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Abstract. We present two provably secure and efficient schemes for
performing conjunctive keyword searches over symmetrically encrypted
data. Our first scheme is based on Shamir Secret Sharing and provides
the most efficient search technique in this context to date. Although the
size of its trapdoors is linear in the number of documents being searched,
we empirically show that this overhead remains reasonable in practice.
Nonetheless, to address this limitation we provide an alternative based
on bilinear pairings that yields constant size trapdoors. This latter con-
struction is not only asymptotically more efficient than previous secure
conjunctive keyword search schemes in the symmetric setting, but incurs
significantly less storage overhead. Additionally, unlike most previous
work, our constructions are proven secure in the standard model.

1 Introduction

Remote and untrusted storage systems [2IIT4IT3] allow clients with limited re-
sources to store and distribute large amounts of data at low cost. However, in
order to preserve confidentiality, the remotely-stored data must be encrypted
prior to transmission. Unfortunately, encryption restricts a client’s ability to se-
lectively access segments of her data, especially when she wishes to only retrieve
specific content (e.g., related to a given keyword). To address this dilemma, a
number of techniques have been recently proposed for achieving a less stringent
storage model, one based on the notion of secure, delegated, searchable encryp-
tion (e.g., [28I7T2T0N29]). Intuitively, in order to provide secure searchable
encryption schemes, most of these approaches associate an index with each doc-
ument that, when combined with a trapdoor for a keyword, returns information
signifying the association of the keyword with the document. Informally, such
keyword searches are considered secure if they leak at most one bit of informa-
tion about each document, namely, whether or not that document contains the
keyword.

While the ability to perform single keyword searches is useful in some set-
tings, clearly, it is more desirable to search on multiple keywords, and in partic-
ular, on boolean combinations of these keywords. Unfortunately, most previous
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suggestions for permitting multiple keyword searches either fail to do so effi-
ciently, or leak unnecessary information. To see why, consider that the suggested
approaches for achieving this goal have been to either (i) send a trapdoor for
each keyword and expect the server to return the set intersection (in the case
of conjunctions) or the set union (in the case of disjunctions) of the matching
documents (e.g., see [28[17]), or (ii) store information corresponding to every
possible boolean combination of keywords on the server. The former sugges-
tion leaks information that is linear in the number of conjuncts being searched,
and the latter, while secure, incurs storage overhead that is exponential in the
number of keywords associated with the document.

In this paper, we focus on providing provably-secure conjunctive keyword
search over symmetrically encrypted data, while minimizing the computational
and storage overhead imposed on both the client and server. To this end, we
present two constructions, one based on a non-standard use of Shamir Secret
Sharing [27] and another based on bilinear pairings. We show that our first
construction is the most practical conjunctive keyword search scheme known to
date. Although the size of the trapdoors it generates is linear in the number
of documents being searched, our experiments show that this overhead remains
manageable in practice. For situations where constant sized trapdoors are re-
quired, we provide an alternative construction that is the most asymptotically
efficient scheme we are aware of (in terms of both space and time complexity) in
the symmetric setting. Moreover, both of our constructions are provably secure
in the standard model.

2 Related Work

Song, Wagner, and Perrig introduced the notion of searchable encryption in [28].
In that work, the authors present a new encryption algorithm that embeds extra
information into the ciphertext such that when it is used in conjucntion with a
trapdoor, it discloses whether a particular keyword is stored in a document. Un-
fortunately, search requires computation linear in the size of each document and
reveals statistical information about the distribution of the underlying plaintext.

Both of these shortcomings are addressed by the work of Goh [17], which
presents a construction that uses per-document indexes derived from Bloom fil-
ters [7]. There, each word in the document is processed using a pseudo-random
function and then inserted into a Bloom filter. The client then provides a trap-
door consisting of an indicator of which bits in the filter should be tested, thereby
resulting in constant per-document search time. Moreover, Goh’s work also in-
troduced the notion of semantic security against chosen-keyword attacks (called
IND-CKA), which is the first formal notion of security defined for searchable
encryption.

As discussed earlier, neither of these schemes allow users to perform boolean
keyword searches securely and efficiently. This shortcoming was first addressed
by Golle, Staddon and Waters in [I§], where they present two solutions that
achieve the desired level of security. The first is provably secure under the De-
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cision Diffie-Hellman assumption [§] and requires two modular exponentiations
per document for searching. Additionally, the size of the trapdoors (referred to as
search capabilities in [I8]) is linear in the number of documents being searched.
Although it is shown that portions of the trapdoors can be transmitted before
a search even takes place, this overhead is still undesirable. Furthermore, it re-
quires the client to know the number of searches she wishes to perform a priori.
The second construction is based on bilinear pairings and is proven secure under
a new hardness assumption. That scheme achieves constant sized trapdoors, but
requires a linear number (with respect to keywords) of pairing computations per
document in order to perform a search—an overhead that is arguably unrealistic,
particularly in the presence of a large collection of documents.

More recently, Park, Kim and Lee proposed the first public-key searchable
encryption schemes [I0/29/T5] that allow for secure conjunctive keyword searches
[25]. Their constructions, based on the Bilinear Decision Diffie-Hellman (BDDH)
and Bilinear Decision Diffie-Hellman Inversion (BDDHI) assumptions, have con-
stant sized trapdoors and are more efficient than the schemes presented in [18§].
Since the constructions presented in this paper are more efficient, in terms of
computational and storage overhead, than both of the previous approaches, we
argue that our schemes offer the most pragmatic choice in the symmetric setting.

3 Preliminaries

3.1 Model

We assume the standard model for symmetric searchable encryption schemes (as
used in [28/T7IT218]]), which includes a client and a server that can be trusted to
interact in a protocol, but not to abstain from attempting to learn information
that is not explicitly released by the client. The client has a set of m docu-
ments D = (Dy,...,D,,) that she wishes to store on the server in encrypted
form, while still retaining the ability to search through them. To do so, she first
generates an index Z; for each document D; and stores both the index and the
encrypted document £(D;) on the server. Here, we assume that £ is an arbitrary
symmetric encryption scheme, such as AES [16], and is independent of our in-
dex constructions. To search the document collection for a given keyword w, the
client generates and sends a trapdoor 7 to the server who proceeds to search
each index for w. The server then returns the appropriate set of documents to
the client.

In this work, we also assume the standard model for conjunctive keyword
searches over encrypted data as presented in [I8]. Namely, we work in the setting
where each document is associated with a list of keywords. In particular, we
make the following assumptions: (¢) the number of keywords associated with a
document remains fixed and (i4) no keyword appears at two different locations
in a list. The first constraint can be satisfied by simply adding null keywords
to the list, while the second can be satisfied by prepending each keyword with
a field name or the value of a counter. As in [I825], to reduce computational
burden, trapdoors specify which positions should be searched within an index.
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3.2 Notation

Throughout this paper we use the following notation. Let I" be a dictionary of
words, and 27 be the set of all possible documents. Further, let D C 27 be a
collection of m documents D = (Dy, ..., Dy,). We associate a list of keywords
W; = (wi1,...w;,) with each document D;. When the associated document is
clear from the context, we simplify the notation as W; = (w1, ..., w,). Z; refers
to an index for a document D;, and 7. to a trapdoor for a conjunction of d words
¢ = (wi,...,wq). If a trapdoor is composed of one term for each document in
D (i.e., is linear in the size of D), then we say that 7. is composed of m tokens
(Th, ..y Tm).

Furthermore, we write x £ X to represent a random variable x being drawn
uniformly from a set X. The output of a deterministic algorithm A will be

denoted by x « A and that of a probabilistic algorithm by = £ a. Finally, let
negl(k) denote a negligible function in k, and || denote concatenation.

4 Definitions

In this section we reintroduce the definition of a secure conjunctive keyword
search scheme and recall the notion of semantic security against chosen-keyword
attacks.

Definition 1 (Secure Conjunctive Keyword Search (SCKS)). Let W =
(Wi,..., W) be a collection of keyword lists. A SCKS scheme consists of four
probabilistic polynomial-time algorithms:

— Keygen(1%): is a probabilistic key generation algorithm that is executed by
the client in order to instantiate the scheme. It takes as input a security
parameter k, and returns a secret key K.

— BuildIndex(K, W;): is executed by the client to construct an index. It takes
as input a secret key K and a keyword list W;. It returns W;’s index Z;.

— Trapdoor(K, l1,..., 04, w,...,wq): is executed by the client to generate a
trapdoor for a given conjunction of keywords. It takes as input a secret key
K, the locations in the index to search (¢1,...0q), and a list of d conjuncts
(w1, ...,wq). It returns a trapdoor T, for the conjunction ¢ = (wi A---Awgq).

— Searchindex(Z;, 7..): is executed by the server on behalf of the client to search
for the occurrence of a conjunction in an index. It takes as input an index
7, = BuildIndex(K, W;), where W; = (w1,...,wy), and a trapdoor 1. for a
conjunction ¢ = (wy A -+ Awy). It returns true if wj = wy, for 1 < j < d;
and false otherwise.

Intuitively, the notion of security we seek to capture can be summarized as
follows: given access to a set of indexes, a server should not be able to learn
any partial information about the associated keyword lists that he cannot learn
from a trapdoor that was explicitly given to him by the client. Note that in the
context of conjunctive keyword searches, this implies that the trapdoor for a
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given conjunction ¢ = (w1 A -+ - Awg) should not help the server in generating a
trapdoor for any other conjunction ¢’ = (wj A --- Awj), even if {w],...,wi} C
{w1,...,wq}. In addition, this notion of security should hold even against a
server that can mount chosen keyword attacks, or in other words, against a server
that can trick the client into generating trapdoors for keywords of its choice. More
formally, this notion of security is known as semantic security against chosen
keyword-attacks as introduced in [I7]. Golle, Staddon and Waters [I8] present
three games that formally capture semantic security against chosen-keyword
attacks for SCKS schemes and show that they are all asymptotically equivalent.
In this work, we only make use of two of these games, namely indistinguishability
of ciphertext from ciphertext and indistinguishability of ciphertext from random,
which we briefly review below.

Definition 2 (Indistinguishability of ciphertext from ciphertext (ICC)
[18]). For all probabilistic polynomial-time adversaries A:

b =b: K « Keygen(1¥);

(WO Wl) — ABuiIdIndex(K,‘),Trapdoor(K,‘).
R < _ +negl(k)
b & {0,1}; T, < BuildIndex(K, W3); 2

Y — ABuiIdIndex(K,-),Trapdoor(K,-) (Ib)

with the restriction that A must choose (W, W1) such that |Wy| = |Wi| and
such that Searchindex(Zy,7T) = Searchindex(Z1,T) for all T generated using its
Trapdoor oracle.

Definition 3 (Indistinguishability of ciphertext from random (ICR)
[18]). For all probabilistic polynomial-time adversaries A:

b =b: K « Keygen(1¥);

Wy — ABuiIdIndex(K,-),Trapdoor(K,-).Wl i ol 1
Pr " ’ " < 4 negl(k)
b — {0,1};Z;, « BuildIndex(K, W;); 2

b o— ABuiIdIndex(K,-),Trapdoor(K,-) (Ib>

with the restriction that W1 must be chosen such that |Wy| = |W1| and such that
Searchindex(Zy,7) = Searchindex(Z1,7) for all T generated using its Trapdoor
oracle.

Theorem 1 ([18]). If there exists an adversary A that wins game ICC with
non-negligible probability, then there exists another adversary B that wins game
ICR with the same probability.

5 A Construction Based on Secret Sharing

In this section we describe our first secure conjunctive keyword search scheme,
denoted as SCKS-SS. It is based on Shamir’s threshold secret sharing scheme
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(SSS) and is provably secure in the standard model. We note that this construc-
tion does not take advantage of SSS’s threshold properties, which suggests that
similar constructions could be achieved using random oracles or other secret
sharing schemes. We chose SSS due to its universal familiarity and efficiency.

In [27], Shamir proposed a (k,n)-threshold secret sharing scheme based on
polynomial interpolation in the field Z,. Informally, the scheme is composed of
two algorithms SSS = (share, recover) defined as follows. If S € Z,, is a secret
value we wish to share between n players, and if we require that at least k
shares are needed to recover S, share operates as follows: a dealer generates
a random k — 1 degree polynomial P such that P(0) = S; it then chooses n
random points on P and distributes them as shares. In order to recover the
secret P(0) = S, the recover algorithm simply requires that at least k players
pool their shares, perform standard polynomial interpolation, and evaluate the
resulting polynomial at 0. The unconditional security of SSS follows from the
fact that one cannot interpolate a k — 1 degree polynomial with fewer than &
points.

5.1 Our Construction

Our construction makes use of a pseudo-random function f : {0,1}* x {0,1}! —
Zyp X Ly, where [ is the length of the longest word in I". Each keyword list has an
associated identifier, 4, which is never reused. In particular, even if two lists have
the same set of keywords at the same locations, their identifier will be different.
Given a list W, we write fi (w), where w € W;, to refer to the following opera-
tion: f(K,i||w). Let W = (W1q,...,W,,) be a collection of m keyword lists, each
composed of n words. SCKS-SS = (Keygen, BuildIndex, Trapdoor, SearchIndex) is
then given as follows:

— Keygen(1%): Generate a secret key K ¥id {0,1}* and a random prime p > n.
Buildindex(K, W;): For each word w; € W;, let o; = fi(w;) = (z;,y;)-
Output Z; = (01,...,0n)

Trapdoor(K, ¢1,...,Lq,w), ..., w)): For each W; € W, let

S; = recover(fi (w}), ..., fi(w})). Output 7 = (Si,..., Sm, b1, .., lq).
Searchindex(Z;, T): If S; = recover(oy,, ..., 00,), then output true, otherwise
output false.

5.2 Security

Since correctness follows from the description of the scheme, we provide only a
proof of security. To show that SCKS-SS is semantically secure against chosen-
keyword attacks, we first state two useful lemmas. Due to space considerations,
we omit the proofs of these lemmas, but refer the reader to the full version of this
paper [3]. The first states that given two arbitrary keyword lists, their indexes
are independent to any probabilistic polynomial-time adversary. We note that
this holds even if the lists are composed of the same keywords. The second lemma
states that given two different conjunctions, their corresponding trapdoors will
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be indepedent (also to any probabilistic polynomial-time adversary), even if they
are generated in order to search the same keyword list.

The usefulness of these lemmas will become apparent in our main theorem
(Theorem (), where we claim that since the adversary cannot learn anything
about its challenge index from access to its BuildIndex and Trapdoor oracles, we
need only consider semantic security against chosen plaintext attacks.

Lemma 1. Let W, and Wy be two keyword lists such that a # b. If fx is
a pseudo-random function, then I, is independent of Iy for all probabilistic
polynomial-time adversaries.

Lemma 2. Let W = (Wh,...,W,,) be a collection of m keyword lists and let
c= (w1 A---ANwg) and ¢ = (W) A--- Awj) be two conjunctions of length d and
0, respectively. If fx is a pseudo-random function and if ¢ # ', then for any
probabilistic polynomial-time adversary A, 1. is independent of T.:.

Theorem 2. If fx is a pseudo-random function, then SCKS-SS is semantically
secure against chosen-keyword attacks.

Proof. Since the identifier of a keyword list is never repeated, we know from
Lemma [l that if fx is a pseudo-random function then no two indexes will be
correlated even if they contain the same keywords. It follows that A cannot learn
anything about its ICC challenge index 7, from any of the indexes returned by
its BuildIndex oracle.

Furthermore, consider the restriction imposed on A’s choice of keyword lists
in the ICC game, namely that it must choose two lists Wy and Wi, such that
Searchindex(Zy,7) = Searchindex(Z;,7) for all trapdoors 7 returned by its
Trapdoor oracle. This implies that any such trapdoor will be useless to A in
distinguishing whether 7 is the index for Wy or Wj. In addition, by Lemma
B2l we know that if fx is a pseudo-random function, then trapdoors generated
for different conjunctions are independent. Taken together, the two preceding
statements imply that A cannot use the results of its Trapdoor queries to either
search over its challenge index Zp, or to generate any new trapdoors with which
it can try to search over Zp.

From the previous discussion, it is then safe to only consider A’s challenge
index. If f is a random function, then Zy and Z; are independent of Wy and
W1, respectively. If we replace f by a pseudo-random function fx, then to any
probabilistic polynomial-time adversary, Z;, will be independent of its associated
keyword list ;. Thus A will not be able to distinguish between Wy and W,
given 7y, otherwise we could build an adversary B that could distinguish between
fx and a random function. a

6 A Construction Based on Bilinear Maps

Our second construction, SCKS-XDH, achieves constant transmission overhead
at the cost of placing a larger computational burden on the server. The security
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of the scheme is based on a new variant of the External Diffie-Hellman (XDH)
assumption. The XDH assumption was first introduced in [26] and formalized in
[92]. It has been used more recently as a hardness assumption in [?[T1]

Assumption 1 (Decision Diffie-Hellman (DDH)). Let (g) = G be a cyclic

group of order p and c & Z,. The Decision Diffie-Hellman assumption holds in
G if no probabilistic polynomial-time adversary A can distinguish between tuples
(g,9% g% g%°) and (g,9% g°, %), with probability non-negligibly greater than ;

1
[Pr[A(g% g% g"") =1] = Pr[A(g% ¢’ ¢°) =1]| < o + neel(lpl)

Assumption 2 (External Diffie-Hellman (XDH) [2]). Let (P) = G; and
(@) = Ga be two disjoint cyclic subgroups of order p of an elliptic curve, and let
é be a non-degenerate bilinear map € : Gy X Go — Gp. The XDH assumption
holds across G1 and Go if the DDH assumption holds within G1.

A concrete algebraic setting where this assumption holds is discussed further in
[2]. To prove the security of our construction, we make use of a slightly stronger
variant of the XDH assumption which we call the Mized XDH assumption.

Assumption 3 (Mixed External Diffie-Hellman (MXDH)). Let (P) =
G1 and (Q) = Gy be two groups of order p, and let é be a non-degenerate
bilinear map é : Gy X Gog — Gp. The MXDH assumption holds across G; and
Gz if given (P,aP,bP, cP,a®,bQ), no probabilistic polynomial-time adversary A
can distinguish between tuples (P,aP,bP,abP) and (P,aP,bP,cP), where ¢ & Z,
(i.e., the DDH assumption holds within G1).

6.1 Our Construction

Let (P) = G7 and (Q) = G2 be two groups of prime order p and é be a non-
degenerate bilinear map é : Gy X Go — G such that the XDH assumption holds
accross G1 and Ga. Additionally, let f : {0,1}* x {0,1}} — Z, be a pseudo-
random function, where [ is the length of the longest word in I'. Recall that
in our model we assume that all keywords are distinct and that this can be
achieved by simply concatenating the value of a counter to each keyword. We
define SCKS-XDH = (Keygen, BuildIndex, Trapdoor, Searchindex) as follows:

— Keygen(1*): Generate a secret key K E {0,1}*, and choose two points P
and @ such that (P) = Gy and (Q) = Ga. @ is kept private.

— BuildIndex(K, W;): Choose r; & Zy. For each word w; € Wi, let s; = f (w;).
Output Z; = (r; P,ris1 P, ..., 1ris, P).

Trapdoor(K, {1, ..., 4q,w, ..., w}): Choose p & Zy. Let t =
(p > fK(w;-)) Q. Output 7 = (£, pQ, (1, .., Lq).

Searchindex(Z;, T): If é(t, r;, P) = é(pQ, ijl i8¢, P), then output true, oth-
erwise output false.
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To demonstrate correctness, consider a user that wishes to search for a con-
junction ¢ = (w] A --- Aw/;) over the index locations specified by the sequence
of integers (¢1,...,4q). Let T = Trapdoor(K, ¢1,..., L4, wh, ..., w}) be the trap-

door enabling the server to search for c¢. Furthermore, let W; = (wq,...,wy)
be a keyword list, and Z; = BuildIndex(K, W;) be its index. If W; is such that
we; = w; for 1 < j < d (i.e. W; includes all the words in the conjunction

¢ at the appropriate locations) then: é(¢, 7, P) = é((p Z;lzl fr(W})Q,miP) =

o(Q. Py =im I W) — ¢(Q, PYP X510 = &(pQ, Yo sy, P) and
SearchIndex(Z;, T) will return true.

6.2 Security

Theorem 3. If the Mized XDH assumption holds, then SCKS-XDH is semanti-
cally secure against chosen-keyword attacks.

Proof. Given an adversary A that wins the ICR game with non-negligible prob-
ability over é, we describe an adversary B that uses A to break the MXDH
assumption with the same probability. By theorem [ this implies that there
exists another adversary that can win game ICC also with non-negligible proba-
bility over é Let (P) = Gq, (Q) = Go, and é : G; X G3 — G be an appropriate
XDH setting, and let (P, aP,bP, cP, a®,bQ) be B’s MXDH challenge. B’s goal is
to solve the DDH problem in G, or in other words to decide whether ¢ = ab.
B begins by simulating A. To start, A will make a polynomial number of

BuildIndex queries which B will answer as follows. Let A’s query keyword list be
Wi = (wi1 A+ Aw; ), where 0 < 4 < poly(k). B chooses a value r; & Z, and

for each word w; ; € W;, where 1 < j < n, it picks a random value z; ; i Zy,
and computes r;2; ;bP. To be consistent across different queries, B keeps track
of the correspondence between keywords w; ; € W; and the random z; ; values it
chooses. Notice that if B is given b P as part of its MXDH challenge, it can compute
ri%i,;0P. Finally, it returns the index Z; = (r; P, 7,2, 1bP, ..., 72, ,bP) to A.
When A makes a Trapdoor query with index locations (¢1,...,¢4) and con-
junction ¢ = (w] A --- Aw)), B begins by choosing a random value p & L. It
then computes t = p(Zf\lzl v2bQ) where v = z; ; if w) previously appeared at

some position in one of A’s queries, and 7y & Z,, otherwise. Observe that while
B does not know b, it can compute z; ;6Q) (and thus t), since b@ is part of its
MXDH challenge.

Finally, B returns the trapdoor 7 = (¢, p@Q, {1, . ..,%4) to A. Note that 7 is a
valid trapdoor for ¢ = (W] A. .., Aw),), and in particular, that since B consistently
uses the same value z; ; for word w;, Searchindex(Z;, 7) will return true if and
only if W; includes all the words in the conjunction ¢ at the locations specified
by (£1, ces ,fd).

After polynomially many Buildindex and Trapdoor queries, A submits a key-
word list W* = (wf,...,w}). B returns to A the challenge index Z* = (a P, v{cP,

.., YneP), where 75 = z; ; if w} previously appeared in one of A’s queries to
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either its BuildIndex or Trapdoor oracles, and 3} ki3 Z, otherwise. Observe that
if ¢ = ab, then T* is a correct index for W*, while if ¢ # ab then T* is a correct
index for some other arbitrary keyword list. In particular, if ¢ is random then
I* is an index for a random set of keywords. After the challenge, A is allowed
to make more Trapdoor and BuildIndex queries (with the same restrictions as
before), which B answers as it did in the previous steps.

Finally, A outputs a bit 3 that represents its decision as to whether I* is
an index for W* or some random keyword list. B then returns 3 as its own
answer to its MXDH challenge. It follows that B’s probability in breaking its
MXDH challenge is equal to A’s probability in breaking the ICR game, which

we assumed holds with non-negligible probability over % O

7 Efficiency

COMPARISON WITH PREVIOUS CONSTRUCTIONS. We now consider the compu-
tational and space complexity of our constructions. In particular, we compare
their efficiency to the work of Park, Kim and Lee [25]. We note that while
the schemes in [25] are in the public-key setting, they are still more efficient
than previous symmetric constructions presented in [I8]. Since any public-key
searchable encryption scheme can be converted to a symmetric one, we focus our
comparison with the schemes in [25].

We refer to the first and second constructions in [25] as PKL-1 and PKL-2, re-
spectively. Recall that m denotes the number of documents stored on the server,
n the number of keywords associated with each document, and d the number of
keywords comprising a search. Unless otherwise specified, measurements are in
terms of the requirements to process all documents on the server.

In what follows we discuss the running time and storage overhead for all
relevant operations, including building indexes, generating trapdoors, searching
and storing indexes, and sending trapdoors. First, we note that SCKS-SS is the
most computationally efficient construction for index generation and searching,
requiring only m polynomial interpolations on d points. Furthermore, though
both the size of its trapdoors and the running time of the trapdoor generation
algorithm are linear in the number of documents, we show that this overhead
still remains practical. Storage requirements for indexes are less than previous
approaches [25/I8], requiring only 2mn points in Z, (where p is only 128 bits).
We also note that SCKS-XDH incurs significantly less storage and transmission
overhead than PKL-1 and PKL-2 as it need not store or send elements in integer
groups. Additionally, SCKS-XDH is more efficient than both PKL-1 and PKL-2
for BuildIndex as it requires only m(n + 1) multiplications in Gy, is faster than
PKL-1 for trapdoor generation, and is comparable to PKL-2 (but slower than
PKL-1) for Searchlndex.

EMPIRICAL EVALUATION OF SCKS-SS AND SCKS-XDH. To evaluate the feasi-
bility of our constructions, we implemented and benchmarked the relevant oper-
ations. All tests were performed on a 3.0 GHz Pentium 4 machine running Fedora
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Core 3 Linux. Our implementations are in C++ and made use of the MIRACL
[24] library for multi-precision and curve-based operations, and OpenSSL [23]
for all other cryptographic primitives.

Our implementation of SCKS-SS performs all operations in the field Z,,, where
p is a 128-bit prime. We chose to instantiate f using HMAC-SHA1 [6]. In partic-
ular, we let fi (w) = (hx(w|]i]|0), hr (w]|i||1)) where hg(-) denotes the last 128
bits of HMAC-SHA1’s output under the key K. And though polynomial interpo-
lation can be done as efficiently as O(dlog® d) [20], we use standard Lagrangian
interpolation [20], which is O(d?) to generate trapdoors and perform searches.
Our implementation of SCKS-XDH uses a 160 bit curve, which gives security
comparable to that of Diffie-Hellman in 1024 bit integer groups [22]. Due to the
algebraic setting of the MXDH assumption, we can represent points in G using
161 bits, but require 481 bits for points in Gy [5]. Accordingly, operations in Go
are slower than in (Gq.

To evaluate the efficacy of our constructions, we present the time required
to create 10,000 indexes of 10 keywords each, to generate trapdoors, and to
search these indexes. In both constructions index generation grows linearly in the
number of keywords. SCKS-SS requires slightly less than 2 seconds to generate
10,000 indexes with 10 keywords each, while SCKS-XDH requires 445 seconds.

The SCKS-SS operations that require interpolation, namely Trapdoor and
SearchIndex, incur time that is quadratic in the number of keywords being
searched. We note, however, that according to [19], user queries on the Web typ-
ically contain at most 3 keywords. If we assume such a setting, SCKS-SS is able
to search 10,000 files in about 0.86 seconds, while trapdoor generation requires
less than 1.5 seconds. The time required for SCKS-XDH to generate trapdoors
and search a given index is essentially constant. Trapdoor generation requires
111 ms while searching 10,000 indexes requires approximately 720 seconds.

Although SCKS-SS requires trapdoors linear in the number of documents,
since each token is only 16 bytes long, a trapdoor for 10,000 documents is merely
156 KB in size. The space required to store the indexes associated with a collec-
tion of 10,000 documents of 10 keywords each is 3.1 MB—which is much more
space efficient than any previously known construction.

Although SCKS-XDH is less efficient in terms of index generation and search-
ing than SCKS-SS, it requires less storage and only incurs constant transmission
overhead. In fact, to store an index, the server need only need keep a point in G; for
each keyword of each document. As such, the indexes associated to a collection of
10, 000 documents with 10 keywords each can be stored in approximately 2.1 MB.
Also, since trapdoors are pairs of points in G they can be represented in 0.12 KB.
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! Although SCKS-XDH could benefit from reusing line function coefficients in Miller’s
algorithm [4] (as suggested in [25]) we did not implement this optimization.
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