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Abstract. It is shown that if a graph of n vertices can be drawn on the
torus without edge crossings and the maximum degree of its vertices is at
most d, then its planar crossing number cannot exceed cdn, where c is a
constant. This bound, conjectured by Brass, cannot be improved, apart
from the value of the constant. We strengthen and generalize this result
to the case when the graph has a crossing-free drawing on an orientable
surface of higher genus and there is no restriction on the degrees of the
vertices.

1 Introduction

Let Sg be the compact orientable surface with no boundary, of genus g. Given
a simple graph G, a drawing of G on Sg is a representation of G such that the
vertices of G are represented by points of Sg and the edges are represented by
simple (i.e., non-selfintersecting) continuous arcs in Sg, connecting the corre-
sponding point pairs and not passing through any other vertex. The crossing
number of G on Sg, crg(G), is defined as the minimum number of edge crossings
over all drawings of G in Sg. For cr0(G), the “usual” planar crossing number,
we simply write cr(G).

Let G be a graph of n vertices and e edges, and suppose that it can be drawn
on the torus without crossing, that is, G satisfies cr1(G) = 0. How large can
cr(G) be? Clearly, we have cr(G) <

(
e
2

)
, and this order of magnitude can be

attained, as shown by the following example. Take five vertices and connect any
pair of them by e

20 vertex-disjoint paths of lengths two. In any drawing of this
graph in the plane, every subdivision of K5 gives rise to a crossing. Therefore,
the number of crossings must be at least e2

400 .
Peter Brass suggested that this estimate can be substantially improved if we

impose an upper bound on the degree of the vertices. More precisely, we have

Theorem 1. Let G be a graph of n vertices with maximum degree d, and suppose
that G has a crossing-free drawing on the torus. Then we have cr(G) ≤ cdn,
where c is a constant.
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For d ≥ 3, the bound in Theorem 1 cannot be improved, apart from the value
of the constant c. Consider the following example. Let d ≥ 4, G = Ck×Ck, where
k =

√
n/d is a large integer and Ck denotes a cycle of length k. Obviously, this

graph can be drawn on the torus without crossings. On the other hand, by a
result of Salazar and Ugalde [SU04], its planar crossing number is larger than
(4
5 − ε)k2, for any ε > 0, provided that k is large enough. Substitute every edge

e of G by �d
4� new vertices, each connected to both endpoints of e. The resulting

graph G′ has at most n vertices, each of degree at most d. It can be drawn on
the torus with no crossing, and its planar crossing number is at least

(
4
5

− ε

)
k2 ×

⌊
d

4

⌋2

>
1

100
nd.

To see this, it is enough to observe that there is an optimal drawing of G′ in the
plane with the property that any two paths of length two connecting the same
pair of vertices cross precisely the same edges. The same construction can be
slightly modified to show that cr(G) can also grow linearly in n if the maximum
degree d is equal to three.

Theorem 1 can be generalized as follows.

Theorem 2. Let G be a graph of n vertices of maximum degree d that has a
crossing-free drawing on Sg, the orientable surface of genus g. Then we have
cr(G) ≤ cd,gn, where cd,g is a constant depending on d and g.

We can drop the condition on the maximum degree and obtain an even more
general statement.

Theorem 3. Let G be a graph of n vertices with degrees d1, d2, . . . , dn, and
suppose that G has a crossing-free drawing on Sg. Then we have

cr(G) ≤ cg

n∑

i=1

d2
i ,

where cg is a constant depending on g.

To simplify the presentation and to emphasize the main idea of the proof, in
Section 2 first we settle the simplest (planar) case (Theorem 1). In Section 3,
we reduce Theorem 3 to a similar upper bound on the crossing number of G in
Sg−1 (Theorem 3.1). This latter result is established in Section 4.

2 The Simplest Case: Proof of Theorem 1

We can assume that d ≥ 3. It is sufficient to prove that cr(G) ≤ cd(n − 1) holds
for any two-connected graph G satisfying the conditions. Indeed, if G is discon-
nected or has a cut vertex, then it can be obtained as the union of two graphs G1
and G2 with n1 and n2 vertices that have at most one vertex in common, so that
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we have n1 + n2 = n or n + 1. Arguing for G1 and G2 separately, we obtain by
induction that

cr(G) = cr(G1) + cr(G2) ≤ cd(n1 − 1) + cd(n2 − 1) ≤ cd(n − 1),

as required.
Let G be a two-connected graph with maximum degree d and cr1(G) = 0. Fix

a crossing-free drawing of G on the torus. We can assume that the boundary of
each face is connected. Indeed, if one of the faces contains a cycle not contractible
within the face, then cutting the torus along this cycle we do not damage any
edge of G. Therefore, G is a planar graph and there is nothing to prove.

If our drawing is not a triangulation, then by adding O(n) extra vertices and
edges we can turn it into one so that the maximum degree of the vertices increases
by at most a factor of three. We have to apply the following easy observation.

Lemma 2.1. Let G be a two-connected graph with n vertices of degree at most
d (d ≥ 3). Suppose that G has a crossing-free drawing on the orientable surface
of genus g such that the boundary of each face is connected. Any such drawing
can be extended to a triangulation of the surface with at most 19n + 36(g − 1)
vertices of maximum degree at most 3d.

Proof. First consider a cycle f = x1x2 . . . xn(f) bounding a single face in the
drawing of G. Note that some vertices xi ∈ V (G) and even some edges may ap-
pear along this cycle several times. Take a simple closed curve γ0 = p1p2 . . . pn(f)
inside the face, running very close to f and passing through the (new) points pi

in this cyclic order. In the ring between f and γ0, connect each vertex xi to pi

and pi+1 (where pn(f)+1 := p1).
Divide γ0 into m0 := �n(f)

d−1 � connected pieces, each consisting of at most d
vertices, such that the last vertex of each piece πi is the first vertex of πi+1, where
1 ≤ i ≤ m0 and πm0+1 := π1. Place a simple closed curve γ1 = q1q2 . . . qm0 in
the interior of γ0. In the ring between γ0 and γ1, connect each qi to all points in
πi. (If m0 = 1 or 2, then γ1 degenerates into a point or a single edge.) If γ1 has
more than three vertices, repeat the same procedure for γ1 in the place of γ0,
and continue as long as the interior of the face is not completely triangulated.
We added

n(f) + m0 + m1 + . . . < n(f) + n(f) +
n(f)

2
+

n(f)
4

+ . . . < 3n(f)

new vertices, and their maximum degree is at most d + 4. The degree of every
original vertex of f increased by at most twice the number of times it appeared
in f .

If we triangulate every face of G in the above manner, the resulting drawing
G′ defines a triangulation of the surface with fewer than n +

∑
f 3n(f) ≤ n +

6|E(G)| vertices, each of degree at most d′ := 3d. By Euler’s formula, we have
n + 6|E(G)| ≤ n + 18(n − 2 + 2g), as required. �

In the sequel, slightly abusing the notation, we write G for the triangulation
G′ and d for its maximum degree d′.
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If G has no noncontractible cycle, i.e., no cycle represented on the torus by a
closed curve not contractible to a point, then we are done, because G is a planar
drawing so that cr(G) = 0. Otherwise, choose a noncontractible cycle C with
the minimum number of vertices, fix an orientation of C, and let k := |V (C)|.
Let El (and Er) denote the set of edges not belonging to C that are incident to
at least one vertex of C and in a small neighborhood of this vertex lie on the
left-hand side (respectively right-hand side) of C. Note that the sets El and Er

are disjoint, but this fact is not necessary for the proof.
Replace C by two copies, Cr and Cl, lying on its right-hand side and left-hand

side. Connect each edge of Er (respectively El) to the corresponding vertex of Cr

(respectively Cl). Cut the torus along C, and attach a disk to each side of the cut.
The resulting spherical (planar) drawing G1 represents a graph, slightly dif-

ferent from G. To transform it into a drawing of G, we have to remove Cl and
(re)connect the edges of El to the corresponding vertices of Cr . In what follows,
we describe how to do this without creating too many crossings.

Let Ĝ1 denote the dual graph of G1, that is, place a vertex of Ĝ1 in each
face of G1, and for any e ∈ E(G1) connect the two vertices assigned to the faces
meeting at e by an edge ê ∈ E(Ĝ1). Let r and l denote the vertices of Ĝ1 lying
in the faces bounded by Cr and Cl.

Lemma 2.2. In Ĝ1, there are k vertex-disjoint paths between the vertices r and l.

Proof. By Menger’s theorem, the maximum number p of (internally) vertex-
disjoint paths connecting r and l in Ĝ1 is equal to the minimum number of
vertices whose deletion separates r from l. Choose p such separating vertices,
and denote the corresponding triangular faces of G by f1, . . . , fp. The interior
of the union of these faces must contain a noncontractible closed curve that
does not pass through any vertex of G. Let δ be such a curve whose number of
intersection points with the edges of G is minimum. Choose an orientation of δ.
Let e1, . . . , eq denote the circular sequence of edges of G intersected by δ. By the
minimality of δ, we have q ≤ p, because the interior of each triangle fi contains
at most one maximal connected piece of δ. Let vi be the right endpoint of ei with
respect to the orientation of δ. Notice that vi is adjacent to or identical with
vi+1, for every 1 ≤ i ≤ q (where vq+1 := v1). Therefore, the circular sequence of
vertices v1, . . . , vq induces a cycle in G that can be continuously deformed to δ.
Thus, we have a noncontractible cycle of length q ≤ p in G, which implies that
k, the length of the shortest such cycle, is at most p, as required. �

By Lemma 2.1, the graph Ĝ has at most 2|V (G)| ≤ 38n vertices. According to
Lemma 2.2, there is a path connecting r and l in Ĝ with fewer than 38n

k internal
vertices. The corresponding faces of G1 form a “corridor” B between Cr and Cl.
Delete now the vertices of Cl from G1. Pull every edge in El through B, and
connect each of them to the corresponding vertex of Cr . See Figures 1 and 2.
Notice that during this procedure one can avoid creating any crossing between
edges belonging to El.

We give an upper bound on the number of crossings in the resulting planar
drawing of G. Using that |C| = k and |El| ≤ dk, we can conclude that by
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Fig. 1. C is the shortest noncontractible cycle
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Fig. 2. Pulling the edges in El through the corridor B

pulling each edge through the corridor B, we create at most 38n
k crossings per

edge. Thus, the total number of crossings cannot exceed dk · 38n
k = 38dn, which

completes the proof of Theorem 1. �

3 Reducing Theorem 3 to Theorem 3.1

Given a graph G, let n(G) and σ(G) denote the number of vertices of G and the
sum of the squares of their degrees.

Theorem 3 provides an upper bound for the crossing number of a graph G
that can be drawn on Sg without crossing. Next we show that this bound can be
deduced by repeated application of the following result. In each step, we reduce
the genus of the surface by one.

Theorem 3.1. Let G be a two-connected graph with crg(G) = 0. Then we have
crg−1(G) ≤ c∗gσ(G), for some constant c∗g ≥ 1.
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Proof of Theorem 3 using Theorem 3.1. As in the proof of Theorem 1,
we can assume that G is two-connected. Consider a crossing-free drawing of
G0 := G on Sg. According to Theorem 3.1, G0 can be drawn on Sg−1 with at
most cσ(G) crossings. Place a new vertex at each crossing, and apply Theorem
3.1 to the resulting graph G1. Proceeding like this, we obtain a series of graphs
G2, G3, . . . , Gg, drawn on Sg−2, Sg−3, . . . , S0, respectively, with no crossing.

We claim that for any i, 0 ≤ i ≤ g,

σ(Gi) ≤ (17)i

⎛

⎝
∏

g−i<j≤g

c∗j

⎞

⎠ σ(G)

holds. This is obviously true for i = 0. Let 0 < i ≤ g, and assume that the claim
has already been verified for i − 1. Notice that, apart from the original vertices
of Gi−1, every other vertex of Gi has degree four. Thus, applying Theorem 3.1
to the graph Gi−1 that had a crossing-free drawing on Sg−i+1, we obtain

σ(Gi) ≤ σ(Gi−1) + 16crg−i(Gi−1) ≤ σ(Gi−1) + 16c∗g−i+1σ(Gi−1)

≤ (1 + 16c∗g−i+1)(17)i−1

⎛

⎝
∏

g−i+1<j≤g

c∗j

⎞

⎠σ(G) ≤ (17)i

⎛

⎝
∏

g−i<j≤g

c∗j

⎞

⎠σ(G),

which proves the claim.
It follows from the construction that Gg is a planar graph, and we have

n(Gg) − n(G) < σ(Gg) ≤ 17g

⎛

⎝
g∏

j=1

c∗j

⎞

⎠ σ(G).

Replacing the n(Gg)−n(G) “new” vertices of Gg by proper crossings, we obtain

a drawing of G in the plane with at most 17g
(∏g

j=1 c∗j
)

σ(G) crossings. This
completes the proof of Theorem 3. �

4 Reducing the Genus by One: Proof of Theorem 3.1

It remains to prove Theorem 3.1.
All noncrossing closed curves C on Sg belong to one of the following three

categories:

1. C is contractible (to a point);
2. C is noncontractible and twosided, i.e., it separates Sg into two connected

components;
3. C is noncontractible and onesided.

Let us cut the surface Sg along C, and attach a disk along each side of the
cut. If C is contractible, we obtain two surfaces: one homeomorphic to Sg and
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the other homeomorphic to the sphere S0. If C is noncontractible and twosided,
then we obtain two surfaces homeomorphic to Sa and Sb, for some a, b > 0 with
a + b = g. Finally, if C is noncontractible and onesided, then we get only one
surface, Sg−1 [MT01].

First we need an auxiliary statement, interesting on its own right.

Theorem 4.1. Let G be a graph with a crossing-free drawing on Sg. If G has
no noncontractible onesided cycle, then G is a planar graph.

Proof. We follow the approach of Cairns and Nikolayevsky [CN00], developed to
handle a similar problem on generalized thrackles. Let S be a very small closed
neighborhood of the union of all edges of the drawing of G on Sg. Then S is a
compact connected surface whose boundary consists of a finite number of closed
curves. Attaching a disk to each of these closed curves, we obtain a surface S′

with no boundary. We show that S′ is a sphere. To verify this claim, consider two
closed curves, α′ and β′, on S′. They can be continuously deformed into closed
walks, α1 and β1, along the edges of G. Let α and β be the corresponding closed
walks along the edges of G in the original drawing on Sg. By the assumption, α
divides Sg into two parts, therefore, β crosses α an even number of times. Since
the original drawing of G on Sg was crossing-free, every crossing between α and
β occurs at a vertex of G. Using the fact that in the new drawing of G on S′,
the cyclic order of the edges incident to a vertex is the same as the cyclic order
of the corresponding edges in the original drawing, we can conclude that α1 and
β1 cross an even number of times. It is not hard to argue that then the same
was true for α′ and β′. Thus, S′ is a surface with no boundary in which any two
closed curves cross an even number of times. This implies that S′ is a sphere.
Consequently, we have a crossing-free drawing of G on the sphere, that is, G is
a planar graph. �

Proof of Theorem 3.1. As in the previous section, let σ(G) denote the the
sum of the squared degrees of the vertices of G. A grid of size k × k is the cross
product Pk × Pk of two paths of length k. The vertices of Pk × Pk with degrees
less than four are said to form the boundary of the grid. The proof of Theorem
3.1 is based on the same idea as that of Theorem 1, but some important details
have to be modified.

Suppose that G is a two-connected graph of n vertices, drawn on Sg without
crossing. We can also assume that G has no crossing-free drawing on Sg−1,
otherwise Theorem 3.1 is trivially true. In particular, it follows that every face
of the drawing of G on Sg has a connected boundary.

Replace each vertex v of degree d(v) > 4 by a grid of size d(v) × d(v) and
connect the edges incident to v to distinct vertices on the boundary of the grid,
preserving their cyclic order. The resulting crossing-free drawing of G′ has at
most σ(G) vertices, each of degree at most four. Every face has a connected
boundary, so that we can apply Lemma 2.1 to turn G′ into a triangulation
G′′ with at most 19σ(G) + 36(g − 1) vertices, each of degree at most twelve.
Restricting G′ and G′′ to any grid substituting for a vertex in G, the only
difference between them is that each quadrilateral face in G′ is subdivided by
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one of its diagonals into two triangles in G′′. Color all edges along the boundaries
of the grids blue, and all other grid and diagonal edges of G′′ that lie in the
interior of some grid red.

If G′′ has no noncontractible onesided cycle, then we are done by Theorem 4.1.
Otherwise, pick such a cycle C with the smallest number k of vertices. Without
increasing its length too much, we can replace all red edges of C by blue edges.
Indeed, the first vertex and the last vertex of any maximal red path in C must
belong to the boundary of the same grid. Replace each such path by the shortest
blue path connecting its first and last vertices along the boundary of the grid
containing them. The resulting cycle C′ is noncontractible, onesided, and its
length is at most 2k. It has no red edges, and we can assume without loss of
generality that it does not intersect itself. Fix an orientation of C′.

Let El (and Er) denote the set of edges not belonging to C′ that are incident
to at least one vertex of C′ and in a small neighborhood of this vertex lie on the
left-hand side (respectively right-hand side) of C′.

Replace C′ by two copies, Cr and Cl, lying on its right-hand side and left-
hand side. Connect each edge of Er and El) to the corresponding vertex of Cr

and Cl. Cut Sg along C, and attach a disk to each side of the cut. The resulting
surface is Sg−1, and it contains a crossing-free drawing G1 of a graph slightly
different from G′′. To obtain a drawing of G′′ from G1, we have to remove Cl and
(re)connect the edges of El to the corresponding vertices of Cr without creating
too many crossings.

Let Ĝ1 be the dual drawing of G1 on Sg−1. Let r (respectively l) be the vertex
of Ĝ1 lying in the face bounded by Cr (respectively Cl). Color blue each vertex
of Ĝ1 that corresponds to a face lying inside a grid in G′′.

Repeating the proof of Lemma 2.2, we obtain

Lemma 4.2. In Ĝ1, there are k vertex-disjoint paths between the vertices r and l.
�

The number of cells in G1 is equal to the number of cells in G′′ plus 2.
Therefore, by Euler’s formula, Ĝ1 has at most

2|V (G′′)|+4(g − 1)+2 ≤ 2 (19σ(G) + 36(g − 1))+4(g − 1)+2 < 40(σ(G)+2g)

vertices. Thus, by Lemma 4.2, there is a path P (rl) between r and l, of length at
most 40(σ(G) + 2g)/k. Replacing all blue vertices of P (rl) by others, we obtain
a new path P ′(rl), not much longer than P (rl). First observe that r and l, the
two endpoints of P (rl), are not blue. Let uv1v2 . . . vjv be an interval along P
such that all vi’s are blue (1 ≤ i ≤ j), but u and v are not. Then the faces
corresponding to u and v must be adjacent to the boundary of some grid in G1.
These two faces are connected by two chains of faces following the outer boundary
of the grid. Replace v1, v2, . . . , vj by the sequence of vertices corresponding to
the shorter of these two chains. Since the degree of every vertex in G1 is at most
twelve, the length of this chain is at most 12j. Repeating this procedure for each
maximal blue interval of P (rl), we obtain a new path P ′(rl), whose length is at
most 480(σ(G) + 2g)/k.



342 J. Pach and G. Tóth

The corresponding faces of G1 form a “corridor” B between Cr and Cl. Now
delete r, l, and the vertices of Cl. In the same way as in the proof of Theorem 1,
“pull” all edges of El through B, and connect them to the corresponding vertices
of Cr. This step can be carried out without creating any crossing between the
edges in El.

Now we count the number of crossings in the resulting drawing. Since |C′| ≤
2k, |El| ≤ 20k. Pulling them through the corridor B, we create no more than
480(σ(G) + 2g)/k crossings per edge, that is, at most X := 9600(σ(G) + 2g)
crossings altogether.

Deleting the extra vertices and edges from G1 and collapsing each grid into
a vertex, we obtain a drawing of G on Sg−1, in which the number of crossings
cannot exceed X . This concludes the proof of Theorem 3.1. �
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