
Component-Based Active Appearance Models
for Face Modelling

Cuiping Zhang and Fernand S. Cohen

Eletrical and Computer Engineering Department,
Drexel University, Philadelphia PA 19104, USA

{zcp, fscohen}@cbis.ece.drexel.edu

Abstract. The Active Appearance Model (AAM) is a powerful tool
for modelling a class of objects such as faces. However, it is common
to see a far from optimal local alignment when attempting to model a
face that is quite different from training faces. In this paper, we present
a novel component-based AAM algorithm. By modelling three compo-
nents inside the face area, then combining them with a global AAM,
face alignment achieves both local as well as global optimality. We also
utilize local projection models to locate face contour points. Compared
to the original AAM, our experiment shows that this new algorithm is
more accurate in shape localization as the decoupling allows more flexi-
bility. Its insensitivity to different face background patterns is also clearly
manifested.

1 Introduction

Face recognition has received a lot of attention in the past decades. Detecting
a face and aligning its facial features are usually the first step, therefore crucial
for most face applications. Among numerous approaches, the Active Appearance
Model (AAM) [1] and the Active Shape Model (ASM) [2] are 2 popular genera-
tive models that share a lot in common. As a successor of the ASM, the AAM is
computationally efficient and has been intensively studied by many researchers.

The AAM has several inherent drawbacks as a global appearance based model.
First, It has a simple linear update rule stemming from a first order Taylor
series approximation of an otherwise complex relationship between the model
parameters and the global texture difference. Clearly, any factor that is part of
the global texture will affect the AAM’s performance (examples are the global
illumination, partial occlusions, etc.). In a converged AAM, the local alignment
results may need further refinement to meet the accuracy requirement of many
applications. Secondly, the gradient descent information near the face contour
seeps the background pattern in the training set. Hence, the AAM can’t perform
well for test face images with unseen backgrounds.

With all these problems associated with the AAM in mind, in this paper,
we propose a component-based AAM that groups landmark points inside the
face area into three natural components in addition to a globally defined AAM.
The independence of the sub-AAMs leads to a more accurate local alignment
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result. For the model points on a face contour, a strategy similar to the ASM is
adopted. The ASM iteratively adjusts any model point along its normal direction
so that an associated texture pattern is in accordance with a typical distribu-
tion. Our new method makes full use of what we already have during the AAM
procedure and local projection models are built on a standard shape frame. The
revised projection models, together with the component-based analysis improve
the overall modelling performance, especially on the test set.

The paper is organized as follows: In section 2, the original AAM is briefly
introduced. Section 3 presents the idea of the component-based AAM. In section
4, details about our local projection models are given. Section 5 presents our
experiment results and discussions. Last section is the conclusion.

2 AAM Basic Idea

In the AAM, a face’s shape is defined as a sequence of the coordinates of all
landmark points. Let S0 be the mean shape of all training images. A shapeless
texture vector is generated after warping the face patch inside the convex hull of
all landmark points to the mean shape. Fig. 1(a) shows a face image overlapped
with landmark points and the resulted shapeless texture is in Fig. 1(c).

(a) (b) (c) (d)

Fig. 1. (a)landmark points. (b)Face mesh. (c)Shapeless texture. (d)Base face mesh.

All raw shape vectors need to be aligned to a common coordinate system.
This normalization introduces a similarity transformation between a original
face vector on the image frame and its normalized one on the model frame.
Similarly, All raw texture vectors also undergo offsetting and scaling operations
for normalization purpose.

PCA is used to model the shape and texture variations. A normalized shape
x and texture g can be formulated as x = x + Ps · bs and g =g + Pg · bg.
The column vectors in the matrices Ps and Pg are the principal modes for
the shape and texture variations of the training set. They span the shape and
texture subspaces, respectively. The vectors bs and bg, as the projected coef-
ficients in the subspaces, are named shape and texture parameters. They can
be concatenated for further de-correlation in a mixed eigen-subspace and the
projected coefficients c encode both shape and texture information. The recon-
struction of the shape vector x and the texture vector g from c is straightforward
and easy.
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The complete appearance parameter set includes 4 similarity pose parameters
Ψ due to the coordinate normalization and the mixed parameter vector c, i.e., p
= { Ψ , c}. Modelling an unknown face in a test image is a process searching for
the optimal appearance parameter set that best describes the face. In an iterative
search, let the texture residual r(p) (also referred as difference image) be the
difference of the reconstructed model texture gm and the texture gs extracted
from the test image, r(p) = gs−gm. The matching error is measured as the RMS
of the texture residual r(p). The AAM assumes a linear relationship between
r(p) and the update for the model parameters δp: δp = −R · r(p), where R is a
constant gradient descent matrix estimated from the training images [1]. As face
image backgrounds are encoded, it is suggested to use a random background so
that R is irrelevant of the background patterns in the training set [1]. However,
useful heuristic information for face contour is also lost as a result.

3 Component-Based AAM

Based on the fact that local shape depends only on local appearance pattern,
we propose a Component-based AAM in an effort to gain better feature local-
ization. The basic idea is to group landmark points to components and train the
local models independently. To avoid possible confusion, we refer to the origi-
nal AAM as the global AAM. Three components on the mean shape frame are
highlighted in Fig. 2(a). Landmark points are naturally grouped to balance the
added computational cost and algorithm efficiency. Columns 2(b) to 2(d) show
the components of the person in Fig. 1(a). The top row shows local shapes and
the bottom row shows warped shapeless textures.

(a) (b) (c) (d)

Fig. 2. (a) Definition for local components. (b) Left eyebrow and eye. (c) Right eyebrow
and eye. (d) Nose and mouth.

Our component-based AAM is a combination of one global AAM and three
sub-models. As part of the global face patch, all components are normalized to
the same common coordinate system as that for the global face. This establishes
clear correspondence between the global model and the sub-models. Not only
all sub-models share the same 2D pose parameters as the whole face, but the
component shapes, textures and texture residuals are just fixed entries in their
counterparts of the global model. Sub-models are trained separately.

During the modelling process, the component-based AAM algorithm switches
between the global model and the sub-models alternatively. After one iteration of
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the global AAM, we have current estimates of: the global shape x, the texture g,
the texture residual r(p) and the global matching error is e0. The various steps
to model local components are detailed as follows(for ith sub-model, i = 1 to 3):

– Global to local mapping: Generate the sub-model shape xi, texture gi

and texture residual ri(pi) by looking up the fixed entries in x,g, and r(p).
Project {xi, gi} onto local subspaces, pi = {Ψ, ci}.

– Local AAM prediction: Apply local AAM to obtain new sub-model shape
vector x′

i, texture vector g′
i and local 2D pose Ψi.

– Local to global mapping: Use {x′
i, g′

i} to update the corresponding entries
of the global texture vector g and component points on the image frame.

– Decision making: If the new global parameters lead to a smaller matching
error, accept the update.

In summary, sub-models update component points independently. Meanwhile,
they are united and confined within a global AAM. In this way, error propagation
between local components is reduced and modelling ability is enhanced locally.
In [3], sub-models are constructed to model vertebra. However, they basically
repeat the same sub-model for a sequence of triplet vertebrae and propagate
their results, therefore different from our approach.

4 Local Projection Models

When a test face is presented in a background unseen in the training set, the
AAM often fails, especially for face contour points. Since landmark points on a
face contour are usually the strongest local edge points, we developed a method
similar to the ASM to complete our component-based AAM. The ASM moves
a landmark point along local normal direction so that its profile conforms to a
typical distribution. Instead of using the edge strength along the profile directly,
we believe that edge information would be more prominent and stable after
taking the local average. Further, we associate our local projection models with
the triangulation result of the landmark points. Fig. 3(a) is the mesh of landmark
points for the person in Fig. 1(a). Fig. 3(b) shows the mean shape.

V1

(a) (b)

V2

(a) (b)
x

y

(c)

Fig. 3. Mesh definition. (a)Shape
of the person in Fig. 1(a). (b)Base
shape mesh.

Fig. 4. Triangle-parallelogram pairs. a)
Original image frame. b) Mean shape
frame. c)Standard pair.
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Triangles sitting on the face boundary form a special ”face component”. They
are filled with black color. Their bottom sides form the face contour. Assume
each black triangle is associated with a parallelogram with the bottom side of
the triangle being the parallelogram’s middle line. Our local projection models
are built based on the analysis of the edge map inside these parallelograms. Fig.
4 illustrates how a triangle V1 on the face image is transformed to V2 on the base
frame and subsequently to V0 on a standard triangle which is an isosceles triangle.
After these transformations, any projection along the face contour direction in
the face image is now simplified to a summation along the x (or y) axis.

The piece-wise affine transform parameters between V1 and V2 are available
in the basic AAM model fitting process. The transforms between V0 and all
the triangles of the base shape could be computed in advance. Clearly, with
the help of the base shape and a standard triangle-parallelogram pair, local
projection models can lock face contour points to the locally strongest edge
points. It is much easier and robust compared to the ASM. The regions of interest
for the local projection models are proportional to current face landmark points.
Therefore there is no scaling problem at all.

5 Experiment Results and Discussion

Our face database includes 138 nearly frontal images from various different face
databases[4][5][6]. All images were roughly resized and cropped to 256 by 256. We
believe a blend face database is the best way to robust test. We sequentially picked
80 images to train the face shape subspace and rest of them as the test set.

We also tested on the Japanese Female Facial Expression database
(JAFFE)[7], which contains 213 images of 7 facial expressions of 10 female mod-
els. The only pre-procession we conducted is to scale original 200 by 200 images
to standard size of 256 by 256.

In an iterative realization, the global AAM is run first and when it fails to
converge, local sub-models are launched, followed by the local projection models
to lock the real face boundary. Search will stop when the stopping criterions
are met.

To evaluate the fitting quality, we manually labelled all landmark points and
created distance maps for all images. The model fitting quality is then measured
by the average point to edge distance. Within the same framework, we tested
and compared three different algorithms: the AAM search; the AAM with the
component analysis (AAM CA); the AAM with the component analysis and the
local projection models (AAM CA LPM).

5.1 Component-Based AAM Search

Fig. 5 compares AAM and AAM CA model fitting results. As expected, a con-
verged global AAM usually couldn’t achieve optimal local alignment. Better
localization of the component feature points could be seen on the bottom row.
Table 1 shows average point to edge errors for algorithms with and w/o the
component analysis. Only face component points are considered.
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(a) (b) (c)

Fig. 5. AAM (top row) versa AAM CA
(bottom row). (a) Training set. (b) Test set.
(c) JAFFE database.

(a) (b) (c)

Fig. 6. AAM CA (top row) versa
AAM CA LPM (bottom row). (a) Training
set. (b) Test set. (c) JAFFE database.

Table 1. Average error(contour excluded)

Algorithms Training Test JAFFE
AAM 2.0661 3.5513 3.1696

AAM CA 1.8988 3.2429 2.9377

Table 2. Average error(contour only)

Algorithms Training Test JAFFE
AAM CA 3.5298 4.7153 7.4741

AAM CA LPM 3.2909 3.8430 4.1356

5.2 Face Contour Detection with Local Projection Models

We compared AAM CA and AAM CA LPM model fitting results to show how
the integration of local projection models can help to solve the boundary prob-
lem. Fig. 6 shows some examples. Table 2 compares the average point to edge
errors. It is interesting to see in Fig. 5(b), boundary points are correctly aligned
due to the component analysis. Also Fig. 6(b) has correct component points. Ap-
parently the integration of the local AAM analysis and local projection models
makes our fitting algorithm more accurate and robust.

Convergent rate curves are compared for different algorithms in Fig. 7. A
good approximation of an error density function can be obtained from the his-
togram of the resulted point errors for all images. Given a number ε in x-axis,
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Fig. 7. Curves of convergent rate versa error threshold. (a) Training set. (b) Test set.
(c) JAFFE database.
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y-axis gives the percentage of images with errors smaller or equal to ε. Clearly
AAM CA LPM has the best performance and the improvement is especially
prominent for the JAFFE database.

6 Conclusion

In this paper, we proposed a component-based AAM algorithm to deal with the
lack of the accuracy of feature localization in the original AAM. All component
sub-models and the local projection models are tightly combined and smoothly
interact with the global AAM model by sharing intermediate results. Robust
and accurate face alignment makes it possible to extend the research to face
recognition, 3D modelling etc. Extending our algorithm to images taken from
different viewpoints is straightforward.
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