On Rectilinear Duals for
Vertex-Weighted Plane Graphs

Mark de Berg*, Elena Mumford, and Bettina Speckmann

Department of Mathematics & Computer Science, TU Eindhoven, The Netherlands
{mdberg, speckman}@win.tue.nl, e.mumford@tue.nl

Abstract. Let G = (V, E) be a plane triangulated graph where each
vertex is assigned a positive weight. A rectilinear dual of G is a partition
of a rectangle into |V| simple rectilinear regions, one for each vertex, such
that two regions are adjacent if and only if the corresponding vertices
are connected by an edge in E. A rectilinear dual is called a cartogram
if the area of each region is equal to the weight of the corresponding
vertex. We show that every vertex-weighted plane triangulated graph G
admits a cartogram of constant complexity, that is, a cartogram where
the number of vertices of each region is constant.

1 Introduction

Motivation. Cartographers have developed many different techniques to visu-
alize statistical data about a set of regions like countries, states or counties.
Cartograms are among the most well known and widely used of these tech-
niques. The regions of a cartogram are deformed such that the area of a region
corresponds to a particular geographic variable [4]. The most common variable
is population: In a population cartogram, the areas of the regions are propor-
tional to their population. There are several types of cartograms. Of particular
relevance for this paper are the rectangular cartograms introduced by Raisz in
1934 [12], where each region is represented by a rectangle. This has the advan-
tage that the areas (and thereby the associated values) of the regions can be
easily estimated by visual inspection.

Whether a cartogram is good is determined by several factors. In this paper
we focus on two important criteria, namely the correct adjacencies of the regions
of the cartogram and the cartographic error [5]. The first criterion requires that
the dual graph of the cartogram is the same as the dual graph of the original
map. Here the dual graph of a map—also referred to as adjacency graph—is the
graph that has one node per region and connects two regions if they are adjacent,
where two regions are considered to be adjacent if they share a 1-dimensional
part of their boundaries (see Fig. [Ml). The second criterion, the cartographic
error, is defined for each region as |A. — A4| /As, where A, is the area of the
region in the cartogram and A; is the specified area of that region, given by the
geographic variable to be shown.

* Supported by the Netherlands’ Organisation for Scientific Research (NWO) under
project no. 639.023.301.

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 61-{72] 2005.
© Springer-Verlag Berlin Heidelberg 2005

62 M. de Berg, E. Mumford, and B. Speckmann

NORTH

i3

Soms
Sosm

Fig. 1. The provinces of the Netherlands, their adjacency graph, a population carto-
gram—here additional “sea rectangles” were added to preserve the outer shape

From a graph-theoretic point of view constructing rectangular cartograms
with correct adjacencies and zero cartographic error translates to the following
problem. We are given a plane graph G = (V, E) (the dual graph of the original
map) and a positive weight for each vertex (the required area of the region for
that vertex). Then we want to construct a partition of a rectangle into rect-
angular regions whose dual graph is G—such a partition is called a rectangular
dual of G—and where the area of each region is the weight of the corresponding
vertex. As usual, we assume the input graph G is plane and triangulated, except
possibly the outer face; this means that the original map did not have four or
more countries whose boundaries share a common point and that G does not
have degree-2 nodes/}

Unfortunately not every vertex-weighted plane triangulated graph admits a
rectangular cartogram, even if we ignore the vertex weights and concentrate
only on the correct adjacencies. There are several possibilities to address this
problem. One is to relax the strict requirements on the adjacencies and areas.
For example, Van Kreveld and Speckmann [I4] gave an algorithm that constructs
rectangular cartograms that in practice have only a small cartographic error and
mild disturbances of the adjacencies. Heilmann et al. [6] gave an algorithm that
always produces regions with the correct areas; unfortunately the adjacencies can
be disturbed badly. The other extreme is to ignore the area constraints and focus
only on getting the correct adjacencies—that is, to focus on rectangular duals
rather than cartograms. This setting is relevant for computing floor plans in VLSI
design. As mentioned above, ignoring the area constraints still does not guarantee
that a solution exists. But, if the input graph is a triangulated plane graph
without separating triangles—a separating triangle is a 3-cycle with vertices
both inside and outside the cycle—then a rectangular dual always exists [1L[8]
and can be computed in linear time [7].

Another option is to use different shapes for the regions. We restrict our
attention to so-called rectilinear cartograms, which use rectilinear polygons as
regions—see [I0,[4] for some examples from the cartography community. If we

! Degree-2 nodes can easily be handled using suitable pre- and postprocessing

steps [14].

On Rectilinear Duals for Vertex-Weighted Plane Graphs 63

now ignore the area requirement then things become much better: Any plane tri-
angulated graph admits a rectilinear dual. In fact, Liao et al. [9] recently showed
that any plane triangulated graph admits a rectilinear dual with regions of small
complexity, namely rectangles, L-shapes, and T-shapes. The main questions now
are: Does any plane triangulated vertex-weighted graph admit a rectilinear car-
togram with zero cartographic error and correct adjacencies? And if so, can it
always be done with a constant number of vertices per region?

This problem was studied by Rahman et al. [I1] for a very special class of
graphs, namely a certain subclass of graphs that admit a sliceable dual—see
below. They showed that such graphs admit a rectilinear cartogram where every
region has at most 8 vertices. Biedl and Genc [2] showed that it is NP-hard to
decide if a rectilinear cartogram that uses regions with at most 8 vertices exists
for a given graph. Furthermore, a rectangular layout can be interpreted as a
plane, cubic graph. Thomassen showed [I3] that any such graph can be drawn
with straight (but not necessarily horizontal or vertical) edges such that every
bounded face has any prescribed area. These results leave the two questions
stated above still unanswered. Our paper answers them: We prove that any
plane triangulated vertex-weighted graph admits a rectilinear cartogram all of
whose regions have constant complexity. Before we describe our results in more
detail we first define the terminology we use more precisely.

Terminology. A layout L is a partition of a rectangle R into a finite set of
interior-disjoint regions. We consider only rectilinear layouts, where every region
is a simple rectilinear polygon whose sides are parallel to the edges of R. We
define the complexity of a rectilinear polygon as the total number of its vertices
and the complexity of a rectilinear layout as the maximum complexity of any
of its regions. A rectilinear layout is called rectangular if all its regions are
rectangles. Thus, a rectangular layout is a rectilinear layout of complexity 4.
Finally, a rectangular layout is called sliceable if it can be obtained by recursively
slicing a rectangle by horizontal and vertical lines, which we call slice lines. (In
computational geometry, such a recursive subdivision is called a (rectilinear)
binary space partition, or BSP for short.)

We denote the dual graph (also called connectivity graph) of a layout £ by
G(L). Given a graph G, a layout £ such that G = G(£) is called a dual layout (or
simply a dual) for G. The dual G(£) is unique for any layout £. Note that not
every graph G has a dual layout. If it does, then the dual layout is not necessarily
unique.

(2 © @ ®@

LN
$op Pl [leF| ol

@ @ ©)

Fig. 2. A graph G with a rectangular, rectilinear, and sliceable dual

64 M. de Berg, E. Mumford, and B. Speckmann

Every vertex v of a vertex-weighted graph G has a positive weight w(v) asso-
ciated with it. Given a vertex-weighted plane graph G that admits a dual £, we
say that L is a cartogram if the area of each region of L is equal to the weight of
the corresponding vertex of G. The cartogram is called rectangular (rectilinear,
sliceable) if the corresponding layout is rectangular (rectilinear, sliceable).

Results. In Section 2] we show how to construct a cartogram of complexity
12 for any vertex-weighted plane triangulated graph that has a sliceable dual.
We extend our results in Section] to general vertex-weighted plane triangu-
lated graphs G. Specifically, if G admits a rectangular dual then we can con-
struct a cartogram of complexity at most 20, otherwise we can construct a car-
togram of complexity at most 60. In Section E] we conclude with several open
problems.

2 Graphs That Admit a Sliceable Dual

Let G = (V, E) be a vertex-weighted plane triangulated graph with n vertices
that admits a sliceable dual. The exact characterization of such graphs is still
unknown, but Yeap and Sarrafzadeh [I5] proved that every triangulated plane
graph without separating triangles and without separating 4-cycles has a slice-
able dual. W.l.o.g. we assume that the vertex weights of G sum to 1, and that
the rectangle R that we want to partition is the unit square.

Let £1 be a sliceable dual for G. We scale and stretch £ such that it becomes
a partition of the unit square R. We will transform £, into a cartogram for G in
three steps. In the first step we transform £ into a layout Lo where every region
has the correct area. In doing so, however, we may loose some of the adjacencies,
that is, £2 may no longer be a dual layout for G. This is remedied in the second
step, where we transform Ly into a layout L£3 whose dual is G. In this step we
re-introduce some errors in the areas. But these errors are small, and we can
remove them in the third step, which produces the final cartogram, £4. Below
we describe each of these steps in more detail.

Step 1: Setting the Areas Right

The first step is relatively easy. Recall that a sliceable layout is a recursive
partition of R into rectangles by vertical and horizontal slice lines. This recursive
partition can be modelled as a BSP tree 7. Each node v of 7 corresponds to a
rectangle R(r) C R and the interior nodes store a slice line #(v). The rectangles
R(v) are defined recursively, as follows. We have R(root(7)) = R. Furthermore,
R(leftchild(v)) = R(v) N ¢~ (v) and R(rightchild(rv)) = R(v) N £+ (v), where
¢~ (v) and £*(v) denote the half-space to the left and right of £(v) (or, if £(v)
is horizontal, above and below ¢(v)). The rectangles R(v) corresponding to the
leaves are precisely the regions of the sliceable layout. See for example FigureBl—
the shaded rectangle corresponds to the shaded node. The BSP tree for a sliceable
layout is not necessarily unique, because different recursive partition processes
may lead to the same layout.

On Rectilinear Duals for Vertex-Weighted Plane Graphs 65

)

l3

Fig. 3. A graph G, the layout £1, and the BSP tree 7

The point where two or maximally three slice lines meet is called a junction
(point). We distinguish between T- and X-junctions. A T-junction involves two
slice lines while an X-junction involves three slice lines, two of which are aligned.

Now, let 7 be a BSP tree that models the sliceable layout £1. We will trans-
form £; into Lo by changing the coordinates of the slice lines used by 7 in a
top-down manner. We maintain the following invariant: When we arrive at a
node v in 7, the area of R(v) is equal to the sum of the required areas of the
regions represented by the leaves below v. Clearly this is true when we start the
procedure at the root of 7. Now assume that we arrive at a node v which stores
a slice line £(v). We simply sum up all the required areas in the left subtree of
v and adjust the position of the ¢(v) in the unique way that assigns the cor-
rect areas to R(leftchild(v)) and R(rightchild(v)). When we reach a leaf there is
nothing to do; the rectangle it represents now has the required area.

Step 2: Setting the Adjacencies Right
The movement of the slice lines in Step 1 may have changed the adjacencies
between the regions. To remedy this, we will use the BSP tree 7 again.

Before we start, we define two strips for each slice
line ¢(v). These strips are centered around ¢(v) and are
called the tail strip and the shift strip. The width of the
tail strip is 2¢, and the width of the shift strip is 26,,
where ¢, < 6, and ¢, and 6, are sufficiently small. The
exact values of ¢, and §, will be specified in Step 3. At
this point it is relevant only that we can choose them
in such a way that the shift strips of two slice lines are
disjoint except when two slice lines meet.

We will make sure that the changes to the layout
in Step 2 all occur within the tail strips and that the
changes in Step 3 all occur within the shift strips. Due
to the choice of the §,’s all the junction points within
the shift strip will lie on the slice line £(v). Fig.4. The shift and

To restore the correct adjacencies, we traverse the tail strips for £;

BSP tree bottom-up. We maintain the invariant that
after handling a node v, all adjacencies between regions inside R(r) have been
restored. Now suppose that we reach a node v. The invariant tells us that all

66 M. de Berg, E. Mumford, and B. Speckmann

adjacencies inside R(leftchild(v)) and R(rightchild(»)) have been restored. It re-
mains to restore the correct adjacencies between regions on different sides of the
slice line £(v). We will describe how to restore the adjacencies for the case where
£(v) is vertical; horizontal slice lines are handled in a similar fashion, with the
roles of the - and y-coordinates exchanged.

Let A1, As, ..., Ai be the set of regions inside R(v)
bordering 4(v) from the left, and let By, Ba,...,Bm,
be the set of regions inside R(v) bordering ¢(v) from
the right. Both the A;’s and the B;’s are numbered
from top to bottom—see Figure Bl We write A; < A;
to indicate that A; is above Aj;; thus A; < A; if and
only if ¢ < j. The same notation is used for the B;’s.
Now consider the tail strip centered around ¢(v). All
slice lines ending on ¢(v) are straight lines within the
tail strip (and, in fact, even within the shift strip).
This is true before Step 2, but as we argue later, it is
still true when we start to process £(v).

In Step 1 (and when Step 2 was applied to Fig.5. Left and right
R(leftchild(r)) and R(rightchild(v))), the slice lines neighbors
separating the A;’s from each other and the slice lines
separating the B;’s from each other may have shifted, thus disturbing the adja-
cencies between the A;’s and B;’s. For each A;, we define top(4;) := By, if By
is the highest region (among the B,’s) adjacent to A; in the original layout £;.
Similarly, bottom(A;) is the lowest such region. This means that in £q, the re-
gion A; was adjacent to all B; with top(4;) < B; < bottom(A4;). We restore
these adjacencies for A; by adding at most two so-called tails to A;, as described
below. This is done from top to bottom: We first handle A, then As, and so
on. During this process the slice line £(v) will be deformed—it will no longer be
a straight line, but it will become a rectilinear poly-line. However, the part of
£(v) bordering regions we still have to handle will be straight. More precisely,
we maintain the following invariant: When we start to handle a region A;, the
part of /(v) that lies below the bottom edge of top(A;) is straight and the right
borders of all A; = A; are collinear with that part of /.

Next we describe how A; is handled. There are two cases, which are not
mutually exclusive: Zero, one, or both of them may apply. When both cases
apply, we treat first (a) and then (b).

(a) If A; is not adjacent to top(4;) and top(A4;) is higher than A;, then we add
a tail from A; to top(4;). (If A; is not adjacent to top(A;) and top(4;)
is lower than A;, then case (b) will automatically connect A; to top(A;).)
More precisely, we add a rectangle to the right of A; whose bottom edge
is collinear with the bottom edge of A; and whose top edge is contained in
the bottom edge of top(A;). The width of this rectangle is ”. Moreover,
we shift the part of the slice line below top(4;) by ¥ to the right. Observe
that this will make all the B; below top(A4;) smaller and all A; below A;
larger.

On Rectilinear Duals for Vertex-Weighted Plane Graphs 67

AY top(d;) AY top(;)

(A;) \ | bottom(4;) bottomﬁ(Ai)
e L0 R L 0 Y L

~ £
z0 @o + £ To wg + ¥

Fig. 6. Both case (a) and case (b) apply

(b) If A; is not adjacent to bottom(A;) and bottom(A4;) is lower than A;, then
we also add a tail, as follows. (If A; was not adjacent to bottom(A;) and
bottom(A4;) was higher than A;, then necessarily case (a) has already been
treated and in fact A; is now adjacent to bottom(A;).) First, we shift the
part of the slice line below the top edge of bottom(A;) by < to the left.
Observe that this will enlarge bottom(A;) and all the B; below it, and make
all A; = A; smaller. Next, we add a rectangle of width 5 to A;, which con-
nects A; to bottom(A;). Its top edge is contained in the bottom edge of A;,
its right edge is collinear to A;’s right edge, and its bottom edge is contained
in the top edge of bottom(4;).

Note that every tail “ends” on some Bj;, that is, no tail extends all the way to
the slice lines on which £(v) ends. This implies that

— no bends are introduced inside the shift strips of the two slice lines on which
£(v) ends (as we already claimed earlier).

— the bordering sequence (the sets of countries along each side of a slice line
and their order) of any other slice line remains unchanged.

— the bottom end of ¢(v) shifts only within the tail strip of £(v).

Lemma 1. The layout L3 obtained after Step 2 has the following properties:

(i) If two regions are adjacent in L1, then they are also adjacent in Ls.
(ii) The tails that are added when handling a slice line £ all lie within the tail
strip of £.
(iii) Each region gets at most three tails.

Proof.

(i) It follows from the construction that each region A; along a slice line ¢(v) has
the required adjacencies after £(v) has been handled. Hence, the construction
maintains the invariant that all adjacencies within R(v) are restored after
£(v) has been handled. Therefore, after the slice line that is stored at the
root of 7 is handled, all adjacencies have been restored.

(ii) A tail inside a tail strip of width 2¢, has width ° and is always adjacent
to the current slice line. A slice line is shifted at most n — 2 times by °v.
Hence, the tails lie within the tail strip, as claimed.

68 M. de Berg, E. Mumford, and B. Speckmann

(iii) A region can get tails only when the slice line ¢, on its right and the slice
line ¢; along its top are handled. Since a region must be either the topmost
region along ¢, or the rightmost region along ¢; it can only get a double tail
along one of these slice lines. Thus each region receives at most 3 tails. Note
that since the tails along the same slice line are aligned, a region does not
get more than three concave vertices. a

Note that if G is triangulated then Lemma [(i) implies that two regions in
L3 are adjacent if and only if they are adjacent in L£;: All required adjacencies
are present and in a plane triangulated graph there is no room for additional
adjacencies.

Step 3: Repairing the Areas

When we repaired the adjacencies in Step 2, we re-introduced some small errors
in the areas of the regions. We now set out to remedy this. In Step 2, the slice
lines actually became rectilinear poly-lines. These poly-lines, which we will keep
on calling slice lines for convenience, are monotone: A horizontal (resp. vertical)
line intersects any vertical (resp. horizontal) slice line in a single point, a segment,
or not at all. We will repair the areas by moving the slice lines in a top-down
manner, similar to Step 1. But because we do not want to loose any adjacencies
again, we have to be more careful in how we exactly move a slice line. This is
described next.

Assume that we wish to move a horizontal slice line £ = ¢,,; vertical slice lines
are treated in a similar manner. Let ¢; and ¢5 be the slice lines to the left and
to the right of ¢, that is, the slice lines on which ¢ ends. We define a so-called
container for £, denoted by C(£). The container C(¢) is a rectangle containing
most of ¢, as well as parts of the other slice lines ending on /. Instead of moving
the slice line ¢ we will move the container C'(¢) and its complete contents.

We first define the container C'(¢) more precisely. The top and bottom edge
of C(£) are contained in the boundary of the tail strip of £. The position of the
right edge of ¢ is determined by what happened at the junction between ¢ and
{5 when f5 was processed during Step 2. Let A; and A;11 be the regions above
and below ¢ and bordering /.

(i) A; did not get a downward tail and A;11 did not get an upward tail.
In this case either there is no other junction on f5 within £’s shift strip, or
there is exactly one and it lies within £’s tail strip (see Fig. [[(a)). If there
is a junction on f3 within ¢’s tail strip in the direction in which C(¢) should
be moved, then we set the right edge of the container C'(¢) at distance €, /n
from ¢5 (see Fig.[(b)). Otherwise, the right edge of the container is collinear
with the part of 5 lying within ’s shift strip (see Fig. [[{(c)).

(ii) A; got a downward tail or A;11 got an upward tail.
Note that in this case more tails may have entered the tail strip of ¢. For
example, if A;1; got an upward tail then some other regions below A;11
possibly got an upward tail as well. In this case the right edge of C'(¢) will go
through the leftmost such tail edge—see Fig. Bl Figures [and [I{0 illustrate

On Rectilinear Duals for Vertex-Weighted Plane Graphs 69

Fig. 7. (a) £ and ¢2 form a T-junction; (b) Fig.8. (a) A;+1 has an upward tail; (b)
C(¢) is moved up and there is a junction = moving C(¢) up; (c) moving C(¢£) down
in its way; (c) C(€) is moved down and

there is no junction in its way

Fig.9. (a) Ai+1 got an upward tail with Fig.10. (a) A;+1 got an upward tail of
its end inside £’s tail strip; (b) moving length 0; (b) moving C'(¢) up; (¢) moving
C(¢) up; (c) moving C(¢) down C(¢) down

the case, when ¢ and /5 were involved in an X-junction in £;—hence A;11
could have a tail within ¢’s tail strip.

The position of the left edge of C'(¢) is determined in a similar fashion, the
details can be found in the full paper. Note that no matter what was going on on
the other sides of ¢; and ¢, the adjacencies are preserved when C(¢) is moved.

Recall that we are repairing the areas in a top-down manner. When we get to
slice line ¢, we need to make sure that the total area above /—or rather the total
area of the regions corresponding to the left subtree of the node corresponding to
¢ in the BSP tree—is correct. We do this by moving the container C'(¢). We will
show below that the error we have to repair is so small that it can be repaired by
moving C'(¢) within the shift strip of £. The parts of the slice lines ending on £
that are inside the shift strip and outside the tail strip are all straight segments;
this follows from Lemmal[ll (ii). Hence, when we move C(¢) we can simply shrink
or stretch these segments, and the topology does not change. We first analyze
what happens to the complexity of the regions when we move the containers.

Lemma 2. After Step 8 a region gets at most 4 concave vertices in total.

Proof. We might only “bend” a slice line £, ending on slice lines ¢; and /5, when
moving its container C'(£). Thus we can introduce concave vertices to two regions
adjacent to ¢ and ¢; (f2), denoted above as B; and Bjy1 (A4; and A;yq). It is
easy to verify—see Figures [HIQthat a region can only get an extra concave

70 M. de Berg, E. Mumford, and B. Speckmann

vertex at the junction of ¢ and ¢ when the corner of the region did not yet get
a tail in Step 2. The same is true for the junction of ¢ and ¢;. Hence the total
number of concave vertices is bounded by four—at most one for each corner of
the region in £;. o

It remains to prove that we can choose the widths of the tail strip and shift
strip appropriately. The two properties that we require are as follows.

Requirement 1. The shift strips of slice lines do not intersect if the slice lines
do not intersect after Step 1.

Requirement 2. The shift strip of each slice line £ is wide enough so that,
when handling £ in Step 3, moving the container C(€) can repair the areas while
staying within the shift strip.

For the first requirement it is sufficient to take the width of the shift strip to
be smaller than A/2, where A := min(A,, Ay) and A, (4,) is the minimum
difference between any two distinct z-coordinates (y-coordinates) of the vertical
(horizontal) slice lines after Step 1.

As for the second requirement, we provide a very rough estimate of the values
for the width of the shift and tails strips, just to show that suitable values exist.
Number the slice lines #q,...¢,_1 in the same order in which we handle them.
(For example, the slice line at the root of the BSP tree will be ¢;.)

Lemma 3. If the width of the shift strip of slice line £y is set to 6, == AJ4 -
(AL — A))/10)" " and the width of the tail strip is set to e, := 6y - A)2, for
1< k<n—1, then Requirementsl and[2 are fulfilled.

The proof of Lemma 3] can be found in the full version of the paper. We conclude
this section with the following theorem:

Theorem 1. Let G be a vertex-weighted plane triangulated graph that admits a
sliceable dual. Then G admits a cartogram of complexity at most 12.

3 General Graphs

In the previous section we described an algorithm to construct cartograms for
graphs that admit a sliceable dual. Next we consider more general graphs, namely
graphs that admit a rectangular dual and arbitrary triangulated plane graphs.
These more general classes of graphs are handled by adding an extra step before
the three steps described in the previous section.

We begin with graphs that admit a rectangular dual, that is, plane trian-
gulated graphs without separating triangles. Such a rectangular dual can be
constructed, for example, by the algorithm of Kant and He [7]. Let now G be
a plane triangulated graph without separating triangles and Ly a rectangular
dual of G. We construct a rectilinear BSP on L, that is, we recursively partition
Ly using horizontal or vertical splitting lines until each cell in the partitioning
intersects a single rectangle from Ly. This can be done in such a way that each

On Rectilinear Duals for Vertex-Weighted Plane Graphs 71

rectangle in Lo is cut into at most four subrectangles [3]. The resulting layout
of these subrectangles, L1, is sliceable by construction.

We then assign weights to the subrectangles. If a rectangle in Ly representing
a vertex v of G was cut into k subrectangles in £; then each subrectangle is
assigned weight w(v)/k. (In practice it may be better to make the weight of
each subrectangle proportional to its area.) Next, we perform Step 1-3 of the
previous section on the layout £; with these weights. Each rectilinear region
in the layout £, obtained after Step 3 corresponds to a subrectangle in L.
Finally, we merge the regions corresponding to subrectangles coming from the
same rectangle in Lo—and, hence, from the same vertex of G—thus obtaining
a layout L5 with one region per vertex of G. The next lemma guarantees the
correctness of our approach, its proof can be found in the full paper.

Lemma 4. The algorithm described above produces a layout where each region
has the correct area and adjacencies.

It remains to analyze the complexity of the regions in the final layout. Of course
we can just multiply the bound from the previous section by four, since each
vertex in G is represented by four rectangles in £1. This results in a bound of 48.
The next lemma shows that things are not quite that bad, its proof can be found
in the full paper.

Lemma 5. The algorithm described above produces regions of complexity at
most 20.

The next theorem summarizes our result for graphs that admit a rectangular
dual.

Theorem 2. Let G be a vertex-weighted plane triangulated graph that admits a
rectangular dual, i.e., G has no separating triangles. Then G admits a cartogram
of complexity at most 20.

We now turn our attention to general plane triangulated graphs. As mentioned
earlier, Liao et al. [9] showed that any plane triangulated graph has a rectilinear
dual that uses L- and T-shapes—that is, regions of maximal complexity 8—in
addition to rectangles. We cut each region into at most three subrectangles and
then proceed as in the previous case: We cut the collection of subrectangle with
a BSP to obtain a sliceable layout L1, we assign weights to the rectangles in
L1, run Step 1-3, and merge regions belonging to the same vertex in G. This
immediately gives the following corollary.

Corollary 1. Any vertex-weighted plane triangulated graph G admits a car-
togram of complexity at most 60.

4 Conclusions

We proved that every plane triangulated vertex-weighted graph admits a recti-
linear cartogram of constant complexity. Currently, however, our method is not

72

M. de Berg, E. Mumford, and B. Speckmann

practical. First of all, although the complexity of the cartogram is bounded by a
constant, it is rather high. So interesting open problems are to give an algorithm
that produces cartograms of smaller complexity and to give lower bounds on
the minimum complexity required to guarantee the existence of a cartogram. It
would also be useful to give an exact characterization of the graphs that admit
a sliceable dual, since the bound we obtain for such graphs is much better. A
second problem with our algorithm from a practical point of view is that the
tails we add to get the correct adjacencies can be quite thin. It would be nice to
see if it is possible to do with wider tails.

References

1.

2.

10.

11.

12.

13.

14.

15.

J. Bhasker and S. Sahni. A linear algorithm to check for the existence of a rectan-
gular dual of a planar triangulated graph. Networks, 7:307-317, 1987.

T. Biedl and B. Genc. Complexity of octagonal and rectangular cartograms. In
Proceedings of the 17th Canadian Conference on Computational Geometry, pages
117-120, 2005.

. F. d’Amore and P. G. Franciosa. On the optimal binary plane partition for sets of

isothetic rectangles. Information Processing Letters, 44(5):255-259, 1992.

. B. Dent. Cartography - thematic map design. McGraw-Hill, 5th edition, 1999.
. J. A. Dougenik, N. R. Chrisman, and D. R. Niemeyer. An algorithm to construct

continous area cartograms. Professional Geographer, 37:75-81, 1985.

. R. Heilmann, D. A. Keim, C. Panse, and M. Sips. Recmap: Rectangular map ap-

proximations. In Proceedings of the IEEE Symposium on Information Visualization
(INFOVIS), pages 33-40, 2004.

. G. Kant and X. He. Regular edge labeling of 4-connected plane graphs and its

applications in graph drawing problems. Theoretical Computer Science, 172:175—
193, 1997.

. K. Kozminski and E. Kinnen. Rectangular dual of planar graphs. Networks, 5:145—

157, 1985.

. C.-C. Liao, H.-I. Lu, and H.-C. Yen. Floor-planning using orderly spanning trees.

Journal of Algorithms, 48:441-451, 2003.

NCGIA / USGS. Cartogram Central, 2002. http://www.ncgia.ucsb.edu/
projects/Cartogram Central/index.html.

M. S. Rahman, K. Miura, and T. Nishizeki. Octagonal drawings of plane graphs
with prescribed face areas. In Proceedings of the 30th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG), number 3353 in LNCS,
pages 320-331. Springer, 2004.

E. Raisz. The rectangular statistical cartogram. Geographical Review, 24:292-296,
1934.

C. Thomassen. Plane cubic graphs with prescribed face areas. Combinatorics,
Probability and Computing, 1:371-381, 1992.

M. van Kreveld and B. Speckmann. On rectangular cartograms. Computational
Geometry: Theory and Applications, 2005. To appear.

G. K. Yeap and M. Sarrafzadeh. Sliceable floorplanning by graph dualization.
SIAM Journal of Discrete Mathematics, 8(2):258-280, 1995.

	Introduction
	Graphs That Admit a Sliceable Dual
	General Graphs
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

