Stress Majorization with Orthogonal Ordering
Constraints

Tim Dwyerl, Yehuda Koren?, and Kim Marriott!

1 School of Comp. Science & Soft. Eng., Monash University, Australia
{tdwyer, marriott}@mail.csse.monash.edu.au
2 AT&T — Research
vehuda@research.att.com

Abstract. The adoption of the stress-majorization method from multi-dimensio-
nal scaling into graph layout has provided an improved mathematical basis and
better convergence properties for so-called “force-directed placement” techniques.
In this paper we give an algorithm for augmenting such stress-majorization tech-
niques with orthogonal ordering constraints and we demonstrate several graph-
drawing applications where this class of constraints can be very useful.

Keywords: graph layout, constrained optimization, separation constraints.

1 Introduction

The family of graph drawing algorithms that attempt to find an embedding of a graph
that minimizes some continuous goal function, are variously known as spring-embedder
or force-directed placement algorithms. A popular algorithm in this family has been that
of Kamada and Kawai [9] in which squared differences between ideal distances for pairs
of nodes and their Euclidean distance in the embedding is minimized. Gansner et al. [[6]
recently revisited this method and suggested using functional majorization — an opti-
mization technique from the field of multidimensional scaling. Functional majorization
iteratively improves the drawing by considering a sequence of quadratic forms that bound
the stress function from above. They showed that it had distinct advantages over the orig-
inal algorithm of Kamada and Kawai; particularly, a strictly monotonic decrease in stress
and that it could achieve lower values of the cost function in the same running time.

A useful property of the majorization approach is that each iteration involves min-
imizing a convenient quadratic function. Gansner et al. [[6] mentioned that this allows
using any available equation solver. In this paper we take advantage of this property,
and show how it helps in handling ordering constraints on the nodes. The quadratic
nature of the function we minimize in each iteration allows us to efficiently add such
linear constraints. In fact, minimizing linearly constrained quadratic functions is known
as quadratic programming, which is an efficiently solvable problem [13]]. However, we
have found that general quadratic programming solvers will significantly slow down
the stress majorization process. Therefore, we suggest a solver which is crafted espe-
cially for our problem, utilizing its unique nature. This solver can deal with ordering
constraints without significantly increasing the running time of the layout process. We
also demonstrate the utility of imposing this class of constraints — which we call or-
thogonal ordering constraints — to applications such as network layout reflecting the
relative positions of an underlying set of coordinates and directed graph drawing.

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 141-{I52] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

142 T. Dwyer, Y. Koren, and K. Marriott

2 Background

We recently introduced the idea of using stress majorization coupled with standard
quadratic programming techniques for drawing directed graphs [5]. In the so-called
DIG-CoLA[! technique, nodes in the digraph were partitioned into layers based on
their hierarchical level and constraints were introduced in the vertical dimension to keep
these layers separated. Compared to standard hierarchical graph drawing methods the
D1G-CoLA algorithm was shown to produce layouts with a much better distribution
of edge lengths and for large, dense graphs it was able to find layouts with fewer edge
crossings. However, a commercial quadratic programming solver was used to minimize
the quadratic forms subject to constraints. This generic approach meant that layout for
graphs with hundreds or thousands of nodes could take some minutes to perform.

Another case where orthogonal ordering constraints are useful is when we want to
improve the readability of a given layout without significantly changing it. Misue et
al. [10] discussed the importance of preserving a user’s “mental map” when adjusting
graph layouts. One of their models for the mental map focused on preserving orthogonal
ordering of the nodes in a layout — the relative above/below, left/right positions of the
nodes.

The potential for constraint-based, force-directed graph layout was explored by Ryall
et al. [11], however their implementation did not use true constraint solving techniques.
Rather, they added stiff springs to a standard force-directed model to keep user-selected
parts of the diagram roughly spaced as desired. True constraint solving techniques for
graph drawing were explored by He and Marriott in [7], where a Kamada-Kawai-based
method was extended with an active-set constraint solving technique to provide separa-
tion constraints. However, only small examples of fewer than 20 nodes were tested and
the scalability of the technique was not tested.

3 Problem Formulation

The general goal function, known as the stress function, which we seek to minimize is
described by

> wii (11X = X1 = diy)?

i<j
where for each pair of nodes i and j, d;; gives an ideal separation between ¢ and j
(usually their graph-theoretical distance), w;; = d;ﬁ is used as a normalization constant
and X is a n x d matrix of positions for all nodes, where d is the dimensionality of the
drawing and n is the number of nodes.

Majorization minimizes this stress function by iteratively minimizing quadratic
forms that approximate and bound it from above. Due to its central role in this work,
we provide the essential details of the method. Recall that w;; are the normalization
constants in the stress function. We use the n x n matrix A, defined by

—wiy 1 F]
A= J R 1
J {Zk#wi“_] (1)

! Directed Graphs with Constraint-based Layout.

Stress Majorization with Orthogonal Ordering Constraints 143

In addition, given an n X d coordinate matrix Z, we define the n x n matrix AZ by

7z _ | —wij-dij - inv(|Z; — Zjl|) i # 3§

where inv(z) = 1/x when # 0 and 0 otherwise.
It can be shown (see [6]) that the stress function is bounded from above by the
quadratic form FZ(X) defined as

d
FAX) =3 wyd + ((X(“))T AX@ 2 (X(“))T AZZ(“)> L ®
a=1

i<j
Here, X (@) denotes the a-th column of matrix X. Thus, we have
stress(X) < FZ(X) 4)

with equality when Z = X.
We differentiate by X and find that the global minima of F'Z(X) are given by solving

AX = A%Z (5)

This leads to the following iterative optimization process. Given some layout X (),
we compute a layout X (¢ + 1) so that stress(X (¢t + 1)) < stress(X(¢)). We use
the function FX()(X) which satisfies FX(®) (X (t)) = stress(X (t)). Then, we take
X (t + 1) as the minimizer of FX()(X) by solving ().

Note that it would be equivalent to consider in each iteration d independent opti-
mization problems, one problem for each axis. Hence the a-th axis of the drawing is
determined by minimizing

2T Az — 22T A% Z(@) (6)

Henceforth, we will work, w.l.0.g., with this 1-D layout formulation as it allows a
more convenient notation.

So far we have described the usual, unconstrained stress majorization. In this work
we consider a case where we have additional ordering constraints on each axis. Each
node i is assigned a level of index 1 < lev[i] < m and variable placement must respect
this level. Thus, instead of minimizing (@), we would take the a-th axis of the drawing
as the solution of

min 2T Az — 22T AZ 7(@)

subject to: lev]i] < lev[j] = z; < x; (N
foralli,j € {1,...,n}

For brevity henceforth we will replace 24% Z(%) with b € R™, so the target func-
tion is merely f(z) = 27 Ax — 27b. We call this the Quadratic Programming with
Orthogonal Constraints (QPOC) problem.

It is easy to show that A is positive semi-definite, so the problem has only global
minima. Such a quadratic programming problem can be solved in a polynomial time

144 T. Dwyer, Y. Koren, and K. Marriott

[[13]]. However, our experiments show that generic quadratic-programming solvers are
much slower than solving an unconstrained problem. To accelerate computation we can
utilize two special characteristics of the problem:

1. During the majorization process, we iteratively solve closely related quadratic pro-
grams: The constraints and the matrix A are not changed between iterations, while
only the vector b is changed. Therefore, the solution of the previous iteration is still
a feasible solution for current iteration (satisfying all constraints). Moreover, this
previous solution is probably very close to the new optimal solution (e.g., consider
that in most iterations the coordinates are only slightly changed). However, such
initialization, called “warm-start”, is fundamentally not trivial for the barrier (or
interior-point) methods used by most commercial solvers.

2. Our constraints are very simple as each of them involve only two variables, being of
the form z; < ;. This allows a simple mechanism for guaranteeing the feasibility
of the solution.

In the next section we describe an algorithm for solving the QPOC problem.

4 Algorithm

We give an iterative gradient-projection algorithm (see Bertsekas [[1]) for finding a so-
lution to a QPOC Problem. The algorithm, solve QPOC, is shown in Figure [[I The
first step is to decrease f(z) = 2T Az + 2Tb, by moving z in the direction of steep-
est descent, i.e. if the gradient is ¢ = Vf(x) = Ax + b this direction is —g. While
we are guaranteed that — with appropriate selection of step-size s — the energy is
decreased by this first step, the new positions may violate the ordering constraints.
We correct this by calling the project procedure which returns the closest point Z to
x which satisfies the ordering constraints, i.e. it projects = on to the feasible region.
Finally, we calculate a vector d from our initial position & to and we ensure mono-

procedure solve QPOC(A, b, lev)

k «— 0,z « initial soln()
repeat

g—2Ax+b

s i,

Tz

T «—project(z — sg, lev)

d—T—2

gTd

a « max(7 4., 1)

T — T+ ad
until || £ — z|| sufficiently small
return x

Fig. 1. Algorithm to find an optimal solution to a QPOC problem with variables z1, ..., %y,
symmetric positive-semidefinite matrix A, vector b and 1 < lev[i] < m + 1 gives the level for
each node

Stress Majorization with Orthogonal Ordering Constraints 145

tonic decrease in stress when moving in this direction by computing a second stepsize
o = argmin,¢o,1)f (¢ + ad) which minimizes stress in this interval.

The procedure project is the main technical innovation in this paper. The main dif-
ficulty in implementing gradient-projection methods is the need to efficiently project
on to the feasible region. Because of the simple nature of the orthogonal ordering con-
straints we can do this in O(mn + nlogn) time where m is the number of levels
and n the number of variables. The project procedure (Figure 2) iteratively changes
the positions till all constraints are satisifed. In iteration k all constraints involving
nodes up to the (k + 1)-th level are imposed. More technically, it starts by finding
an ordering of the nodes ¢ such that a = ¢[i],b = ¢[i + 1] implies either lev[a] <
lev[b] or (lev[a] = lev[b] and z, < xy). For convenience we also keep an array
1 < p1,...pm = n + 1 of indices for the start of each partition excluding the first
(for convenience p,,, was set to n + 1). When considering partition %k, which contains
the nodes abovey, = {ulpr < gq[u] < pr+1}, we ensure that none of these nodes are
assigned positions lower than that of below;, = {I|1 < ¢[l] < pi}. To achieve this
we create a minimal set U, C {j|1 < ¢[j] < pr+1} that includes nodes violating this
condition. To impose the constraints we force all nodes of U, to lie on a single point
posnUy. Since we want to minimize the quadratic function, we take this point as the av-

procedure project(z,lev)
q — {1 < i < n}sorted by (z;, lev[i])
p «— indices to start of each level in ¢
stp1 < ... <pm-1<pm=n-+1
and lev(qlpe]] = levlglpr — 1] + 1,1 < k < m
for1 < k < mdo
% belowy, = {11 < g[l] < pr},abover = {u|pr < qu] < pry1}
% Find U, = {q[i]|il < i < iu} C belowy U abovey
mazriu < pry1 — 1
l— q[pr — 1], u — q[px]
SUM +— T| + Loy, W — 2
iU — pr + 1,41 — pp, — 2
if z; > x, then
repeat
finished «— true
u — qliu]
posnUy —
if itu < maxiuv and z,, < posnUj, then
u—iu+1l,w—w+1
SUM «— SUM + Ty
finished «— false
end if
1 — qlil]
ifil > 1and z; > posnUj, then
il —il—1,w—w+1
sum < sum + I;
finished «— false
end if
until finished
for il < i < iudo
J — qld]
z; + posnUyg
end for
end if
end for
return x

sum
w

Fig. 2. Algorithm to project variables to the closest position in the feasible region, 1 < lev[i] <
m gives the level for each node ¢

146 T. Dwyer, Y. Koren, and K. Marriott

erage of all positions in Uy. The set Uy, is minimal in that it does not necessarily include
all nodes violating the boundary condition for k, but only the minimal number that need
to be moved to posnUj, such that this condition may be satisfied. The following lemma
captures this.

Lemma 1. During execution of project(x,lev) after finishing the k" iteration in which
Uy and its associated posnUy, are computed

ZiGUk Li

8
|Uk| ®

posnUy, =
and
U = {l € belowy, | x; > posnUy} U {u € abovey, | x,, < posnUy} 9)

where the position for x; is its value before the start of the iteration.

Proof. Equation (8) follows directly from the algorithm and is invariant throughout the
loop incrementally building Uy, (since whenever Uy, is expanded posnUy, is recalcu-
lated).

The post-condition (3) implies that Uy, includes all nodes that violate the internal
constraints among 1,...,p;r — 1 and pg, ..., pr+1 — 1. Proof is as follows. The levels
are examined in order. When examining level k all nodes in below;, must be sorted by
position in g (either by the initial precondition for g or since they have been assigned to
a position posnUj, [< k). The precondition for g also ensures that nodes in abovey, are
sorted by position.

If there is overlap between the tail of belowy, and the head of abovey, we place these
in Uy and set posnUy. We then iteratively examine the successive elements of belowy,
(from the tail) and abovey, (from the head) and add them to Uy, until no further overlap
is found between these elements and posnUj,.

By construction the only elements [€ belowy, not placed in Uy, are those for which
x; < posnUy (otherwise the loop would not terminate). Dually, for any element u €
abovey, not placed in Uy, we have that z,, > posnU}. Thus

Ur 2 {1 <qli] < pr | ; > posnUi} U {pr <1i < pry1 | z; < posnUyg}

We now show containment by induction. We prove for Uy, N belowy,, while the proof
for U, Nabovey, is analogous. The base case follows from the fact that at the moment we
add some | € belowy, it must hold that z; > posnUy. Now, if later we add I’ € belowy,,
then since belowy, is ordered by position, z;; < x;. By hypothesis, ; > posnUy
and since the new posnUy, is the weighted average of) and posnUy, we still have
x; > posnUy. If later we add u € abovey, then since we are adding u we must have
x, < posnUyg. Now by hypothesis, ; > posnUy and so x; > x,. Thus as for the
previous case x; > posnUy. O

Corollary 1. During execution of project(x,lev) after finishing the k" iteration in
which Uy, and its associated posnUy, are computed

ZiEUk T

10
U (10

posnUy, =

where the position of x; is the input position.

Stress Majorization with Orthogonal Ordering Constraints 147

Proof. Notice that unlike Equation (8), the z;’s refer now to the input positions, rather
than to their values before the current iteration. This makes a difference when we find
that posnUy, < posnU;,l < k and therefore Uy, D U; and posnUj, will be calculated
from posnU; for those nodes in U; rather than their original positions. In this case (T0)
still holds as

1
posnUy = U |Ui|posnU; + Z Z;
k €U\,

1 1 1

FISop i€UL\U i€y
We now show that this results in a valid gradient-projection method.

Lemma 2. If the result of the call project(z°,lev) is = then x is the closest point to x°
satisfying the ordering constraints defined by lev.

Proof. (Sketch) We must prove that 2 minimizes F(z) = Y., (z; — 2¥)? subject
to satisfying the ordering constraints. It follows from the construction that x satisfies
the ordering constraints. Proving optimality is more difficult. Let uy, . . ., %,,—1 be new
variables, one for each partition k. We set values to the new variables by setting uy, to
be max{z; | lev[i] = k}.

Recall that if we are minimizing a function F’ with a set of convex equalities C over
variables X, then we can associate a variable \. called the Lagrange multiplier with
each ¢ € C'. Given a solution x we have that this is a minimal solution iff there exist
values for the Lagrange multipliers satisfying

oF dc
or Z Ac ox (D)
ceC
for each variable x € X. Furthermore, if we also allow inequalities then the above
statement continues to hold as long as A. > 0 for all inequalities ¢ of form c¢(z) > 0.
By definition an inequality ¢ which is not active, i.e., ¢(x) > 0 has A\, = 0. These are
known as the Karush-Kuhn-Tucker conditions; see [1].
We now prove that minimizes F'(x) subject to, fork = 1,...,m — 1:

up_1 <upifk >1
x; < wuy forallis.t. lev[i] = k
x; > uy forall i s.t. lev[i] =k + 1

These constraints are equivalent to the ordering constraints.

We show optimality by giving values for all). satisfying Equation (I1)). An inequal-
ity «; < wuy, or x; > wuy, is active if ¢ € Uy, \ Ug—1. Note that we can have Uy, C U1,
in which case we must be careful to make the right constraint active so as to ensure
that each x; will be involved in no more than one active constraint. For a constraint ¢

of form x; > uy we set A\, = gf and for ¢ of form x; < uy we set A, = — gf The
constraint ¢ of form uy, < ug41 isactive if Uy C Ug41. Weset Ao = — ZiGUk gf . For

148 T. Dwyer, Y. Koren, and K. Marriott

all other inequalities ¢ we set A, = 0. We give an extended formal proof of this lemma
in [4].

We can now prove the correctness of solve QPOC:

Theorem 1. solve QPOC converges to an optimal solution to the input QPOC
Problem.

Proof. Lemma [2] ensures that solve QPOC is a gradient projection method. We now
show that a more general proof of convergence for gradient projection methods holds
for our specific stepsize calculations. First consider a variant of solve QPOC in which s
is always 1 — note that for both constant s and the calculation of s used in Figure[Tlthe
method is equivalent to standard steepest-descent in the case when no active constraints
are encountered. With constant s = 1 the computation of @ implements a Limited
Minimization Rule and so from [[1-Proposition 2.3.1] every limit point of solve QPOC
is a stationary point. Since the original problem is convex any stationary point is an
optimal solution. Now consider our computation of s. To ensure convergence we must
prove that if s* — 0 where s is the value of s in the k'" iteration then the limit point of
solve QPOC is a stationary point. But since the computation of s* is also an example of
the Limited Minimization Rule on the unconstrained problem, s* — 0 only if the limit
point of solve QPOC is a stationary point for the unconstrained problem, in which case
it must also be a limit point of the constrained problem.

O

4.1 Running Time

The second part of the algorithm, satisfying the constraints, can be performed in
O(mn+nlogn) time. However each complete iteration is dominated by computing the
desired positions which takes O(n?) time. This is of course the inherent complexity of
the stress function that contains O(n?) terms. (In fact, this is the same as the complex-
ity of an iteration of the conjugate-gradient method, which is used in the unconstrained
majorization algorithm.) In practice only few (5-30) iterations are required to return the
optimal solution depending on the threshold on ||z — Z||. Running times for graphs
with various sizes and with varying numbers of boundaries m are given in Table [Tl We
compare results for those obtained with the solve QPOC algorithm implemented in C

Table 1. A comparison of results obtained for arranging various graphs with solve QPOC and
the Mosek interior point method. Times are measured in seconds.

Solve QPOC Mosek

graph #nodes (n) #levels (m) Time Stress Time Stress
1138bus 1138 231 4.53 74343 209 74374
nos4 100 34 0.14 2165 275 216.8
nos5 468 256 2.172 85173 13.0 8614.6
dwa512 512 14 1.23 22464 37.7 22464
dwb512 512 19 1.57 15707 90.8 16418
NSW Rail 312 54/76 (x/y-axis) 492 2288 18.6 2274.5

Backbone 2603 2373/1805 (xz/y-axis) 55.8 1246960 > 1000

Stress Majorization with Orthogonal Ordering Constraints 149

and the Mosek interior-point quadratic programming solver [14]. Tests were conducted
on a 2GHz P4-M notebook PC. As expected, since both solvers return the optimal or
near optimal solution, the resulting drawings look identical. However, the dedicated
solve QPOC algorithm significantly outperformed the generic solver. The final “stress”
value is given as a rough measure of relative quality. Note that this is the final stress
value after being monotonically reduced by a number of iterations of the functional-
majorization method. Sample graphs were obtained from the Matrix Market [2] (Such
as 1138bus as shown in Figure [4) and some graphs based on geographic coordinates
which are shown in Figures 3] and [6]

5 Applications

5.1 Directed Graph Drawing

The method and motivation for drawing directed graphs by constrained majorization is
discussed at length in [5]]. Generally, a digraph can be said to induce a hierarchical struc-
ture on its nodes based on the precedence relationships defined by its directed edges.
Consequently, an appropriate depiction of a digraph allocates the y-axis to showing this
hierarchy. Thus, if node ¢ precedes node j in the hierarchy, then ¢ will be drawn above
J on the y-axis; see, e.g., Sugiyama et al. [12]]. This usually leads to the majority of
directed edges pointing downwards, thereby showing a clear flow from top to bottom.
There are a few possibilities for computing the hierarchical ordering of the nodes. We
base our ordering on the “optimal arrangement” suggested by Carmel et al. [3]]. Then,
we compute the 2-D layout that minimizes the stress, while the y-coordinates of the
nodes must obey their hierarchical ordering.

It was shown that this method produces drawings with much more uniform edge
lengths making connectivity in large graphs more visible than in drawings produced by
standard hierarchical graph drawing techniques.

We reproduce some example graphs drawn in this style and compare performance of
our solve QPOC algorithm with that of the solver previously used. Figure 3 illustrates
the concept with a small directed graph containing a cycle. Note that since all nodes in

Fig. 3. A directed graph arranged using orthogonal ordering constraints in just the vertical di-
mension to preserve layering. The color bars on the left side indicate the layer-bands and the faint
horizontal lines indicate the boundaries between these layers.

150 T. Dwyer, Y. Koren, and K. Marriott

the cycle are in the same hierarchical level they are drawn within the same band. Figure
M shows a much larger example from the matrix market collection [2].

.] ’
i ot . e se b DY
L . o ot o o hapeiteslisti se AP & K s e
-— .o) o e . St sevewe e wew's 9e weee " e
-
B o et omf[| w v o7V (NEENOTA iy S o o Te Sl SN Bl o oo -
[e %8 2o emes e W o B e @, ofimcpn mess | S awes wes were Y L o ¢)
= o s | mes ve LI SR AR olllelm . Py .
- o e o Pk . o os .o o) [ee e e
WPV S (LR, 78 O Tt CIRE e b I S ST SR o
= Sy iy L Wy e 0o Pmen Bs vomome Swmmeelonn e . eme X oo ves . o o
o o o\aes llgee ® e . es. W - .
[| QS NN AL O S R R A7) SR
. v WCTER SN CPU T O ST R RS oo | [seml s/) e ueee “
| R g i omihor—Cin i SR TRUTE et M Rae P .
= o oo Vv siel mmgeian s Sen o 058 | o Seedeee e
- T\ Be/ lsaan| sile] @ @ies om'sius | oy o a3 ele s e os/ &
— ’ oewie | ma leseme s tsene on (o LY LA 2 S N YT
[| gt DA SRy Ve oue Be aNeny we vp e weN
! o Tat s N1 0 % 4 o W Ceie me 0N
U IRAR® ceus s e jensan g0
| S gse ¢ 0 el 6 e\ s PR N ™
|| NOVRL ATV WINAL
i iy N NS

Fig.4. The 1138bus graph (1138 nodes, 1458 edges) from the Matrix market collection[2], dis-
played as a directed graph
5.2 Layouts Preserving the Orthogonal Ordering

Sometimes a graph has meaningful coordinates. These might be natural physical coor-
dinates associated with the nodes, or just a given layout with which the user is familiar.

L b
- — \ \“\ e
\ J YT
I {
\ N ‘\L \"1"
S “
- }\' /,,»' .t
.‘ﬁ j 20

P T z

(a) Actual geographic positions (b) Ordering preserving layout

Fig. 5. The New South Wales rail network (312 nodes, 322 edges) shown with actual geographic
positions (left) and then refined using stress minimization with orthogonal ordering constraints
(right)

Stress Majorization with Orthogonal Ordering Constraints 151

(a) Actual geographic positions (b) Ordering preserving layout

Fig. 6. A backbone network (2603 nodes, 2931 edges). Left picture is based on the actual ge-
ographic coordinates while the right picture is based on ordering-preserving constrained stress
minimization.

We want to improve the readability of the given layout while keeping its overall struc-
ture, thus preserving the user’s mental map and/or natural properties of the layout. A
way to achieve these goals is to minimize the stress of the graph, while preserving the
original vertical and horizontal ordering of the nodes. These can be achieved by our
algorithm. We provide here two examples of refining layouts with meaningful physical
coordinates.

The first example involves automatic production of rail network maps. This problem
has been tackled as a graph drawing problem by Hong et al. [8]]. To produce print qual-
ity drawings the authors seek to satisfy quite complex aesthetic requirements such as
effective labelling, edges strictly aligned to axes or diagonals and no induced crossings.
However, as illustrated in Figure [simple orthogonal ordering also goes a long way
to improving these diagrams. Note that the underlying geographic relationships are still
evident while paths have been straightened and complex sections enlarged.

The second example is an internet backbone network as shown in Figure 6] The
layout based on original coordinates contains very dense areas. However, readability is
vastly improved by minimizing the stress, while original orthogonal order is preserved.

6 Conclusion and Further Work

We have demonstrated some applications of orthogonal-ordering constraints and that
stress majorization can efficiently deal with such constraints. We are currently working
on extending the algorithm to work for general separation constraints that may have
many more applications, including clustered graph drawing — where we want to sepa-
rate different clusters — and also cases where we want to restrict portions of the graph
to specific rectangular regions. An obvious extension is to allow a wider variety of lin-
ear constraints. This would allow restricting portions of the graph to specific convex
regions. However solving more general linear constraints requires a more sophisticated
algorithm. Active-set techniques [13] may prove promising in this area.

152 T. Dwyer, Y. Koren, and K. Marriott

Acknowledgements

Thanks to Damian Merrick for the NSW rail network data and members of the Adaptive
Diagrams group at Monash University for their advice and support.

References

1. D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 2"¢ Edition (1999).

2. R. Boisvert, R. Pozo, K. Remington, R. Barrett and J. Dongarra, “The Matrix Market: A
web resource for test matrix collections”, in Quality of Numerical Software, Assessment and
Enhancement, Chapman Hall (1997) 125-137.

3. L. Carmel, D. Harel and Y. Koren, “Combining Hierarchy and Energy for Drawing Directed
Graphs”, IEEE Trans. Visualization and Computer Graphics 10 (2004) 46-57.

4. T. Dwyer, Y. Koren and K. Marriott, “Stress Majorization with Orthogonal Ordering Con-
straints”, Technical Report 2005/175, Monash University School of Computer Science and
Software Engineering (2005). Available from www . csse .monash.edu.au/~tdwyer

5. T. Dwyer and Y. Koren, “DIG-COLA: Directed Graph Layout through Constrained En-
ergy Minimization”, IEEE Symposium on Information Visualization (Infovis’05) (To appear
2005).

6. E. Gansner, Y. Koren and S. North, “Graph Drawing by Stress Majorization”, Proc. 12th Int.
Symp. Graph Drawing (GD’04), LNCS 3383, Springer Verlag (2004) 239-250.

7. W. He and K. Marriott, “Constrained Graph Layout”, Constraints 3 (1998) 289-314.

8. S. Hong, D. Merrick and H. Nascimento, “The metro map layout problem”, Proc. 12th Int.
Symp. Graph Drawing (GD’04), LNCS 3383, Springer Verlag (2004) 482-491.

9. T. Kamada and S. Kawai, “An Algorithm for Drawing General Undirected Graphs”, Infor-
mation Processing Letters 31 (1989) 7-15.

10. K. Misue, P. Eades, W. Lai, and K. Sugiyama, “Layout Adjustment and the Mental Map”,
Journal of Visual Languages and Computing 6 (1995) 183-210.

11. K. Ryall, J. Marks and S. M. Shieber, “An Interactive Constraint-Based System for Drawing
Graphs”, ACM Symposium on User Interface Software and Technology (1997) 97-104.

12. K. Sugiyama, S. Tagawa and M. Toda, “Methods for Visual Understanding of Hierarchical
Systems”, IEEE Trans. Systems, Man, and Cybernetics 11 (1981) 109-125.

13. J. Nocedal, S. Wright, Numerical Optimization, Springer (1999).

14. Mosek Optimization Toolkit V3.2 www .mosek . com.

	Introduction
	Background
	Problem Formulation
	Algorithm
	Running Time

	Applications
	Directed Graph Drawing
	Layouts Preserving the Orthogonal Ordering

	Conclusion and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

