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Abstract. The problem of node overlap removal is to adjust the layout
generated by typical graph drawing methods so that nodes of non-zero
width and height do not overlap, yet are as close as possible to their
original positions. We give an O(n log n) algorithm for achieving this as-
suming that the number of nodes overlapping any single node is bounded
by some constant. This method has two parts, a constraint generation
algorithm which generates a linear number of “separation” constraints
and an algorithm for finding a solution to these constraints “close” to
the original node placement values. We also extend our constraint solv-
ing algorithm to give an active set based algorithm which is guaranteed
to find the optimal solution but which has considerably worse theoretical
complexity. We compare our method with convex quadratic optimization
and force scan approaches and find that it is faster than either, gives re-
sults of better quality than force scan methods and similar quality to the
quadratic optimisation approach.

Keywords: graph layout, constrained optimization, separation const-
raints.

1 Introduction

Graph drawing has been extensively studied over the last twenty years [1]. How-
ever, most research has dealt with abstract graph layout in which nodes are
treated as points. Unfortunately, this is inadequate in many applications since
nodes frequently have labels or icons and a layout for the abstract graph may
lead to overlaps when these are added. While a few attempts have been made at
designing layout algorithms that consider node size (e.g. [2, 3, 4]), the approaches
are specific to certain layout styles and to the best of the authors’ knowledge
none are perfect in all situations.

For this reason, a number of papers, e.g. [5, 6, 7, 8, 9, 10], have described algo-
rithms for performing layout adjustment in which an initial graph layout is mod-
ified so that node overlapping is removed. The underlying assumption is that the
initial graph layout is good so that this layout should be preserved when remov-
ing the node overlap. Lyons et al.[10] offered a technique based on iteratively
moving nodes to the centre of their Voronoi cells until crossings are removed.
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Misue et al. [5] propose several models for a user’s “mental map” based on or-
thogonal ordering, proximity relations and topology and define a simple heuristic
Force Scan algorithm (FSA) for node-overlap removal that preserves orthogo-
nal ordering. Hayashi et al. [7] propose a variant algorithm (FSA′) that pro-
duces more compact drawings while still preserving orthogonal ordering. They
also show that this problem is NP-complete. Various other improvements to the
FSA method exist and a survey is presented by Li et al. [11]. More recently,
Marriott et al. [6] investigated a quadratic programming (QP) approach which
minimises displacement of nodes while satisfying non-overlap constraints. Their
results demonstrate that the technique offers results that are preferable to FSA
in a number of respects, but require significantly more processing time. In this
paper we address the last issue.

Our contribution consists of two parts: first, we detail a new algorithm for
computing the linear constraints to ensure non-overlap in a single dimension.
This has worst case complexity O(n log n) where n is the number of nodes and
generates O(n) non-overlap constraints — assuming that the number of nodes
overlapping a single node is bounded by some constant k. Previous approaches
have had quadratic or cubic complexity and as far as we are aware it has not been
previously realized that only a linear number of non-overlap constraints are re-
quired. Each non-overlap constraint has the form u+a ≤ v where u and v are vari-
ables and a ≥ 0 is a constant. Such constraints are called separation constraints.
Our second contribution is to give a simple algorithm for solving quadratic pro-
gramming problems of the form: minimize

∑
i=1 vi.weight ×(vi−vi.des)2 subject

to a conjunction of separation constraints over variables v1, . . . , vn where vi.des
is the desired value of variable vi and vi.weight ≥ 0 the relative importance. We
show that in practice this algorithm produces optimal solutions to the quadratic
program much faster than generic solvers, but also that first part of the algorithm
can be run alone to produce near optimal solutions in O(n log n) time.

2 Background

We assume that we are given a graph G with nodes V = {1, . . . , n}, a width,
wv, and height, hv, for each node v ∈ V ,1 and an initial layout for the graph G,
in which each node v ∈ V is placed at (x0

v, y0
v) and u �= v ⇒ (x0

u, y0
u) �= (x0

v, y0
v).

We are concerned with layout adjustment: we wish to preserve the initial
graph layout as much as possible while removing all node label overlapping. A
natural heuristic to use for preserving the initial layout is to require that nodes
are moved as little as possible. This corresponds to the Proximity Relations
mental map model of Misue et al. [5].

Following [6] we define the layout adjustment problem to be the constrained
optimization problem: minimize φchange subject to Cno where the variables of
the layout adjustment problem are the x and y coordinates of each node v ∈ V ,
xv and yv respectively, and the objective function minimizes node movement
1 Any extra padding required to ensure a minimal separation between nodes is included

in wv and hv.
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φchange = φx + φy =
∑

v∈V (xv − x0
v)

2 + (yv − y0
v)2, and the constraints Cno

ensure that there is no node overlapping. That is, for all u, v ∈ V , u �= v implies

xv − xu ≥ 1
2 (wv + wu) (v right of u) ∨ xu − xv ≥ 1

2 (wv + wu) (u right of v)
∨ yv − yu ≥ 1

2 (hv + hu) (v above u) ∨ yu − yv ≥ 1
2 (hv + hu) (u above v)

A variant of this problem is when we additionally require that the new layout
preserves the orthogonal ordering of nodes in the original graph, i.e., their rela-
tive ordering in the x and y directions. This is a heuristic to preserve more of the
original graph’s structure. Define Coo

x =
∧

{xv ≥ xu | x0
v ≥ x0

u} and Coo
y equiva-

lently for y. The orthogonal ordering problem adds Coo
x ∧Coo

y to the constraints
to solve.

Our approach to solving the layout adjustment problem is based on [6] where
quadratic programming is used to solve a linear approximation of the layout ad-
justment problem. There are two main ideas behind the quadratic programming
approach. The first is to approximate each non-overlap constraint in Cno by
one of its disjuncts. The second is to separate treatment of the x and y dimen-
sions, by breaking the optimization function and constraint set into two parts.
Separating the problem in this way improves efficiency by reducing the number
of constraints considered in each problem and if we solve for the x direction
first, it allows us to delay the computation of Cno

y to take into account the node
overlapping which has been removed by the optimization in the x direction.

3 Generating Non-overlap Constraints

We generate the non-overlap constraints in each dimension in O(|V | log |V |) time
using a line-sweep algorithm related to standard rectangle overlap detection
methods [12]. First, consider the generation of horizontal constraints. We use a
vertical sweep through the nodes, keeping a horizontal “scan line” list of open
nodes with each node having references to its closest left and right neighbors (or
more exactly the neighbors with which it is currently necessary to generate a
non-overlap constraint). When the scan line reaches the top of a new node, this
is added to the list and its neighbors computed. When the bottom of a node is
reached the the separation constraints for the node are generated and the node
is removed from the list.

The detailed algorithm is shown on the left of Figure 1. It uses a vertically
sorted list of events to guide the movement of the scan line. An event is a
record with three fields, kind which is either open or close respectively indicating
whether the top or bottom of the node has been reached, node which is the node
name, and posn which is the vertical position at which this happens.

The scan line stores the currently open nodes. We use a red-black tree to
provide O(log |V |) insert, remove, next left and next right operations. The func-
tions new, insert and remove create and update the scan line. The functions
next left(scan line, v) and next right(scan line, v) return the closest neighbors
to each side of node v in the scan line.
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procedure generate Cno
x (V )

events := { event(open, v, yv − hv/2),
event(close, v, yv + hv/2) | v ∈ V }

[e1, . . . , e2n] := events sorted by posn
scan line := new()
for each e1, . . . , e2n do

v := ei.node
if ei.kind = open then

scan line := insert(scan line, v)
leftv := get left nbours(scan line, v)
rightv := get right nbours(scan line, v)
left[v] := leftv
for each u ∈ leftv do

right[u] := (right[u] ∪ {v}) \ rightv
right[v] := rightv
for each u ∈ rightv do

left[u] := (left[u] ∪ {v}) \ leftv
else /* ei.kind = close */

for each u ∈ left[v] do
generate xu + (wu + wv)/2 ≤ xv

right[u] := right[u] \ {v}
for each u ∈ right[v] do

generate xv + (wu + wv)/2 ≤ xu

left[u] := left[u] \ {v}
scan line := remove(scan line, v)

return

function get left nbours(scan line, v)
u := next left(scan line, v)
while u �= NULL do

if olapx(u, v) ≤ 0 then
leftv := leftv ∪ {u}
return leftv

if olapx(u, v) ≤ olapy(u, v) then
leftv := leftv ∪ {u}

u := next left(scan line, u)
return leftv

procedure satisfy VPSC(V ,C)
[v1, . . . , vn] := total order(V ,C)
for i:= 1, . . . , n do

merge left(block(vi))
return [v1 ← posn(v1), . . . , vn ← posn(vn)]

procedure merge left(b)
while violation(top(b.in)) > 0 do

c := top(b.in)
b.in := remove(c)
bl := block[left(c)]
distbltob := offset[left(c)] + gap(c)

−offset[right(c)]
if b.nvars > bl.nvars then

merge block(b, c, bl,−distbltob)
else

merge block(bl, c, b, distbltob)
b := bl

return

procedure merge block(p, c, b, distptob)
p.wposn := p.wposn + b.wposn−

distptob × b.weight
p.weight := p.weight + b.weight
p.posn := p.wposn/p.weight
p.active := p.active ∪ b.active ∪ {c}
for v ∈ b.vars do

block[v] := p
offset[v] := distptob + offset[v]

p.in := merge(p.in, b.in)
p.vars := p.vars ∪ b.vars
p.nvars := p.nvars + b.nvars
return

Fig. 1. Algorithm generate Cno
x (V ) to generate horizontal non-overlap constraints be-

tween nodes in V , and algorithm satisfy VPSC(V, C) to satisfy the Variable Placement
with Separation Constraints (VPSC) problem

The functions get left nbours(scan line, v) and get right nbours(scan line, v)
detect the neighbours to each side of node v that require non-overlap con-
straints. These are heuristics. It seems reasonable to set up a non-overlap con-
straint with the closest non-overlapping node on each side and a subset of
the overlapping nodes. One choice for get left nbours is shown in Figure 1.
This makes use of the functions olapx(u, v) = (wu + wv)/2 − |x0

u − x0
v| and

olapy(u, v) = (hu + hv)/2 − |y0
u − y0

v| which respectively measure the horizontal
and vertical overlap between nodes u and v. The main loop iteratively searches
left until the first non-overlapping node to the left is found or else there are no
more nodes. Each overlapping node u found on the way is collected in leftv if
the horizontal overlap between u and v is less than the vertical overlap. The ar-
rays left and right detail for each open node v the nodes to each side for which
non-overlap constraints should be generated. The only subtlety is that redun-
dant constraints are removed, i.e. if there is currently a non-overlap constraint
between any u ∈ leftv and u′ ∈ rightv then it can be removed since it will be
implied by the two new non-overlap constraints between u and v and v and u′.
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Theorem 1. The procedure generate Cno
x (V ) has worst-case complexity O(|V | ·

k(log |V | + k) where k is the maximum number of nodes overlapping a single
node with appropriate choice of heap data structure. Furthermore, it will generate
O(k · |V |) constraints.

Proofs to theorems are provided in the technical report [13]. Assuming k is
bounded, the worst case complexity is O(|V | log |V |).

Theorem 2. The procedure generate Cno
x (V ) generates separation constraints

C that ensure that if two nodes do not overlap horizontally in the initial layout
then they will not overlap in any solution to C.

The code for generate Cno
y , the procedure to generate vertical non-overlap

constraints is essentially dual to that of generate Cno
x . The only difference is

that any remaining overlap must be removed vertically. This means that we
need only find the closest node in the analogue of the functions get left nbours
and get right nbours since any other nodes in the scan line will be constrained to
be above or below these. This means that the number of left and right neighbours
is always 1 or less and gives us the following complexity results:

Theorem 3. The procedure generate Cno
y (V ) has worst-case complexity O(|V | ·

log |V |). Furthermore, it will generate no more than 2 · |V | constraints.

Theorem 4. The procedure generate Cno
y (V ) generates separation constraints

C that ensure that no nodes will overlap in any solution to C.

4 Solving Separation Constraints

Non-overlap constraints c have the form u + a ≤ v where u, v are variables
and a ≥ 0 is the minimum gap between them. We use the notation left(c),
right(c) and gap(c) to refer to u, v and a respectively. Such constraints are called
separation constraints. We must solve the following constrained optimization
problem for each dimension:

Variable placement with separation constraints (VPSC) problem. Given n vari-
ables v1, . . . , vn, a weight vi.weight ≥ 0 and a desired value vi.des2 for each
variable and a set of separation constraints C over these variables find an
assignment to the variables which minimizes

�n
i=1 vi.weight × (vi − vi.des)2

subject to C.

We can treat a set of separation constraints C over variables V as a weighted
directed graph with a node for each v ∈ V and an edge for each c ∈ C from
left(c) to right(c) with length gap(c). We call this the constraint graph. We
define out(v) = {c ∈ C | left(c) = v} and in(v) = {c ∈ C | right(c) = v}. Note
that edges in this graph are not the edges in the original graph.

We restrict attention to VPSC problems in which the constraint graph is
acyclic and for which there is at most one edge between any pair of variables.
2 vi.des is set to x0

vi or y0
vi for each dimension, as used in generate Cno

{x|y}.
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It is possible to transform an arbitrary satisfiable VPSC problem into a prob-
lem of this form and our generation algorithm will generate constraints with
this property. Since the constraint graph is acyclic it imposes a partial order
on the variables: we define u �C v iff there is a (directed) path from u to v
using the edges in separation constraint set C. We will make use of the function
total order(V ,C) which returns a total ordering for the variables in V , i.e. it
returns a list [v1, . . . , vn] s.t. for all j > i, vj ��C vi.

We first give a fast algorithm for finding a solution to the VPSC algorithm
which satisfies the separation constraints and which is “close” to optimal. The
algorithm works by merging variables into larger and larger “blocks” of con-
tiguous variables connected by a spanning tree of active constraints, where a
constraint u + a ≤ v is active if at the current position for u and v, u + a = v.

The algorithm is shown in Figure 1. It takes as input a set of separation con-
straints C and a set of variables V . A block b is a record with the following fields:
vars, the set of variables in the block; nvars, the size of vars; active, the set of con-
straints between variables in vars forming the spanning tree of active constraints;
in, the set of constraints {c ∈ C | right(c) ∈ b.vars and left(c) �∈ b.vars}; out,
out-going constraints defined symmetrically to in; posn, the position of the
block’s “reference point”; wposn, the sum of the weighted desired locations of
variables in the block; and weight, the sum of the weights of the variables in the
block.

In addition, the algorithm uses two arrays blocks and offset indexed by vari-
ables where block [v] gives the block of variable v and offset [v] gives the dis-
tance from v to its block’s reference point. Using these we define the function
posn(v) = block (v).posn + offset [v] giving the current position of variable v.

The constraints in the field b.in for each block b are stored in a priority queue
such that the top constraint in the queue is always the most violated where
violation(c) = left(c) + gap(c) − right(c). We use four queue functions: new()
which returns a new queue, add(q, C) which inserts the constraints in the set
C into the queue q and returns the result, top(q) which returns the constraint
in q with maximal violation, remove(q) which deletes the top constraint from
q, and merge(q1, q2) which returns the queue resulting from merging queues q1
and q2. The only slight catch is that some of the constraints in b.in may be
internal constraints, i.e. constraints which are between variables in the same
block. Such internal constraints are removed from the queue when encountered.
Another caveat is that when a block is moved violation changes value. However,
the ordering induced by violation(c) does not change since all variables in the
block will be moved by the same amount and so violation(c) will be changed by
the same amount for all non-internal constraints. This consistent ordering allows
us to implement the priority queues as pairing heaps [14] with efficient support
for the above operations.

The main procedure, satisfy VPSC, processes the variables from smallest to
greatest based on a total order reflecting the constraint graph. At each stage the
invariant is that we have found an assignment to v1, .., vi−1 which satisfies the
separation constraints. We process vertex vi as follows. First, function block is
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Fig. 2. Example of (non-optimal) algorithm for VPSC problem giving optimal (c) or
non-optimal (e) answer

used to create a block b for each vi setting b.posn = vi.des . Some of the “in”
constraints may be violated. If so, we find the most violated constraint c and
merge the two blocks connected by c using the function merge block. We repeat
this until the block no longer overlaps the preceding block, in which case we have
found a solution to v1, .., vi.

At each step we set b.posn for each block b to the optimum position, i.e. the
weighted average of the desired positions:

�k
i=1 vi.weight×(offset [vi]−vi.des)

�
k
i=1 vi.weight

. By
maintaining the fields wposn and weight we are able to efficiently compute the
weighted arithmetic mean when merging two blocks.

Example 1. Consider the example of laying out the boxes A,B,C,D shown in
Figure 2(a) each shown at their desired position 1.5, 3, 3.5, and 5 respectively and
assuming the weights on the boxes are 1,1,2 and 2 respectively. The constraints
generated by generate Cno

x are c1 ≡ vA + 2.5 ≤ vB, c2 ≡ vB + 2 ≤ vC and
c3 ≡ vB + 2 ≤ vD. Assume the algorithm chooses the total order A,B,C,D. First
we add block A, it is placed at its desired position as shown in Figure 2(a).
Next we consider block B, b.in = {c1} and the violation of this constraint is
1. We retrieve bl as the block containing A. and calculate distbltob as 2.5. We
now merge block B into the block containing A. The new block position is 1 as
shown in Figure 2(b), and c1 is added to the active constraints. Next we consider
block C, we find it must merge with block AB. The new positions are shown
in Figure 2(c). Since there is no violation with the block D, the final position
leaves it where it is, i.e. the result is optimal.

Theorem 5. The assignment to the variables V returned by satisfy VPSC(V, C)
satisfies the separation constraints C.
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procedure solve VPSC(V ,C)
satisfy VPSC(V ,C)
compute lm()
while exists c ∈ C s.t. lm[c] < 0 do

choose c ∈ C s.t. lm[c] < 0
b := block[left(c)]
lb := restrict block(b, left(b, c))
rb := restrict block(b, right(b, c))
rb.posn := b.posn
rb.wposn := rb.posn× rb.weight
merge left(lb)
/* original rb may have been merged */
rb := block[right(c)]
rb.wposn :=

�
v∈rb v.weight × (v.des − offset[v])

rb.posn := rb.wposn/rb.weight
merge right(rb)
compute lm()

endwhile
return [v1 ← posn(v1), . . . , vn ← posn(vn)]

procedure compute lm()
for each c ∈ C do lm[c] := 0 endfor
for each block b do

choose v ∈ b.vars
comp dfdv(v, b.active, NULL)

function comp dfdv(v, AC, u)
dfdv := v.weight × (posn(v) − v.des)
for each c ∈ AC s.t. v = left(c)

and u �= right(c) do
lm[c] := comp dfdv(right(c), AC, v)
dfdv := dfdv + lm[c]

for each c ∈ AC s.t. v = right(c)
and u �= left(c) do

lm[c] := − comp dfdv(left(c), AC, v)
dfdv := dfdv − lm[c]

return dfdv

Fig. 3. Algorithm to find an optimal solution to a VPSC problem with variables V
and separation constraints C

Theorem 6. The procedure satisfy VPSC(V, C) has worst-case complexity
O(|V | + |C| log |C|) with appropriate choice of priority queue data structure.

Since each block is placed at its optimal position one might hope that the
solution returned by satisfy VPSC is also optimal. This was true for the example
above. Unfortunately, as the following example shows it is not always true.

Example 2. Consider the same blocks as in Example 1 but with the total order
A,B,D,C. The algorithm works identically to the stage shown in Figure 2(b). But
now we consider block D, which overlaps with block AB. We merge the blocks to
create block ABD which is placed at 0.75, as shown in Figure 2(d). Now block
ABD overlaps with block C so we merge the two to the final position 0.166 as
shown in Figure 2(e). The result is not optimal.

The solution will be non-optimal if it can be improved by splitting a block.
This may happen if a merge becomes “invalidated” by a later merge. It is rel-
atively straight-forward to check if a solution is optimal by computing the La-
grange multiplier λc for each constraint c. We must split a block at an active
constraint c if λc is negative. Because of the simple nature of the separation
constraints it is possible to compute λc (more exactly λc/2) for the active con-
straints in each block in linear time. We simply perform a depth-first traversal of
the constraints in b.active summing v.weight×(posn(v)−v.des) for the variables
below this variable in the tree. The algorithm is detailed in Figure 3. It assumes
the data structures in satisfy VPSC and stores λc/2 in the lm[c] for each c ∈ C.
A full justification for this given in [13].

Using this it is relatively simple to extend satisfy VPSC so that it computes
an optimal solution. The algorithm is given in Figure 3. This uses satisfy VPSC
to find an initial solution to the separation constraints and calls compute lm
to compute the Lagrange multipliers. The main while loop checks if the cur-
rent solution is optimal, i.e. if for all c ∈ C, λc ≥ 0, and if so the algorithm
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terminates. Otherwise one of the constraints c ∈ C with a negative Lagrange
multiplier is chosen (we choose c corresponding to min{λc|λc < 0, c ∈ C}) and
the block b containing c is split into two new blocks, lb and rb populated by
left(b, c) and right(b, c) respectively. We define left(b, c) to be the nodes in
b.vars connected by a path of constraints from b.active \ {c} to left(c), i.e. the
variables which are in the left sub-block of b if b is split by removing c. We
define right(b, c) symmetrically. The split is done by calling the procedure re-
strict block(b, V ) which takes a block b and returns a new block restricted to the
variables V ⊆ b.vars. For space reasons we do not include the (straight-forward)
code for this.

Now the new blocks lb and rb are placed in their new positions using the
procedures merge left and merge right. First we place lb. Since lm[c] < 0, lb
wishes to move left and rb wishes to move right. We temporarily place rb at the
former position of b and try and place lb at its optimal position. If any of the
“in” constraints are violated (since lb wishes to move left the “out” constraints
cannot be violated). We remedy this with a call to merge left(lb). The placement
of rb is totally symmetric, although we must first allow for the possibility that
rb has been merged so we update it’s reference to the (possibly new) container
of right(c) and place it back at its desired position. The code for merge right
has not been included since it is symmetric to that of merge left. We have also
omitted references to the “out” constraint priority queues used by merge right.
These are managed in an identical fashion to “in” constraints.

Example 3. Consider the case of Example 2. The result of satisfy VPSC is shown
in Figure 2(d). The Lagrange multipliers calculated for c1, c2, c3 are 1.333, 2.333,
and -0.333 respectively. We should split on constraint c3. We break block ABCD
into ABC and D, and placing them at their optimal positions leads to positions
shown in Figure 2(c). Since there is no overlap the algorithm terminates.

Theorem 7. Let θ be the assignment to the variables V returned by solve VPSC
(V, C). Then θ is an optimal solution to the VPSC Problem with variables V and
constraints C

Termination of solve VPSC is a little more problematic. solve VPSC is an
example of an active-set approach to constrained optimization [15]. In practice
such methods are fast and lend themselves to incremental re-computation but
unfortunately, they may have theoretical exponential worst case behavior and
at least in theory may not terminate if the original problem contains constraints
that are redundant in the sense that the set of equality constraints corresponding
to the separation constraints C, namely {u + a = v | (u + a ≤ v) ∈ C}, contains
redundant constraints. Unfortunately, our algorithm for constraint generation
may generate equality-redundant constraints. We could remove such redundant
separation constraints in a pre-processing step by adding εi to the gap for the ith

separation constraint or else use a variant of lexico-graphic ordering to resolve
which constraint to make active in the case of equal violation. We can then show
that cycling cannot occur. In practice however we have never found a case of cy-
cling and simply terminate the algorithm after a fixed maximum number of splits.
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5 Results

We have compared our method3 SAT = satisfy VPSC and SOL = solve VPSC
versus FSA, the improved Push-Force Scan algorithm [7] and QP quadratic
programming optimization using the Mosek solver [16]. For SAT, SOL and QP
we compare with ( OO) and without orthogonal ordering constraints. We did
not compare empirically with the Voronoi centering algorithm [10] since it gives
very poor results, see Figure 4.

(a) Original layout (b) SAT (c) SOL=QP

(d) SOL OO=QP OO (e) FSA (f) Voronoi

Fig. 4. An example graph layout adjusted using various techniques

Figure 4 shows the initial layout and the results of the various node adjustment
algorithms for a realistic example graph. There is little difference between the
3 A C++ implementation of this algorithm is available from http://www.csse.
monash.edu.au/∼tdwyer.



Fast Node Overlap Removal 163

Size 100 200 300 400

SAT

SAT_OO

QP = SOL

QP_OO
= SOL_OO

FSA

500

R
el

at
iv

e 
D

is
pl

ac
em

en
t

0.001

0.01

0.1

1

10

100

size
200

400
600

800
1000

1200
1400

1600
1800

R
u

n
n

in
g

 T
im

e 
(s

ec
o

n
d

s)

SAT

SOL

QP

SAT_OO

SOL_OO

QP_OO

FSA

2000

(a) (b)

Fig. 5. Comparative (a) total displacement from original positions and (b) times

SAT and SOL results. We include a SOL result with the orthogonal ordering
(SOL OO) constraints which attacks the same problem as FSA. Clearly FSA
produces much more spreadout layout. Lastly the Voronoi diagram approach
loses most of the structure of the original layout.

Figure 5 gives running times and relative displacement from original position
for the different methods on randomly generated sets of overlapping rectangles.
We varied the number of rectangles generated but adjusted the size of the rect-
angles to keep k (the average number of overlaps per rectangle) appoximately
constant (k ≈ 10).

We can see that FSA produces the worst displacements, and that SAT pro-
duces very good displacements almost as good as the optimal produced by SOL
and QP. We can see that SAT (with or without orthogonal ordering constraints)
scales better than FSA. While both SOL and QP are significantly slower, SOL
is an order of magnitude faster than QP in the range tested. Adding orthogonal
ordering constraints seems to simplify the problem somewhat and SOL OO re-
quires less splitting than SOL while QP requires more processing time to handle
extra constraints. Therefore SOL OO is significantly faster than QP OO and
SAT OO returns a solution very near to the optimal while remaining extremely
fast. Overall these results show us that SAT is the fastest of all algorithms and
gives very close to optimal results.
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