
Efficient and Non-interactive Timed-Release

Encryption

Julien Cathalo�, Benôıt Libert��, and Jean-Jacques Quisquater

UCL Crypto Group,
Place du Levant, 3. B-1348 Louvain-La-Neuve, Belgium

{cathalo, libert, jjq}@dice.ucl.ac.be

Abstract. This paper revisits the important problem of sending a
message “into the future” in such a way that no communication is
needed between the server and other entities. This problem was recently
re-investigated by Blake and Chan who showed a scalable non-interactive
solution without considering a formal security model. We fill this gap
by introducing a new stringent model tailored to the non-interactive
setting. We then propose a new construction fitting our model and we
show that it is more efficient than the recent non-interactive proposal
(for which we also give a security proof in our model). We then explain
how to provide our scheme and the one of Blake and Chan with an
additional security property that strengthens the anonymity of receivers.

Keywords: timed-release encryption, formal models, provable security.

1 Introduction

The problem of sending a message “into the future”, i.e. encrypting a message
so that its recipient cannot decrypt it prior to a pre-determined instant chosen
by the sender, has been found to have many real-world applications such as elec-
tronic auctions, key escrow, scheduled payment methods, sealed-bid auctions,
lotteries, etc.. It was first suggested by May [26] in 1993 and further studied by
Rivest, Shamir and Wagner [29].

Two essential approaches have been investigated to solve the problem: the
time-lock puzzle approach ([6,29,25,14,22,23]) and the trusted server approach
([17,26,29,12]). In the former, the receiver of an encrypted message has to invest
in a significant computational effort to solve a reasonably small-size problem be-
fore obtaining the message. This approach does not involve a server but it turns
out to be computationally expensive for the receiver and only solves the prob-
lem with approximately controllable release-times depending on the receiver’s
computational power and on the moment at which the decryption operation is
started. Sending a message that can be read at a precise moment (say 12:00am,
July 31, 2005 GMT for example) turns out to be difficult using this approach.
� This author’s work is supported by Walloon Region / WIST-MAIS project.

�� This author thanks the DGTRE’s First Europe Program of the Walloon Region and
the European Social Fund.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 291–303, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

292 J. Cathalo, B. Libert, and J.-J. Quisquater

On the other hand, in the trusted server approach, a trusted entity provid-
ing a common and absolute time reference is necessary to synchronize senders
and receivers. Ideally, the server should have as few interactions as possible with
senders and receivers. Up to very recently, the latter requirement was not satis-
fied by server-based solutions. In a system proposed by May ([26]), the server is
an escrow agent storing messages and releasing them at specified times. Another
method used by Rivest et al. [29] also requires interactions between the server
and senders who must reveal their identity and their message’s release-time.

In 1999, Di Crescenzo et al. ([17]) proposed a protocol, supported by a formal
security model, and wherein senders are anonymous and do not have to interact
with the server. Unfortunately, the latter has to engage in a conditional oblivious
transfer protocol with receivers. As a result, the latters are not anonymous and
the protocol is subject to denial-of-service attacks.

In 2001, when Boneh and Franklin published their famous identity based en-
cryption (IBE) scheme ([12]), they also mentioned encryption “for the future” as
a possible application. Their idea was to use identities augmented with release
times as public keys. This solution is not scalable for small time granularities as
the trusted private key generator has to deliver new private keys to each user at
the start of each time period. Other IBE-based approaches ([16,27,11]) consider
release-times as identities and trusted authorities as time servers issuing time-
specific trapdoors at the beginning of each time period. These methods alone
only allow the universal disclosure of encrypted documents.

Encrypting a message for a designated receiver and a specific future moment
is possible by combining IBE-based unlock methods of [16,27,11] with a tradi-
tional public key encryption scheme. Such a composition is especially attractive
with the time-based decryption procedure suggested by Boneh, Boyen and Goh
([11]) which consists in using the tree-like structure of Canetti et al. [15] back-
wards: indeed, it allows recovering past time-specific trapdoors from a current
trapdoor. Nevertheless, the root of the tree-like structure of Canetti et al. ([15])
has to correspond to the last time period which implies an upper bound on the
lifetime of the system. Unless special precautions are taken, such a composition
would also leak information on the release-time of ciphertexts as the hierarchical
IBE system of [11] does not have the receiver-anonymity property in the sense
of Bellare et al. ([5]).

In this paper, we do not only focus on improving the efficiency of generic con-
structions. We also aim at providing TRE systems with the property of release-
time confidentiality according to which ciphertexts do not reveal information to
anyone but the intended receiver about their release-time. We also stress that
the problem that we address is different from the ‘token-controlled public key en-
cryption problem’ ([4]) where a sender encrypts a message using a specific token
before handing it to a semi-trusted agent (that must communicate with senders
who cannot remain anonymous) who stores it until it can be made available to
the receiver for completing the decryption.

In our context, a scalable timed-release encryption (TRE) scheme wherein
the time server never has to interact with the sender nor the receiver was recently

Efficient and Non-interactive Timed-Release Encryption 293

suggested by Blake and Chan ([8]) who were followed by [28,24] and for different
applications by ([19]). In these settings, the sole responsibility of the server is to
periodically issue time-specific trapdoors enabling the decryption of ciphertexts
encrypted “for the future” ([8,28]) or the hatching of signatures ([19]).

It is to be noted that the scalable TRE solution given by Blake and Chan was
not directly supported by a formal security model and only informal security ar-
guments were given in [8] for a scheme that can also be thought of as a particular
case of a solution proposed in [1] to tackle with access control problems using
pairing based cryptography. We believe that security models considered in [1,24]
should be strengthened a little and one of our contributions is to consider a more
stringent formal security model for the specific application of non-interactive
timed-release encryption. We have to mention that, independently of our work,
[28] also considers a security model for authenticated timed-release encryption
schemes. We focus here on the mere public key encryption case and we believe
our model to be stronger than the one in [28] as well.

In this paper, we also propose a more efficient non-interactive TRE scheme
than [8] and [1]. In anonymity enhancing purposes, we then explain how to avoid
having to transmit release-times of ciphertexts in clear through insecure channels
by hiding them from anyone but their intended recipient and we show how to
add this security property to the scheme of [8] for which we also give a security
proof in our model.

Both solutions may find other applications than the timed-decryption of dig-
ital documents. Similarly to the non-interactive solution of Blake and Chan,
ours can be turned into an event-release encryption (ERE) scheme solving the
problem of a sender who wishes to send a message that the recipient can only
decrypt if a specific event occurs. As an example, we think of the context of a
war-correspondent sealing an envelope containing sensitive information with the
instruction “to open only if something happens to me”. In such a situation, the
time server can be turned into a notary that has to verify the occurrence of the
prescribed event before issuing a certificate testifying of the event’s happening.

Before describing our solutions, we formally define the concept of non-
interactive timed-release encryption and we introduce a strong adversarial model
which is inspired from the one of certificateless encryption schemes (CLE) ([2,3]).
Section 3 then explains why a secure TRE scheme cannot be generically obtained
from a secure CLE scheme contrary to what appears at first glance. The new
TRE system is presented in section 4 while section 5 explains how to provide
our system and the one of Blake and Chan with the newly defined release-time
confidentiality property.

2 Formal Definition and Adversarial Models

Our model of timed-release encryption schemes assumes that ciphertexts always
contain information about their release-time. More precisely, for some t ∈ N,
their last t bits are a label indicating the moment at which their receiver will be
allowed to decrypt them.

294 J. Cathalo, B. Libert, and J.-J. Quisquater

Definition 1. A TRE scheme is a 5-uple of algorithms:

TRE.Setup: is a probabilistic algorithm run by a time server to generate
system-wide parameters params that include a public key TSpub for which
the corresponding private key tspriv is stored in order to be used in all time-
specific trapdoor generations.

TRE.User-Keygen: is a probabilistic algorithm taking as input public param-
eters params that is run by each end-user to generate a key pair (upk, usk).
The public keys are required to have a special form and their validity should
be verifiable in polynomial time.

TRE.TS-Release: is an algorithm run by the server that, given tspriv and a
time information T ∈ {0, 1}t, generates and discloses a specific trapdoor sT .
The latter’s validity should be verifiable in polynomial time given T ∈ {0, 1}t
and TSpub.

TRE.Encrypt: is a probabilistic algorithm taking as inputs public param-
eters params, a recipient’s public key upk, a message m ∈ M and
a time information T ∈ {0, 1}t to produce a ciphertext (C, T) =
TRE.Encrypt(m, upk, params, T) that the recipient must be unable to decrypt
before knowing sT = TRE.TS-release(tspriv, T).

TRE.Decrypt: is a deterministic algorithm taking as inputs a ciphertext
(C, T), parameters params, a private key usk and a time-specific trapdoor
sT to return a plaintext m or a distinguished symbol ⊥ if the ciphertext is
not properly formed.

For consistency, we impose that TRE.Decrypt(usk, sT , params, (C, T)) = m
whenever (C, T) = TRE.Encrypt(m, upk, params, T) = m for all messages m ∈
M if sT = TRE.TS-release(tspriv, T).

We distinguish two kinds of adversaries. We first consider malicious receivers
attempting to gain information on the plaintext before its release-time. Such
adversaries do not know the server’s private key but can freely choose the public
key on which they are challenged in a find-then-guess game. In both stages, they
have access to a release-time oracle returning trapdoors for any arbitrary time
periods but the (adversarially-chosen) one for which the challenge ciphertext
is computed. In a chosen-ciphertext scenario, they are also given access to an
oracle decrypting other ciphertexts than the challenge. These adversaries are
called chosen-time period and ciphertext attackers (CTCA) in contrast to weaker
chosen-time period and plaintext attackers (CTPA).

Definition 2. A TRE scheme is secure against chosen-time period and cipher-
text attacks (IND-CTCA) if no probabilistic polynomial time (PPT) attacker has
a non-negligible advantage in the following game:

1. Given a security parameter 1k, the challenger runs TRE.Setup(1k) and gives
the resulting parameters params (that include the server’s public key TSpub)
to A while tspriv is kept secret.

2. A queries a release-time oracle TRE.TS-release(.) returning trapdoors sT

for arbitrary time periods T as well as a decryption oracle TRE.Decrypt(.)

Efficient and Non-interactive Timed-Release Encryption 295

which, given a ciphertext (C, T) and a receiver’s public key upk provided by A,
generates the decryption of C using the trapdoor sT even without knowing the
private key usk corresponding to upk. At some moment, A outputs messages
m0, m1, an arbitrary public key upk∗ and a time-period T∗ that was not
submitted to the TRE.TS-release(.) oracle. She gets the challenge (C∗, T∗) =
TRE.Encrypt(mb, upk

∗, params, T∗), for a hidden bit b R← {0, 1}.
3. A issues new release-time queries for any arbitrary time-period but T∗ and

decryption queries for any ciphertext but the challenge (C∗, T∗) for the public
key upk∗. She eventually outputs a bit b′ and wins if b′ = b. As usual, her
advantage is Advind-ctcaTR−PKE(A) := 2× Pr[b′ = b]− 1.

The above model of security against receivers is seemingly stronger than its
counterpart in [28] for which target time periods are fixed by the challenger at
the beginning of the game instead of being adaptively chosen by adversaries.
When compared to the notion of ‘recipient security’ defined in [1] or its coun-
terpart in [24], definition 2 also looks stronger as the authors of [1,24] explicitly
omitted to provide the attacker with a decryption oracle and argued that such
an oracle is useless since the receiver’s private key is known to the adversary.
Actually, she might still gain useful information by asking for the decryption of
ciphertexts (C, T∗) �= (C∗, T∗) for the target time period T∗. That is why, al-
though the challenger does not a priori know any private key except the server’s
one, we provide the attacker with an oracle that is more powerful than an usual
decryption oracle: given a time-information string, a receiver’s public key upk
and a ciphertext, it either returns a plaintext or a rejection message even if it
does not know the matching private key usk for upk.

The latter requirement might look too strong in practice but it is to be noted
that a similar constraint was imposed by Al-Riyami and Paterson in their secu-
rity model for certificateless encryption schemes (CLE) ([2,3]). As they did in
their context, we can argue here that an adversary has more power if she can
obtain the decryption of ciphertexts for receivers’s public keys that she simply
observes without knowing the matching private key. Besides, since the scheme
that we propose in section 4.1 perfectly supports this constraint, we do not be-
lieve the latter to be too strong.

Finally, in the model of [1], the challenge key pair (usk∗, upk∗) is chosen by
the challenger at the outset of the game. Our model does not assume usk∗ to be
known to the challenger. It is unclear whether this distinction is of any practical
relevance but it seems more natural to allow adversaries to be challenged on any
receiver’s public key of their choosing without directly revealing the associated
private key (which is not needed to compute the challenge ciphertext after all).
In fact, the knowledge of usk∗ is not needed in the security proof of our scheme.

In a second definition, we consider the threat of curious servers where attack-
ers know the server’s private key but are challenged on a random user’s public
key for which they are equipped with a decryption oracle.

Definition 3. A TRE scheme is said to be secure against chosen-ciphertext
attacks (or IND-CCA secure) if no PPT adversary A has a non-negligible ad-
vantage in the following game:

296 J. Cathalo, B. Libert, and J.-J. Quisquater

1. Given 1k, the challenger CH runs the algorithms TRE.Setup(1k) and
TRE.User-Keygen to obtain a list of public parameters params and a pair
(upk, usk). CH gives params, the server’s private key tspriv and the public
key upk to A while the private key usk is kept secret.

2. A is given access to a decryption oracle TRE.Decrypt(.) which, given a
ciphertext (C, T) and the time-specific trapdoor sT (which is always com-
putable for the adversary who knows tspriv), returns the decryption of C
using the private key usk. At some point, she outputs equal-length messages
m0, m1 and a challenge time-period T∗. She gets a ciphertext (C∗, T∗) =
TRE.Encrypt(mb, upk, params, T

∗), for b R← {0, 1}, computed under the pub-
lic key upk.

3. A issues a new sequence of queries but is prohibited from asking for the
decryption of the challenge for the time period T∗. She eventually outputs a
bit b′ and wins if b′ = b. Her advantage is still defined as Advind-ccaTR−PKE(A) :=
2× Pr[b′ = b]− 1.

In the full version of this paper, we establish the security of the Blake-Chan
([8]) scheme in our enhanced security model. The IND-CTCA security is proved
under a stronger assumption than its counterpart in a weaker sense in [1].

3 Why CLE Does Not Imply TRE

The model of security formalized in definition 2 is reminiscent of the definition
of security against Type I adversaries against certificateless encryption scheme
(CLE) in that the challenger might have to answer decryption queries on cipher-
texts presumably created using a public key for which it does not even know the
private key. Besides, the scheme that we describe in section 5.2 bears similarities
with a CLE scheme recently proposed in [3] in the same way as the Blake-Chan
scheme ([8]) has salient similarities with the CLE scheme described in [2].

Actually, it turns out that some constructions may provide instantiations of
both primitives but it is very unlikely that a generic transformation can turn
a secure CLE into a secure TRE because of differences between formal models:
in CLE schemes, some principal’s public key is associated to any identity even
though no explicit certificate is used. In contrast, time information strings are
never bound to any public key.

It is very tempting to believe that a TRE scheme can be generically obtained
from a CLE system by turning the Key Generation Center (KGC) into a time
server and transforming the partial key private extraction algorithm (see [2] or
[3] for details on certificateless primitives) into a release-time algorithm.

The problems arise when attempting to establish the security of the obtained
scheme in the sense of definition 3 assuming that the underlying CLE is secure
against malicious KGCs (called Type II adversaries in [2]). In the model of secu-
rity against a Type II adversary ([2]), the latter is disallowed to replace public
keys. Now, in the game of definition 3, consider what happens when the attacker
issues a decryption query (C, T) for a completely arbitrary time period T. In the
game that it plays against its own challenger, the challenger of definition 3 is

Efficient and Non-interactive Timed-Release Encryption 297

stuck as it may not replace the public key assigned to the entity of identity T
with the challenge public key upk since replacement queries are forbidden.

Even worse: when the adversary of definition 3 produces her challenge request
(m0, m1, T∗), it is very likely that the challenge public key upk is not associated
to T∗ in the game played by the challenger against its own ”certificateless chal-
lenger”. It comes that, even in the chosen-plaintext scenario, the security of the
underlying CLE scheme does not imply the security of the obtained TRE.

On the other hand, if the adversary was challenged on a fixed random user’s
key pair (usk∗, upk∗) provided by the challenger in the game of definition 2
as in the definition of ’receiver security’ given in [1], the techniques of Dodis
and Katz ([18]) would certainly yield a secure TRE by suitably combining an
identity based encryption scheme (IBE) with a traditional public key encryption
scheme. Nevertheless, because of the special decryption oracles used in definition
2 where the challenger does not even know adversarially controlled private keys,
it is unclear whether the same techniques also apply here.

4 An Efficient TRE Construction Using Bilinear Maps

This section presents a new efficient timed-release encryption scheme. It makes
use of bilinear map groups which are groups (G1, G2) of prime order p for which
there exists a bilinear map e : G1×G1 → G2 satisfying the following properties:

1. Bilinearity: ∀ u, v ∈ G1, ∀ a, b ∈ Z
∗
p, we have e(ua, vb) = e(u, v)ab

2. Non-degeneracy: if g generates G1, then e(g, g) generates G2

3. Computability: ∀ u, v ∈ G1, e(u, v) can be efficiently computed

The security of our construction is proved to rely on the intractability of the
following problem that was introduced in [10].

The q-Bilinear Diffie-Hellman Inversion Problem (q-BDHIP) consists in, given
(g, gα, g(α2), . . . , g(αq)) ∈ G

q+1
1 , computing e(g, g)1/α ∈ G2.

4.1 The Scheme

In the new scheme, called TRE1, time-specific trapdoors are signatures computed
using a signature scheme independently considered in [9] and [30] unlike the
scheme of [8] that uses trapdoors computed according to Boneh et al.’s short
signature algorithm ([13]). The TRE1 scheme has similarities with a selective-
ID secure IBE that was proven secure without random oracles in ([10]) but its
security proofs hold in the random oracle model ([7]). The consistency of the
scheme is easy to check as

e(Xrh1(T)Y r, sT)1/a = e(ga(s+h1(T)), g
1

a(s+h1(T)))r = e(g, g)r.

298 J. Cathalo, B. Libert, and J.-J. Quisquater

TRE.Setup: given security parameters k and k0, where k0 is polynomial in k,
this algorithm outputs a k-bit prime number p, the description of symmetric
bilinear map groups (G1, G2) of order p, a generator g ∈ G1 and hash functions
h1 : {0, 1}t → Z

∗

p, h2 : G2 → {0, 1}n+k0 and h3 : {0, 1}n+k0+t × G
2

1 → Z
∗

p for

some t ∈ N. A private key tspriv := s
R← Z

∗

p and the corresponding public key
TSpub := gs ∈ G

∗

1 are also chosen. The public parameters are

params := {p, k, k0, G1, G2, g, TSpub, e, h1, h2, h3, n,M, C}

for plaintext and ciphertext spaces M := {0, 1}n and C := G
∗

1 × {0, 1}n+k0+t.

TRE.TS-release: uses a time information T ∈ {0, 1}t and the server’s private key
to return a time-specific trapdoor sT = g1/(s+h1(T)) ∈ G

∗

1.

TRE.User-Keygen: this algorithm takes as input params, chooses a private key
usk := a ∈ Z

∗

p and produces A’s public key

upk := 〈X = g
a
, Y = TS

a
pub〉 ∈ G

∗

1 × G
∗

1

TRE.Encrypt: to encrypt m ∈ {0, 1}n using the time information T ∈ {0, 1}t and
the public key upk = 〈X = ga, Y = TS

a
pub〉, the sender does the following:

1. Check that upk is correctly formed by verifying that e(X, TSpub) = e(g, Y).

2. Choose x
R← {0, 1}k0 , compute r = h3(m||x||T||upk) ∈ Z

∗

p and the ciphertext

C = 〈c1, c2, T〉 = 〈Xrh1(T)
Y

r
, (m||x) ⊕ h2(e(g, g)r), T〉

TRE.Decrypt: given C = 〈c1, c2, T〉 ∈ C, his private key a and the trapdoor sT ,
the receiver computes (m||x) = c2 ⊕ h2(e(c1, sT)1/a) ∈ {0, 1}n+k0 and then
r = h3(m||x||T||upk) ∈ Z

∗

p. The message is accepted if c1 = Xrh1(T)Y r .

Fig. 1. The TRE1 scheme

4.2 Efficiency Discussions

If e(g, g) is included among the public parameters, an exponentiation in G2 and
a multi-exponentiation in G1 are needed for both the sender and the receiver
while the latter must also compute a pairing.

TRE1 is thus significantly more efficient than the scheme recently proposed by
Blake and Chan ([8]) as no pairing must be computed at encryption. It actually
happens to be more practical to encrypt messages with distinct release-times
in succession for the same recipient. Indeed, the TRE scheme of [8] requires the
sender to compute a pairing that depends on the release-time and, if Alice has to
send several ciphertexts with distinct release-times to Bob, she has to compute
a new pairing for each encryption. Moreover, TRE1 does not need a special (and
much less efficient) hash function mapping strings onto a cyclic group (and it thus
benefits from a faster release-time algorithm) while both schemes have similar
complexities at decryption.

As for the scheme proposed in [8], the sender has to verify the validity of the
public key (in step 1 of the encryption algorithm) to ensure that the recipient
will be enabled to decrypt the message. Such a checking is fortunately needed
only once at the first use of the key.

Efficient and Non-interactive Timed-Release Encryption 299

4.3 Security

We stress on the importance of including the public key upk among the inputs
of the hash function h3 because the scheme would be insecure in the game of
definition 2 otherwise (as the adversary could turn the challenge into another
encryption of the same plaintext for a different public key). In a security analysis,
theorems 1 and 2 show that TRE1 is secure in the sense of definitions 2 and 3.
The proofs are detailed in the full version of the paper.

Theorem 1. Assume that an IND-CTCA attacker A has an advantage ε
against TRE1 when running a time τ , making qhi queries to random oracles hi

(i = 1, 2, 3) and qD decryption queries. Then the q-BDHIP can be solved for
q = qh1 with a probability

ε′ >
1

(qh1 + qh3)(qh2 + qh3)
(ε− qh3/2k0−1)(1 − 2−k)qD

within a time τ ′ < τ +O((q2
h1

+qh3)τexp) where τexp is the maximum of the costs
of an exponentiation in G1 and in G2.

Theorem 2. Assume that an IND-CCA attacker A has an advantage ε against
TRE1 when running a time τ , making qhi queries to random oracles hi (i = 1, 2, 3)
and qD decryption queries. Then the 1-BDHIP can be solved with a probability
ε′ > (qh2 + qh3)−1(ε− qh3/2k0−1)(1 − 2−k)qD within a time τ ′ < τ + O(qh3τexp)
where τexp is the maximum time to perform an exponentiation in G1 and in G2.

As TRE1 results from a variant of the first Fujisaki-Okamoto ([20]) transform
applied to a simpler version of the scheme (details are given in the full paper),
the proofs apply a variant of theorem 3 in ([20]).

4.4 Encrypting for Multiple Receivers

Interestingly, the scheme is practical to encrypt messages intended to several
recipients with the same release-time (encrypting with distinct release-times
is forbidden as colluding receivers could decrypt the message without hav-
ing the appropriate trapdoor): given a plaintext m and public keys upk1 =
(X1, Y1), . . . , upkN = (XN , YN), ciphertexts have the form

〈Xrh1(T)
1 Y r

1 , . . . , X
rh1(T)
N Y r

N , (m||x)⊕ h2(e(g, g)r),L〉

where r = h3(m||x||T||upk1|| . . . ||upkN) and L is a label indicating how each
part of ciphertext is associated to each receiver.

The sender still has no pairing to compute: only a multi-exponentiation per
receiver (in addition to an exponentiation in G2) is needed. The Blake-Chan
scheme and its generalization ([1]) do not enjoy this efficiency as one pairing per
receiver must be computed.

300 J. Cathalo, B. Libert, and J.-J. Quisquater

The security proofs are straightforward adaptations of the proofs of theorems
1 and 2 in a security model which is a simple extension of the one described in
section 3: in the extension of definition 2, the adversary outputs a set of N public
keys at the end of the find stage whereas, in the counterpart of definition 3, she
is challenged a vector of N public keys.

5 Adding Release-Time Confidentiality

In the security model considered by Di Crescenzo et al. ([17]), the time server
is required to interact with the receiver so that the latter obtains the message if
the current time exceeds the release-time but nothing can be learned about the
latter by the server.

However, as release-times appended to ciphertexts are transmitted in clear to
receivers in their model as in ours, nothing can prevent a spying server (or anyone
else) observing release-times of ciphertexts from attempting to gain information
on who their recipient could be upon release of the corresponding trapdoor by
watching who enquires about it within a reasonably small set of users. Such a
threat would hamper the key privacy property ([5]) that TRE1 could be shown
to satisfy in an adapted security model if release-times were scrambled.

We believe that, in order to minimize the server’s knowledge about who is
talking to whom and enhance the protocol’s anonymity, it may be desirable
to even preclude such a scenario and guarantee the confidentiality of release-
times against anyone but intended recipients who can first unmask a part of
the received ciphertext using their private key and learn the release-time before
obtaining the corresponding trapdoor. We thus define a new notion called release-
time confidentiality that captures the inability for the server to decide under
which out of two release-times of its choice a given ciphertext was created.

Definition 4. A TRE scheme is said to provide release-time confidentiality
(or IND-RT-CCA security) if no PPT adversary A has a non-negligible advan-
tage in the game below:

1. Given 1k, the challenger CH runs the algorithms TRE.Setup(1k) and
TRE.User-Keygen to obtain a list of public parameters params and a pair
(upk, usk). CH gives params, the server’s private key tspriv and the public
key upk to A while the private key usk is kept secret.

2. A is given access to a decryption oracle TRE.Decrypt(.) which, given a
ciphertext (C, T) and the time-specific trapdoor sT (which is always com-
putable for the adversary who knows tspriv), returns the decryption of
C using the private key usk. At some moment, she outputs a plain-
text m∗ and two time periods T∗0, T∗1 before getting a challenge C∗ =
TRE.Encrypt(m∗, upk, params, T∗b), for b R← {0, 1}.

3. A issues a new sequence of queries but she is of course prohibited from
requesting the decryption of C∗ under the time periods T∗b . She eventually
outputs a bit b′ and wins if b′ = b. Her advantage is Advind-rt-ccaTR−PKE(A) :=
2× Pr[b′ = b]− 1.

Efficient and Non-interactive Timed-Release Encryption 301

5.1 The TRE1 Case

The TRE1 construction does not provide the confidentiality of release-times as
they must be appended to ciphertexts and thus transmitted in clear. However,
for applications that would require it, a very simple modification of TRE1 satisfies
the new property at the cost of a slight increase in the workload of the sender
who has to compute an additional multi-exponentiation while the complexity of
the decryption algorithm remains unchanged. The only change is that, instead of
being transmitted in clear within the ciphertext, the release-time T is scrambled
using a hash value of c′1 = grh1(T)TSr

pub (obtained from an additional random

oracle h4) which is also c
1/a
1 so that the receiver can first unmask it before ob-

taining the trapdoor.
In the random oracle model, the modified scheme, called TRE2, has the

release-time confidentiality property under the standard Diffie-Hellman assump-
tion in G1 (in order for this new security notion to rely on the latter assumption,
we need to feed hash function h2 with both c′1 and e(g, g)r in the encryption
algorithm) as claimed by theorem 3.

Theorem 3. Assume that an attacker A has an advantage ε against the release
time confidentiality of TRE2 in the sense of definition 4 when running a time
τ , making qhi queries to random oracles hi (i = 1, . . . , 4) and qD decryption
queries. Then there is an algorithm B solving the computational Diffie-Hellman
problem with a probability

ε′ > (ε− qh3/2k0−1)(1 − 2−k)qD

within a time τ ′ < τ + O(qh3τexp) + O((2qh3 + qh2 + qh4)τp) where τexp is the
maximum time to perform an exponentiation in G1 and in G2 and τp is the cost
of a pairing computation.

5.2 Release-Time Confidentiality in the Blake-Chan TRE

A very simple method allows adding the release time confidentiality property to
the scheme proposed in [8] at a minimal cost: a single additional exponentiation
in G1 is required at encryption while the decryption operation has essentially
the same cost as in the original scheme.

Interestingly, this modification allows proving the security under a weaker
assumption than for the original version (details will be given in the full version of
the paper): the IND-CTPA security is showed under the bilinear Diffie-Hellman
assumption while the IND-CPA and IND-RT-CPA securities both rely on the
hardness of the standard Diffie-Hellman problem. As for TRE1 and TRE2, the
chosen-ciphertext security is obtained via similar transformations to [20,21].

6 Conclusion

We proposed a new stringent security model for non-interactive timed-release
encryption schemes and presented a new efficient construction fitting this model.

302 J. Cathalo, B. Libert, and J.-J. Quisquater

References

1. S.-S. Al-Riyami , J. Malone-Lee, N.P. Smart, Escrow-Free Encryption Supporting
Cryptographic Workflow, available from http://eprint.iacr.org/2004/258.

2. S.-S. Al-Riyami , K.G. Paterson, Certificateless Public Key Cryptography, in Ad-
vances in Cryptology - Asiacrypt’03, LNCS 2894, pp. 452–473, Springer, 2003.

3. S.S. Al-Riyami , K.G. Paterson, CBE from CL-PKE: A Generic Construction and
Efficient Schemes , in proc. of PKC’05, LNCS 3386, pp. 398–415, Springer, 2005.

4. J. Baek, R. Safavi-Naini, W. Susilo, Token-Controlled Public Key Encryption, to
appear in proc. of ISPEC’05, LNCS series, 2005.

5. M. Bellare, A. Boldyreva, A. Desai, D. Pointcheval, Key-Privacy in Public-Key
Encryption, in Advances in Cryptology - Asiacrypt’01, LNCS 2248, pp. 566–582.
Springer, 2001.

6. M. Bellare, S. Goldwasser, Encapsulated key-escrow, 4th ACM Conference on Com-
puter and Communications Security, 1997.

7. M. Bellare, P. Rogaway, Random oracles are practical: A paradigm for designing ef-
ficient protocols, 1st ACM Conference on Computer and Communications Security,
pp. 62-73, 1993.

8. I. Blake, A.-C.-F. Chan, Scalable, Server-Passive, User-Anonymous Timed
Release Public Key Encryption from Bilinear Pairing, available from
http://eprint.iacr.org/2004/211/, 2004.

TRE.Setup: given a security parameters k, this algorithm chooses a a k-bit prime
number p, symmetric bilinear map groups (G1, G2) of order p, a generator g ∈ G1

and hash functions h1 : {0, 1}∗ → G
∗

1, h2 : G1 × G2 → {0, 1}n and h3 : G1 →

{0, 1}t. It also selects a private key tspriv := s
R← Z

∗

p and sets TSpub := gs ∈ G
∗

1

as the corresponding public key. The ciphertext space is C := G
∗

1 × {0, 1}n+t

while the space of plaintexts is M := {0, 1}n. The public parameters are then

params := {k, p, G1, G2, g, TSpub, e, h1, h2, n,M, C}.

TRE.TS-release: given T ∈ {0, 1}t, the server discloses a trapdoor sT = h1(T)
s.

TRE.User-Keygen: this algorithm takes as input params, chooses a private key
usk := a ∈ Z

∗

p and produces A’s public key upk := X = ga ∈ G
∗

1.

TRE.Encrypt: to encrypt m ∈ {0, 1}n for the time period T ∈ {0, 1}t and the

public key upk = X = ga, the sender chooses r
R← Z

∗

p and the ciphertext is

C = 〈c1, c2, c3〉 = 〈gr
, m ⊕ h2(X

r||e(TSpub, h1(T))
r), T⊕ h3(X

r)〉

TRE.Decrypt: given a ciphertext C = 〈c1, c2, c3〉 ∈ C, a private key a ∈ Z
∗

p, the
receiver computes c′1 = ca

1 ∈ G
∗

1 to obtain T = c3 ⊕ h3(c
′

1) ∈ {0, 1}t and recover
the plaintext m = c2 ⊕ h2(c

′

1||e(c1, sT)) ∈ {0, 1}n upon release of sT .

Fig. 2. The BC-TRE2 scheme

We also explained how to enhance the anonymity of ciphertexts at a minimum
cost in our scheme as in Blake and Chan’s one in accordance with a new formally
defined security property.

Efficient and Non-interactive Timed-Release Encryption 303

9. D. Boneh, X. Boyen, Short Signatures Without Random Oracles, in Advances in
Cryptology - Eurocrypt’04, LNCS 3027, Springer, pp. 56–73, 2004.

10. D. Boneh, X. Boyen, Efficient Selective-ID Secure Identity Based Encryption With-
out Random Oracles, in Advances in Cryptology - Eurocrypt’04, LNCS 3027,
Springer,pp. 223–238, 2004.

11. D. Boneh, X. Boyen, E.-J. Goh, Hierarchical Identity Based Encryption with Con-
stant Size Ciphertext , available at http://eprint.iacr.org/2005/015.

12. D. Boneh, M. Franklin, Identity Based Encryption From the Weil Pairing, in Ad-
vances in Cryptology - Crypto’01, LNCS 2139, pp. 213–229, Springer, 2001.

13. D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing, in Ad-
vances in Cryptology - Asiacrypt’01, LNCS 2248, pp. 514–532, Springer, 2001.

14. D. Boneh, M. Naor, Timed Commitments, Advances in Cryptology - Crypto’00,
LNCS 1880, pp. 236–254, Springer, 2000.

15. R. Canetti, S. Halevi, J. Katz, A Forward Secure Public Key Encryption Scheme,
Advances in Cryptology - Eurocrypt’03, LNCS 2656, pp. 254–271, Springer, 2003.

16. L. Chen, K. Harrison, N. Smart, D. Soldera, Applications of Multiple Trust Au-
thorities in Pairing Based Cryptosystems, in Infrasec’02, LNCS 2437, pp. 260–275,
Springer, 2002.

17. G. Di Crescenzo, R. Ostrovsky, S. Rajagopalan, Conditional Oblivious Transfer
and Timed-Release Encryption, in Advances in Cryptology - Eurocrypt’99, LNCS
1592, pp. 74–89, Springer, 1999.

18. Y. Dodis, J. Katz, Chosen-Ciphertext Security of Multiple Encryption, in TCC’05,
LNCS 3378, pp. 188–209, Springer, 2005.

19. Y. Dodis, D.-H. Yum, Time Capsule Signatures, to appear in proc. of Financial
Cryptography 2005, LNCS series, 2005.

20. E. Fujisaki, T. Okamoto, How to Enhance the Security of Public-Key Encryption
at Minimum Cost, in proc. of PKC’99, LNCS 1560, pp. 53–68. Springer, 1999.

21. E. Fujisaki and T. Okamoto, Secure integration of asymmetric and symmetric en-
cryption schemes, in Advances in Cryptology - Crypto’99, LNCS 1666, pp. 537–554.
Springer, 1999.

22. J. Garay, M. Jakobsson, Timed-Release of Standard Digital Signatures, in Financial
Crypto’02, LNCS 2357, pp. 168–182, Springer, 2002.

23. J. Garay, C. Pomerance, Timed Fair Exchange of Standard Signatures, in Financial
Crypto’03, LNCS 2742, pp. 190–207, Springer, 2003.

24. Y. H. Hwang, D. H. Yum, P. J. Lee Timed-Release Encryption with Pre-open Ca-
pability and its Application to Certified E-mail System, to appear in ISC’05, LNCS
series, 2005.

25. W. Mao, Timed-Release Cryptography, in Selected Areas in Cryptography’01,
LNCS 2259, pp. 342–357, Springer, 2001.

26. T. May, Time-release crypto, manuscript, February 1993.
27. M.C. Mont, K. Harrison. M. Sadler, The HP time vault service: Innovating the way

confidential information is disclosed at the right time, in 12th International World
Wide Web Conference, pp. 160–169, ACM Press, 2003.

28. I. Osipkov, Y. Kim, J.-H. Cheon, Timed-Release Public Key Based Authenticated
Encryption, available from http://eprint.iacr.org/2004/231.

29. R. Rivest, A. Shamir, D.A. Wagner, Time-lock puzzles and timed-release crypto,
MIT LCS Tech. Report MIT/LCS/TR-684, 1996.

30. F. Zhang, R. Safavi-Naini, W. Susilo, An Efficient Signature Scheme from Bilinear
Pairings and Its Applications, in proc. of PKC’04, LNCS 2947, pp. 277–290, 2004.

	Introduction
	Formal Definition and Adversarial Models
	Why CLE Does Not Imply TRE
	An Efficient TRE Construction Using Bilinear Maps
	The Scheme
	Efficiency Discussions
	Security
	Encrypting for Multiple Receivers

	Adding Release-Time Confidentiality
	The TRE1 Case
	Release-Time Confidentiality in the Blake-Chan TRE

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

