} be a face in Lo such that {a,b,c}N{d,e, f} =
@. Add a new vertex v to G5 adjacent to {a, b, c} in Ly and {d, e, f} in Lo; define
the new graph to be G16. The graph G16 has 16 vertices and 6-16 — 12 edges, and
thickness 2. Following the same procedure, inductively we construct an infinite
family of graphs G,, such that for all n > 15, G,, has n vertices and 6n — 12
edges, and thickness 2. Therefore none of these graphs can be a bar 1-visibility
graph by Theorem [I1 O
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0 0

2 0
1 0

Fig. 5. A bar 1-visibility representation with 6n — 20 edges

Note that the graphs {G,,} given in the proof of Corollary [ have the largest
possible number of edges while having thickness 2.

Theorem 5. There exist bar 1-visibility graphs with 6n — 20 edges, n > 5.

Proof. The graph with representation shown in Figure [f] is a bar 1-visibility
graph with 6n — 20 edges. For ease of counting, the left and right endpoints of
bars in this representation are labeled with the number of left and right edges
associated to each bar. Note that this representation has 4n — 11 left edges and
2n — 9 right edges. Although n = 11 in this representation, more bars can easily
be deleted to create a representation with as few as 5 bars, or added to create a
representation with arbitrarily many bars. For the values n = 5 through 8, this
representation yields a complete graph. a

Corollary 6. The graph Kg is a bar 1-visibility graph.
Proof. Take only eight bars in the representation shown in Figure O

By Corollary [6 if G is a bar 1-visibility graph, then x(G) may be 8. No bar
1-visibility graph is known with chromatic number 9. The standard example of a
graph with chromatic number 9 but clique number smaller than 9 is the Sulanke
graph K¢ V Cs [17], which is not a bar 1-visibility graph since it has 11 vertices
and 50 edges.
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3 Edge Bounds on Bar k-Visibility Graphs

The following theorem generalizes Lemma [ for ¥ > 1. The proof is entirely
analogous to the proof of Lemma [l and can be found in [4].

Theorem 7. If G is a bar k-visibility graph with n > 2k + 2 vertices, then G
has at most (k+1)(3n — 7k —5) edges.

Theorem 8. There exist bar k-visibility graphs with n vertices and (k+1)(3n—
4k — 6) edges for k > 0 and n > 3k + 3.

Proof. Figurelflshows a bar k-visibility representation of a graph with n vertices
and (k4 1)(3n — 4k — 6) edges. As in Figure il the left and right endpoints of
bars in this representation are labeled with the number of left and right edges
associated to each bar. Although n = 4k + 4 in this representation, more bars
can easily be deleted to create a representation with as few as 3k + 3 bars, or

added to create a representation with arbitrarily many bars. a
k+1 0
k+2 - 1
2k+1 - k
2k+2 k+1
2k+2 k+1
2k+2 k+1
k+1 k+1
k+2 - k+1
2k+1 - k+1
k 0
1 - 0
0 0

Fig. 6. A bar k-visibility graph with n vertices and (k + 1)(3n — 4k — 6) edges

Note that Theorem [§] gives the largest number of edges in a bar k-visibility
graph for £ = 0, 1. We believe that this is the case for larger k as well. We state
this as a conjecture.

Congecture 1. If G is a bar k-visibility graph, then G has at most (k + 1)(3n —
4k — 6) edges.

The following theorem is a corollary of Theorem [1
Theorem 9. Ksjy5 is not a bar k-visibility graph.

Proof. By way of contradiction, suppose that G is a graph with n = 5k + 5
vertices. Then by Theorem [, G has at most (k + 1)(3(5k + 5) — Tk — 5) =

223 k2 + 423k + 10 edges. However, Ksi5 has (5k;5) = 225 k2 + 425k + 10 edges. O
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Note that if Conjecture [I] is true, we immediately obtain the following con-
jecture as a corollary.

Conjecture 2. Kyai44 is the largest complete bar k-visibility graph.

Proof (Assuming Conjecture[d)). Figure [l shows a bar k-visibility representation
of Kyr+4. Conversely, suppose that G is a graph with n = 4k + 5 vertices. Then
by Conjecture [l G has at most (k + 1)(3(4k +5) — 4k — 6) = 8k*> + 17Tk + 9
edges. However, K415 has (4k;5) = 8k2 + 18k + 10 edges. a

Conjecture [l is not required to prove Conjecture 2] when k = 0 or 1; we have
already proved these cases in the previous section. Note also that the graph
K14 exactly achieves the bound given by Conjecture [l So if this conjecture
is correct, the family of complete graphs K14 is an example of a family of
edge-maximal bar k-visibility graphs.

4 Thickness of Bar k-Visibility Graphs

By Corollary [0, Kg is a bar 1-visibility graph, and thus there are non-planar
bar 1-visibility graphs. Motivated by the fact that all bar O-visibility graphs
are planar [I0], we are interested in measuring the closeness to planarity of bar
1-visibility graphs. The thickness @(G) of a graph G is the minimum number
of planar graphs whose union is G. Ky has thickness 2 [I2], so there exist bar
1-visibility graphs with thickness 2. Conversely, the following theorem from [4]
gives an upper bound for the thickness of a bar 1-visibility graph.

Suppose G is a bar 1-visibility graph, and S is a bar 1-visibility representation
of G. We define the underlying bar visibility graph G of S to be the graph with
bar visibility representation S. The following theorem relates the thickness of G
to the chromatic number of Gy.

Theorem 10. If G is a bar 1-visibility graph and Gy an underlying bar visibility
graph of G, then O(G) < x(Gp). In particular, the thickness of any bar 1-
visibility graph is at most four.

We conjecture that bar 1-visibility graphs have thickness no greater than 2.
More generally, we know that the thickness of a bar k-visibility graph is bounded
by some function of k [4]. The smallest such function of k is still open.

5 Future Work

We close with a list of open problems inspired by the results of this note.

1. What is the largest number of edges in a bar 2-visibility graph with n
vertices?

2. What is the largest number of edges in a bar k-visibility graph with n
vertices?
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Are there bar 1-visibility graphs with thickness 37

More generally, what is the largest thickness of a bar k-visibility graph? Is
it k417

Are there bar 1-visibility graphs with chromatic number 97

More generally, what is the largest chromatic number of a bar k-visibility
graph?

What is the largest crossing number of a bar k-visibility graph?

What is the largest genus of a bar k-visibility graph?

What is a complete characterization of bar k-visibility graphs?

Is there an efficient recognition algorithm for bar k-visibility graphs?
Rectangle visibility graphs are defined in [7,[8,[15]. Generalize the results of
this note to rectangle visibility graphs.

Arc- and circle-visibility graphs are defined in [IT]. Generalize the results of
this note to arc- and circle-visibility graphs.
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