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Abstract. We study the existence of edges having few crossings with
the other edges in drawings of the complete graph (more precisely, in
simple topological complete graphs). A topological graph T = (V, E) is
a graph drawn in the plane with vertices represented by distinct points
and edges represented by Jordan curves connecting the corresponding
pairs of points (vertices), passing through no other vertices, and having
the property that any intersection point of two edges is either a common
end-point or a point where the two edges properly cross. A topological
graph is simple, if any two edges meet in at most one common point.

Let h = h(n) be the smallest integer such that every simple topological
complete graph on n vertices contains an edge crossing at most h other
edges. We show that Ω(n3/2) ≤ h(n) ≤ O(n2/ log1/4 n). We also show
that the analogous function on other surfaces (torus, Klein bottle) grows
as cn2.

1 Introduction

A topological graph T = (V, E) is a graph drawn in the plane with vertices
represented by distinct points and edges represented by Jordan curves connecting
the corresponding pairs of points (vertices), passing through no other vertices,
and having the property that any intersection point of two edges is either a
common end-point or a point where the two edges properly cross. A topological
graph is simple, if any two edges meet in at most one common point.

One of the traditional themes in the area of graph drawings is to realize a given
abstract graph as a topological graph so that the number of edge crossings is
minimized. Here we consider a variant of a “dual” problem. We study realizations
of the complete graph where each edge crosses “many” other edges.

Consider a network model drawn as a topological graph where the edge cross-
ings are used for the exchange of some commodities (or information) between
the two crossing edges. In any such model, edges with few crossings can exchange
only small amounts of the commodities with the other edges within a time unit.
This leads to the question about the existence of drawings in which each edge
crosses “many” other edges.

If we can choose the underlying abstract graph on n vertices, then we can
realize it with each edge crossing Ω(n2) other edges. E.g., take the vertices of a
regular n-gon and connect each vertex by straight-line segments with the ≈ n/3
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opposite vertices. Each edge in the obtained topological graph crosses at least
≈ n2/9 other edges. Moreover, each edge is realized by a straight-line segment,
thus it is a so-called rectilinear drawing (sometimes also called a geometric graph).
If the underlying graph is fixed then the situation is much more complicated.
In this paper we restrict our attention to topological complete graphs, i.e., to
realizations of (abstract) complete graphs. We are not aware of any result for
other classes of graphs.

If any two edges are allowed to cross each other at most twice, then there are
various realizations of the complete graph with each edge crossing Ω(n2) other
edges. E.g., take n points (vertices) on a short horizontal segment s and for any
two vertices a, b, connect a and b by an arc constructed as follows. Let U(a, b) be
the unit circle going through a and b and having the center above s. Then the
edge ab is drawn as the arc obtained from U(a, b) by removing the part below
the segment ab. Then any two edges with no common vertex cross once or twice.
A different example of such a drawing is described in [14]. In this paper we show
that the situation is different for simple topological (complete) graphs.

According to the so-called crossing lemma [1, 9], if T is a topological graph
with n vertices and e ≥ (3 + ε)n edges then its crossing number is at least
Ω(e3/n2), (i.e., it contains at least Ω(e3/n2) crossing pairs of edges). It follows
that if T is a topological complete graph then its crossing number is Ω(n4) (this
has also a quite easy direct proof). If T is simple then there are at most

(
n−2

2

)
=

O(n2) crossings on each edge. It follows that a simple topological complete graph
on n vertices contains Ω(n2) edges each of which crosses Ω(n2) other edges.

We study the existence of edges with (much) fewer than cn2 crossings. Let
us remark that in any rectilinear drawing of Kn the edges on the boundary of
the convex hull do not cross any other edge. On the other hand, Harborth and
Thürmann [8] found a simple topological complete graph in which each edge
crosses some other edges.

Let h = h(n) be the smallest integer such that every simple topological com-
plete graph on n vertices contains an edge crossing at most h other edges. Har-
borth and Thürmann [8] proved h(n) > (3

4 +o(1))n. Other related questions were
studied e.g. in [5, 6, 7, 16, 17]. It has been asked in the preliminary version of the
book [2] whether h(n) = O(n), and the final version of [2] contains a conjecture
that h(n) = o(n2). In this paper we show that h(n) grows much faster and we
also give the first subquadratic upper bound on h(n):

Theorem 1.
Ω(n3/2) ≤ h(n) ≤ O(n2/ log1/4 n).

We describe two essentially different constructions giving the lower bound.
We present both of them, since they may help in closing the gap between the
bounds given in Theorem 1. We conjecture that the lower bound is closer to
the asymptotic behavior of h(n) than the upper bound, and maybe even h(n) =
Θ(n3/2). We remark that our proof gives a reasonable constant involved in the
Ω−notation in the lower bound in Theorem 1. For simplicity of presentation, we
do not compute the constants.
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It is interesting that for other surfaces (torus, Klein bottle, real projective
plane) it is possible to find simple topological complete graphs with each edge
crossing Ω(n2) other edges. This is discussed in the last section of the paper.

Brass, Moser, and Pach [2] describe a connection between the function h(n)
and the maximum number of disjoint edges in a topological graph. They have
suggested the following greedy procedure: Select an edge intersecting the smallest
number of other edges, delete these edges, and repeat the procedure. The lower
bound in Theorem 1 indicates limits of this procedure in some cases. We remark
that finding many disjoint edges and various similar questions on topological
and geometric graphs have recently received a lot of attention, e.g. see [3, 4, 10,
11, 12, 13, 14, 15].

2 The Lower Bound

2.1 First Construction

Let S be the unit sphere in R3. Our topological complete graph giving the lower
bound in Theorem 1 will be drawn on S by choosing an appropriate set Pn of
n points on S and then connecting each pair of points of Pn by the shortest arc
contained in S. The points of Pn will be “well distributed” on S and in general
position, meaning that no two points of Pn are antipodal and no three points of
Pn lie on a common great circle of S.

The crucial requirement on Pn is the following condition:

(C) If d = d(Pn) denotes the minimum (Euclidean) distance of a pair of points
of Pn then for any point q ∈ S, the 1.1d-neighborhood of q contains a point
of Pn.

The set Pn is constructed as follows. First, we inductively construct n auxiliary
points a1, . . . , an. Choose a point a1 ∈ S arbitrarily. Now, let i ∈ {1, . . . , n − 1}
and suppose that a1, . . . , ai have already been selected. Then we choose ai+1 as
a point on S maximizing the quantity min{||a1 − ai+1||, ||a2 − ai+1||, . . . , ||ai −
ai+1||}. Clearly, we can slightly perturb the constructed set {a1, . . . , an} so that
the perturbed set, Pn, is in general position and satisfies condition (C).

Observe that (d =) d(Pn) = Θ(1/
√

n) follows from the following three facts by
a simple counting argument: (i) the area of S is Θ(1), (ii) the 1.1d-neighborhoods
of the points of Pn cover S, and (iii) the 0.49d-neighborhoods of the points of
Pn are pairwise disjoint.

Let T = Tn be the simple topological complete graph on S such that V (T ) =
Pn and that E(T ) consists of the shortest curves on S connecting the pairs of
vertices. We have to show that every edge in T crosses Ω(n3/2) other edges.

We use the notions equator, northern/southern hemisphere of S in the obvious
way. Clearly, for any two vertices a, b, the edge ab is a portion of the great circle
containing a, b. Thus, it suffices to show that if a portion I of a great circle of S
has length |I| = d then it is intersected by at least Ω(n3/2) edges of T . We may
suppose that I is a portion of the equator. We denote the end-points of I by s
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Fig. 1. The region A (left) and the points pi (right)

and t. For a point x ∈ S not lying on the equator, the spherical triangle stx is
the region on S bounded by I and by the two shortest arcs contained in S and
joining x with the points s and t, respectively.

Let c be the mid-point of the arc I. We consider the region A on S of the points
x on the northern hemisphere such that ||x − c|| < 1

100 and that the spherical
triangle stx has the inner angles at s and t each at most 0.6π (see Figure 1).
The region A is bounded by I and by three arcs of length Θ(1). Clearly, its area
is Θ(1) and it contains Θ(n) points of Pn. It suffices to show that any point of
A ∩ Pn is an end-point of Ω(

√
n) edges intersecting I.

Let x ∈ A ∩ Pn. Consider the great circle C going through the points x
and c (see Figure 1). Since d = Θ(1/

√
n), it is possible to select Θ(

√
n) points

p1, p2, . . . , pt in the intersection of C with the southern hemisphere such that
1
10 < ||c − pi|| <

√
2 (for each i) and ||pi − pj || > 2.2d (for any i �= j). In

general, the points pi do not lie in Pn. However, the 1.1d-neighborhood of each
pi contains a point p′i ∈ Pn. By the choice of the points pi, the points p′i are
pairwise distinct. It is not difficult to verify that each of the Θ(

√
n) edges xp′i

intersects the arc I. This completes the proof that any edge in T = Tn crosses
Ω(n3/2) other edges.

2.2 Second Construction

Our second construction giving the lower bound in Theorem 1 is only briefly
outlined in this extended abstract. We start with any fixed simple topological
complete graph T in which each edge has at least one crossing, e.g with the
drawing on Fig. 2. Let V (T ) = {v1, v2, . . . , vt}. Let n ≥ t and suppose for
simplicity that

√
n/t is an integer. We replace each vertex vi by a set Vi of n/t

vertices placed in a square lattice
√

n/t ×
√

n/t of a very small diameter. Any
two vertices in distinct sets Vi, Vj , i �= j, will be connected by an edge contained
in a small neighborhood of the edge vivj of T . Let i ∈ {1, . . . , t} and suppose
that the edges in T incident to vi leave the vertex vi in a counterclockwise order
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Fig. 2. A simple topological complete graph on 8 vertices in which each edge crosses
another edge

vivj1 , vivj2 , . . . , vivjt−1 . In a small neighborhood of the convex hull of Vi we draw
the edges leaving from the vertices of Vi so that any edge connecting a vertex of Vi

with a vertex of Vj1 leaves the vertex of Vi along a vector parallel to some vector
(1, ε), where ε > 0 is very small (and different for different edges), and similarly
any edge connecting any vertex of Vi with a vertex of Vj2 , Vj3 , or Vj4 ∪ . . .∪Vjt−1

(respectively) leaves the vertex of Vi along a vector parallel to some vector (ε, 1),
(−1, ε), or (ε, −1) (respectively). This ensures that after a very tiny perturbation
of Vi and after connecting any two vertices of Vi by a straight-line segment, each
such segment (edge) will be intersected by at least

(√
n/t − 1

)
n/t = Θ(n3/2)

edges connecting vertices of Vi with the vertices of Vj1 ∪ Vj2 ∪ Vj3 ∪ Vj4 . It is
not too difficult to check that the whole construction can be done so that the
resulting drawing is a simple topological (complete) graph. Moreover, any edge
connecting vertices from distinct sets Vi, Vj has (n/t)2 = Θ(n2) crossings in
a small neighborhood of the point where the edge vivj crosses another edge
of the graph T . Thus the obtained topological graph gives the lower bound in
Theorem 1.

3 The Upper Bound

Topological graphs G, H are said to be weakly isomorphic, if there exists an inci-
dence preserving one-to-one correspondence between (V (G), E(G)) and (V (H),
E(H)) such that two edges of G intersect if and only if the corresponding two
edges of H do. Let Cm denote a complete convex geometric graph with m ver-
tices (note that all such graphs are weakly isomorphic to each other). A simple
topological complete graph with m vertices is called twisted and denoted by Tm,
if there exists a canonical ordering of its vertices v1, v2, . . . , vm such that for
every i < j and k < l two edges vivj , vkvl cross if and only if i < k < l < j or
k < i < j < l (see Figure 3). Figure 4 shows an equivalent drawing of Tm on the
cylindric surface. If G, H are topological graphs, we say that G contains H , if
G has a topological subgraph weakly isomorphic to H .
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C6 T6

v1 v2 v3 v4 v5 v6

Fig. 3. The convex geometric graph C6 and the twisted graph T6

v1 v2 v3 v4 v5 v6

v1 v2 v3 v4 v5 v6

Fig. 4. Drawing of the twisted graph T6 on the cylindric surface

In the proof of the upper bound, we will use the following asymmetric form
of the result of Pach, Solymosi and Tóth [13]:

Theorem 2. [13] There exists a c > 0 such that for all positive integers n, m1,

m2 satisfying m1m2 ≤ c log1/4 n every simple topological complete graph with n
vertices contains Cm1 or Tm2 .

We will use this theorem for m1 = c′ log1/4 n and m2 constant.
Now we prove two lemmas, the first one related to the complete geometric

graph Cm, the second one related to the twisted drawing T5.

Lemma 1. Let G be a simple topological complete graph with n vertices. If G
contains Cm, then there exists an edge in G which crosses at most 2n2/m other
edges.

Proof. Let H be a topological complete subgraph of G with m vertices weakly
isomorphic to Cm. H has a face F that is bounded by a non-crossing Hamiltonian
cycle C consisting of m edges. Without loss of generality, suppose that F is the
outer face of H . Then all edges of H lie inside the region bounded by the cycle
C. We denote this region by R.
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Claim. Let c be a simple continuous curve which starts and ends inside F , does
not go through any vertex of H and crosses each edge of H at most once. Then
c crosses at most two edges of the cycle C.

Proof. For contradiction, suppose that c crosses more than two edges of C. Then
the intersection of c with R consists of k ≥ 2 disjoint arcs c1, c2, . . . , ck (see
Figure 5). In the region R, the arcs c1, c2 separate two portions of C, denoted
by α, β, from each other (see Figure 5). Since c ⊇ c1 ∪ c2 intersects each edge of
C at most once, each of the arcs α, β contains a vertex of G. However, any edge
e connecting a vertex on α with a vertex on β intersects both c1 and c2. Thus,
it intersects c more than once — a contradiction.

Let c be an arbitrary edge of G and let k be the number of edges of C that
are crossed by c. First, we delete from c a small neighborhood of its end-points,
receiving a curve c′ that is disjoint with all vertices of H and crosses the same
edges as c does. If some of the end-points of c′ lies inside the region R, we delete
from c′ the initial part between the end-point and the first point a, at which c′

crosses C, including a small neighborhood of a. We receive a curve c′′ that has
both its end-points inside F and crosses at least k − 2 edges from C. By the
previous claim, c′′ crosses at most 2 edges from C, thus k ≤ 4.

G has less than n2

2 edges, thus there are at most 2n2 crossings between the
edges of G and the edges of C. By the pigeon-hole principle, among the m edges
of C there is an edge, which crosses at most 2n2/m edges of G.

Consider a simple topological complete graph H weakly isomorphic to the
twisted graph Tm with the canonical ordering v1, v2, . . . , vm of its vertices. The
face incident with the vertices vm−1 and vm only is called an outer face of H
(it coincides with the outer face of the drawing of Tm at Figure 3), similarly the
face incident with the vertices v1 and v2 only is called an inner face of H .

Lemma 2. Let H be a simple topological complete graph weakly isomorphic to
T5. There does not exist a simple continuous curve c, which crosses each edge
of H at most once, does not go through any vertex of H, begins and ends inside
the outer face of H and intersects the inner face of H.

Proof. Let v1, v2, . . . , v5 be the canonical ordering of the vertices of H . Consider
a Hamiltonian cycle H5, which is a subgraph of H with the edge set E(H5) =

c1

c2

c1

c2

c3
c4

α

β

c
c

c

c e

c

Fig. 5. The arcs ci (left) and the arcs α, β (right)
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{v1v2, v2v3, v3v4, v4v5, v5v1}. Let F1, F2, F3, F4 be the four faces of H5 such that
F1 is incident with the vertices v1 and v2 only and Fi borders with Fi+1, i = 1, 2, 3
(see Figure 6). Note that F1 (F4) is the inner (outer) face of H and that Fi does
not border with Fj if |i − j| ≥ 2.

For contradiction, suppose that there exists a simple continuous curve c start-
ing and ending inside F4 and passing through F1, avoiding all vertices of H and
crossing each edge of H at most once. Choose a point p ∈ c∩F1. By the previous
observation, between the starting point and p, c has to pass through the faces F2
and F3, so it must cross at least three edges of H5. Similarly, c crosses at least
three edges of H5 between the point p and its end-point. But H5 has only five
edges, thus at least one of them is crossed by c more than once, a contradiction.

v1 v2 v3 v4 v5

v1 v2 v3 v4 v5

F1 F2 F3 F4

c

p

Fig. 6. The graph H5 and a curve c with six crossings

The following theorem gives the upper bound in Theorem 1.

Theorem 3. There exists a c > 0 such that in every simple topological complete
graph with n vertices there exists an edge that crosses at most cn2/ log1/4 n other
edges.

Proof. Let G be a simple topological complete graph with n vertices. By Theo-
rem 2, every induced subgraph of G with at least n1/8 vertices contains T20 or
C c′

2 log1/4 n. If G contains C c′
2 log1/4 n then, by Lemma 1, G has an edge which

crosses at most 4
c′ n

2/ log1/4 n other edges. For the rest of the proof, suppose that
G does not contain C c′

2 log1/4 n, thus every induced subgraph of G with at least

n1/8 vertices contains T20.
Let T 1

20 be a complete subgraph of G with 20 vertices weakly isomorphic
to T20 and let v1

1 , v1
2 , . . . , v

1
20 be a canonical ordering of its vertices. Consider

a graph H1 with the vertex set V (H1) = V (T 1
20) and the edge set E(H1) =

{v1
1v

1
2 , v

1
2v1

3 , . . . , v
1
19v

1
20, v

1
1v

1
5 , v1

6v
1
10} (see Figure 7). Denote the faces of H1 as

F 1
1 , F 1

2 , . . . , F 1
7 such that F 1

1 is the inner face of T 1
20, F 1

7 contains the outer face
of T 1

20 and F 1
i borders with F 1

i+1, i = 1, 2, . . . , 6 (as on the Figure 7).
Applying Lemma 2 on the twisted induced subgraph of T 1

20 with the vertices
v1
1 , v

1
2 , . . . , v1

5 we get that every edge of G, which crosses v1
1v1

2 , has at least one
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v1
1 v1

2 v1
3 v1

4 v1
5 v1

10 v1
11v1

6

F 1
1 F 1

2 F 1
3 F 1

4 F 1
5 F 1

6 F 1
7

v1
1 v1

2 v1
3 v1

4 v1
5 v1

10 v1
11v1

6

v1
20

v1
20

Fig. 7. The graph H1 and its seven faces

end-point in the set A1 = F 1
1 ∪ F 1

2 ∪ F 1
3 ∪ {v1

3 , v
1
4 , v1

5}. Denote a1 = |A1 ∩
V (G)|. If a1 < n1/8, then there are at most n · n1/8 = n9/8 edges with one
end-point in A1, thus at most n9/8 edges cross the edge v1

1v1
2 . In the other

case, the complete subgraph of G induced by the set A1 ∩ V (G) has a subgraph
T 2

20 weakly isomorphic to T20. Consider a twisted subgraph H of T 1
20 induced

by the vertices v1
10, v

1
9 , v

1
8 , v1

7 , v
1
6 (in this canonical ordering). Every edge of T 2

20
has both its end-points inside the outer face of H , so it cannot intersect the
inner face of H (by Lemma 2). This yields that all edges of T 2

20 lie in the set
B1 = F 1

1 ∪ F 1
2 ∪ . . . ∪ F 1

6 ∪ {v1
3 , v

1
4 , . . . , v1

10}. Denote b1 = |B1 ∩ V (G)|. Note that
A1 ⊆ B1, thus a1 ≤ b1. It follows that at most one face of the graph T 2

20 does
not lie in B1. So we can choose a canonical ordering v2

1 , v
2
2 , . . . , v

2
20 of the vertices

of T 2
20 such that the faces F 2

1 , F 2
2 , . . . , F 2

6 of the graph H2 (defined analogically
as H1 and its faces F 1

i ) lie in B1. We define sets A2, B2 and numbers a2, b2

analogically as A1, B1, a1, b1. B2 is a proper subset of B1, since all vertices of
T 2

20 and faces F 2
1 , F 2

2 , . . . , F 2
6 are contained in B1, but, for example, vertex v2

11
does not lie in B2. It yields that b2 < b1. If a2 ≥ n1/8, then there exists a twisted
complete subgraph T 3

20 of G induced by some 20 vertices of the set A2 ∩ V (G).
Further we proceed by induction, similarly as above. In the i-th step, assuming
that ai−1 ≥ n1/8, we find a twisted complete subgraph T i

20 of G with 20 vertices
and define two integers ai, bi satisfying 0 ≤ ai ≤ bi < bi−i. After finitely many
steps, we get a number ai, which is less than n1/8. It means that the edge vi

1v
i
2

in the graph T i
20 is crossed by less than n9/8 < n2/ log1/4 n other edges of G.

4 Other Surfaces

Here we show that an analogue of the function h(n) is quadratic for the torus
and for the Klein bottle1:

1 The same result for the projective plane has been recently found by Attila Pór (per-
sonal communication). We describe Pór’s construction at the end of this section.
Since any drawing of a finite graph on the projective plane can be easily trans-
formed to a drawing on the Klein bottle, Pór’s construction can be used to obtain
an alternative proof of Proposition 1 for the Klein bottle.
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Proposition 1. On the torus and on the Klein bottle, there exists a simple
topological complete graph with each edge having at least cn2 crossings.

Proof. Consider a rectangle from which, after gluing its opposite sides, we get
a torus. Place the vertices v1, v2, . . . vn along its upper and lower side in this
order. We draw the edges the following way: if j − i mod n ≤ �n−1

2 �, or if
j − i mod n = n

2 and i ≤ n
2 , we represent the edge vivj as a segment starting

at the upper vertex vi, directing down and to the right, possibly leaving the
rectangle on the right-hand side and entering on the left-hand side and ending
at the lower vertex vj . At Figure 8, you can see the representation of the edges
incident to one vertex. It is clear that in this drawing each two edges intersect
at most once and that every edge crosses at least cn2 other edges.

vi vi+1

vi−�n
2 �

vi+�n−1
2 �

vi−1 vi

Fig. 8. Edges incident to the vertex vi in the drawing of Kn on the torus

v1

v�n
2 � vnv1 v�n

2 �+1

v�n
2 �+1 vnv�n

2 �

S1

S2
S3

A B

S1
S2

Fig. 9. Drawing of Kn on the Klein bottle

For the drawing on the Klein bottle, divide the vertices into two sets A =
{v1, v2, . . . , v�n

2 �} and B = {v�n
2 �+1, . . . , vn} and place all the edges into three

strips S1, S2, S3. S1 contains all edges among the vertices of A, S2 contains all
edges among the vertices of B, and S3 all edges between A and B (see Figure 9).
Clearly, we can draw the edges such that no two of them intersect more than
once. It is not difficult to verify that each edge crosses at least cn2 other edges.
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We now describe Attila Pór’s construction of a simple topological complete
graph on n vertices with each edge intersecting at least Ω(n2) other edges. The
projective plane can be obtained by adding a line at infinity to the real plane.
We place the vertices of the constructed topological graph in the vertices of
a regular n-gon P . Any two vertices are connected by the portion of the line
through the two vertices outside of the polygon P . It is easy to see that any
edge is intersected by Ω(n2) other edges.
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