Speaking a Common Language: A Conceptual
Model for Describing Service-Oriented Systems

Massimiliano Colombo?, Elisabetta Di Nitto!, Massimiliano Di Penta?,
Damiano Distante?, and Maurilio Zuccala'!

! CEFRIEL - Politecnico di Milano,

Via Fucini 2, 20133 Milano, Italy
dinitto@elet.polimi.it, {mcolombo, zuccala}@cefriel.it
http://www.cefriel.it
2 RCOST — Research Centre on Software Technology,
University of Sannio, Department of Engineering,
Palazzo ex Poste, Viale Traiano, 82100 Benevento, Italy
{dipenta, distante}@unisannio.it
http://www.rcost.unisannio.it

Abstract. The diffusion of service-oriented computing is today heavily
influencing many software development and research activities. Despite
this, service-oriented computing is a relatively new field, where many as-
pects still suffer from a lack of standardization. Also, the service-oriented
approach is bringing together researchers from different communities or
from organizations having developed their own solutions. This introduces
the need for letting all these people communicate with each other using
a common language and a common understanding of the technologies
they are using or building.

This paper proposes a conceptual model that describes actors, ac-
tivities and entities involved in a service-oriented scenario and the re-
lationships between them. While being created for a European project,
the model is easily adaptable to address the needs of any other service-
oriented initiative.

1 Introduction

Service-oriented computing represents a conceptual approach and a set of tech-
nologies that are greatly contributing to radically change the perspective of
today’s software development. Services are an effective solution to let software
systems, developed by different organizations and spread across the world, in-
teroperate. One typical example is, for sure, the one of bioinformatics [I], where
services allow an easier integration of solutions developed by different research
groups, each one having different skills and using various development tech-
nologies. Also, services permit to parallelize computational-intensive tasks: Grid
Computing is probably the most relevant example in which parallel computing
can benefit from services.

Lately, interesting challenges such as automatic service discovery, composi-
tion, or verification, have pushed several researchers, coming from different fields

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 48-[60] 2005.
© Springer-Verlag Berlin Heidelberg 2005

Speaking a Common Language: A Conceptual Model 49

and communities, to put together their efforts. However, service-oriented com-
puting is still a relatively new field. There are too many different issues that
are not yet mature, lacking standardization or even full comprehension by re-
searchers. A significant example of these problems is ensuring trustworthiness [2]
between interacting parties. There are attempts to identify approaches solving
the issue under specific constraints, which usually imply the preliminary es-
tablishment of a service level agreement (SLA). However, the issue of offering
mechanisms to enable trust in a dynamically changing set of services is still open.

More in general, there is no common terminology nor common understanding
on the basic concepts of the service domain. For example, in some cases services
are assimilated to components, while in some others they appear to be a distinct
even if related concept. This introduces the need for a rationalization of activi-
ties, entities, and stakeholders involved in the service-oriented scenario, clearly
indicating their meaning and their relationships.

Working within the SeCSE European project [3] — which aims at developing
processes, methods and tools to develop service-oriented systems — we faced the
urgent need to provide a clear definition of the concept of service and of the re-
lated concepts concerning service publication, discovery, composition, execution,
and monitoring, as a common reference for partners involved in the project. As
we discuss in Sect. [l although other conceptualization attempts have been pro-
posed in the literature, they focus on aspects that are different or complementary
to our goals.

This paper presents our conceptual model for service-oriented systems. Even
if it has been originally created to deal with the needs of the SeCSE project,
its main principles should fit any service-oriented scenario. The model describes
actors, entities, and activities relevant to the service domain, and the relation-
ships existing between them. The model is specified using UML class diagrams
complemented with a data dictionary. To properly ensure the model understand-
ing, we have instantiated it on a simple scenario. The remainder of the paper is
organized as follows. Sect. 2] presents the requirements for our conceptual model.
Sect. Bl presents the model itself describing the diagrams it is composed of. Sect.]
introduces the scenario we use to exemplify the conceptual model. Sect. Bl sum-
marizes other attempts to conceptualize the world of service-oriented systems
and relates them to our approach. Sect. [l concludes the paper.

2 Requirements for the Conceptual Model

The definition of our conceptual model has been driven by the need to provide a
common conceptual framework within the SeCSE project. The first two (meta)
requirements we faced were compactness — thus avoiding the redundancies and
inconsistencies we found in other models (see Sect. Bl) — and extensibility — thus
enabling the possibility to add new concepts, relationships, and activities to the
model itself. Moreover, for the sake of generality, we decided to keep the model
independent of any technological choice or standard, even if the SeCSE project
is currently focusing on Web services as its main technology.

50

M. Colombo et al.

Such overall needs led to the following more specific requirements:

— To clarify the meaning of ‘service’. We have noticed that this term is being

used in quite different ways in various domains. For example, in the tech-
nical domain it is usually considered as a particular software system that
can be published, located, and invoked across the Internet. In the business
domain it has a much broader and abstract meaning, and it is defined as the
non-material equivalent of a good, while service provision is defined as an
economic activity that does not result in ownership; this is what differenti-
ates it from providing physical goods.

To clarify the difference between a service and its public description. A ser-
vice is really available if information on how to access it is made public. In
some cases services are confused with their public descriptions. While this
is understandable from the service consumer viewpoint, we think that for
service developers and integrators it is beneficial to highlight differences and
relationships between those concepts.

To clarify the distinction between ‘simple’ vs. ‘stateless’, and ‘composite’
vs. ‘stateful’” services. While in [4] there is no clear distinction between the
elements of these two pairs, we think that they are distinct if not orthogonal.
In particular, we argue that the term ‘stateful’ refers to the possibility for
a service to maintain a state between two consecutive operation requests,
while the term ‘stateless’ has the opposite meaning. Moreover, we feel that
the terms ‘simple’ and ‘composite’ are better used to mean, respectively,
services that do not rely on the execution of others, and services that do so.
To identify the various stakeholders that exploit, offer, and manage services.
Various actors are involved in a service-oriented system. Besides the usual
roles of service consumers and providers, we have noticed that other im-
portant roles are the different mediators who compose or certify services,
support service discovery, etc. Indeed, we have also noticed that such roles
are increasingly played by automated agents, not only by human beings.
To capture the relevant aspects concerning service discovery, composition,
publication, execution, and monitoring. These, in fact, are the main research
areas of the SeCSE project. More in detail, the project is structured in the
following research activities:

e Service engineering: extending the existing approaches to service and sys-
tem specification in order to include requirements capable of modeling,
from a service perspective, quality of service (QoS) specifications, and
to provide support for using these specifications within service discovery
and binding mechanisms. The project is also developing approaches and
tools for service testing.

e Service discovery: providing means to discover services in different phases
of the service life-cycle, from requirement analysis to run-time execution.

e Service delivery: focusing, at deployment and operation level, on tools
and techniques for the validation, testing and run-time monitoring of
services and service-centric systems.

Speaking a Common Language: A Conceptual Model 51

e System engineering: focusing on the analysis and development of archi-
tectural models for service-centric systems that accommodate services,
components, and their dynamic composition.

3 Conceptual Model Overview

The SeCSE conceptual model aims at providing a common terminology across
the project. It has been designed as a compact and extensible model that takes
into account all the service-related concepts that have been identified inside the
project. The model is specified using UML and is described by means of different
diagrams, each offering a view on a specific aspect of the service-oriented system
engineering process. Namely these diagrams are: Agent-Actors, Core, Service
Description, Service Discovery, Service Composition, Service Monitoring and
Service Publication. In the remainder of this section we briefly describe each
diagram (conceptual model items are capitalized and formatted in italic the first
time they appear). We only show the most interesting ones due to the limited
space available. The interested reader can find all the diagrams in the extended
technical report [5]. It is worth pointing out that any ontology-based language
could be used instead of UML for describing the model.

3.1 Agents and Actors

A very important aspect concerning the development and operation of any appli-
cation is to identify the stakeholders and the roles they play. This is particularly
important for service-oriented systems since in this case, as we have highlighted
in Sect. 2, the number of different stakeholders and roles can be quite high. We
use the term Agents to mean entities of the real-world, and Actors to indicate
roles that Agents may play. Agents include Person or Organization, Software
System, Service and Legacy System. Actors include Service Provider, Service
Deweloper, Service Integrator, Service Broker, Service Consumer, Service Moni-
tor, Service Certifier and System Engineer. In principle, an Agent can take any
of the roles identified by Actors (e.g., a Person can act as an Operation Provider),
and vice versa a role can be taken by any Agent (e.g., a Service Consumer can
either be a Person or a Service). Some of the identified Actors are represented
in the Core model in Fig. [l while a complete diagram showing the hierarchy of
Agents and Actors can be found in [5].

3.2 Core Model

Fig. I depicts the main concepts that are part of the conceptual model, and
highlights the main Actors that interact with them. A Service is a particular
concrete Resource which is offered by a Software System.

A Service has a Service Description. In order to discover a Service, a Service
Consumer can express a Service Request that may match with zero or more

52

M. Colombo et al.

x

Service Developer

X

Service Provider

develops

%4{ System }<,,_{ Software System ‘
-

System Engineer

x

Service Certifier

Resource

develogs

cartifies defines

B or

Sernvice Additional Information

0.1 o

develops
—

Senvice Integrator

provides
1

Operation Provider

g
vice
0*
0.850.7
consgelizes
senyes 0.7

Abstract Service | ‘S rapresented |
0.r e 0

5
reprogenis

0 N
0+ Service Request -

Service Property 10

T

Senvice Description

1r
1
1

malches

fied by

Is defined by

Senvice Redistry

1

Service Consumer

invokes

monitors

defines

defines

=

Service Monitor

Fig. 1. Core model

Service Descriptions. After being discovered, a Service will serve the Service Re-
quest, i.e., it will be used by the Service Consumer that invokes its Operations.
Either a Service Request or a Service Description by itself can represent an Ab-
stract Service, i.e., the ‘idea’ of a service, a service that does not have a concrete
implementation (yet). An Abstract Service can be published, discovered, and
then concretized when needed in a (concrete) Service. A Composed Service is a
particular kind of Service, developed by a Service Integrator, which makes use
of other Services.

3.3 Service Description

An important aspect of services is their Service Description. In fact, it is through
such a description that they are known by the potential consumers. In our model
both aspects of a Service Description, i.e., Service Specification and Service
Additional Information, are expressed by means of Facets. Each Facet is the
expression of one or more Service Properties in some specification language. A
Service Specification is usually provided by the Service Provider and may include
both functional and non-functional information such as the service interface,
service behavior, information on service exceptions, test suites, or service QoS
attributes. The Service Additional Information is usually provided by actors
different from the Service Provider (e.g., by Service Consumers, or by Service

Speaking a Common Language: A Conceptual Model 53

Certifiers) and may include information such as user Ratings, Measured QoS,
Usage History, some measure of trustworthiness, etc.

3.4 Service Discovery

Service discovery can be performed in various phases of a service—oriented system
life cycle. It can be done when the requirements for a new system are gathered
(within the SeCSE project this is called ‘early discovery’), when the system is
being designed and new specific needs for services are identified (in SeCSE this is
called ‘Architecture-time discovery’), or when the system is running. Run-time
discovery has the goal of finding Services that can replace the ones that the
system is currently using or, also, part of the internal logic of the system itself.
Consistently with this classification, the conceptual model includes three types
of queries that are executed in the three cases described above.

3.5 Service Composition

Fig. Pl presents the classification of a Service with respect to its state (i.e., state-
less vs. stateful) and its compositeness (i.e., simple vs. composed), already dis-
cussed in Sect. 2l The diagram also shows the relationships existing between a
Composed Service and the adopted Composition Architectural Styles, the Roles
a Service can accordingly play, etc. In addition, the diagram links the concept

has

Senice Description
g 1

T

Serice Sy
1

performs

Invalves

[plays Role
L

0.
defines | 1.7

I

I
i 1.* Composition | —
‘ style

comples with

3 using
I

Composed Service

Sirnple Service

relates to

Simple Stateful
Service

1

Simple Stateless omposed Stateless| |Composed Stateful
Senice Senice Senvice 1

Interaction Model Composition Primitive

I

Stateless Senvice raguiates the exchange of

I

Message

135 1 | Current Senice State

—‘ Stateful Senice

Fig. 2. Service composition

54 M. Colombo et al.

of Transaction and Work Unit with a Service: a Service performs Transactions,
which are composed of Work Units (these are atomic steps for which some prop-
erty applies, e.g., ACID). A Policy associated with a Transaction is a collection
of assertions that declare the semantics of the Transaction itself (e.g., ACID or
long-running, participants, coordination protocol, transaction faults and corre-
sponding actions to be performed, etc.).

3.6 Service Monitoring

Monitoring is very important in a service-oriented scenario where the services
being used within a system are not under the control of the system itself. Fig. 3]
depicts the main concepts and the relationships involved in monitoring. A Service
can be monitored if the software system that features it offers some appropri-
ate monitoring mechanisms, i.e. the Monitoring Sockets. A Monitoring Socket
is able to produce some Monitoring Data that are then checked by some Mon-
itoring Rule, to verify some Monitored Constraints expressed over one or more
Quality Metrics. These, in turn, express some measure of some Service Prop-
erty (see Sect.[B3). Service Properties can refer either to an entire Service (e.g.,
Mean Time Between Failure (MTBF) of 1 hour per week) or to one or more
Operations offered by the Service itself (e.g., operation ‘X’ has to feature some
transactional property). Monitoring Data can be collected in a History. In some
cases the Monitored Constraints check an entire History rather than a single
datum. Service monitoring is performed by a Service Monitor. The kind of prop-

moniiors

1
exposes
Service JW--* o 0" [monitoring Sacket |— Y98
1 o 1
produces Service Monitor
0+
perfans —
Maonitoring Datum
K
populates

15 asgsociated with

selecid

1.7 1.x 0.r
. < o B
Operation Is assoclated Service Property
with

0. T

has|

1.7 1

Quality Metrics |_"S28AC8S [Monitored Constraint references
1.7 0r 1

1

Maonitoring Rule

references

0 f.1

Recavery Action

Fig. 3. Service monitoring

Speaking a Common Language: A Conceptual Model 55

erties involved in a Monitored Constraint usually depends on the actual agent
that performs the monitoring and on its visibility on the service execution.

3.7 Service Publication

The service publication model addresses the fact that a Service Provider can
publish one or more Service Descriptions on a Service Registry. Service Reg-
istries can be organized in Federations resulting from an agreement made by
organizations running Service Registries to achieve a joint aim (e.g., being fo-
cused on a similar topic, having some trust relationship, etc.). Federations can
be used to propagate information (e.g., Service Requests or Service Descriptions)
among different Service Registries.

4 An Example Scenario: The Pizza Delivery System

In this section we exemplify the concepts composing the conceptual model pre-
sented in Sect. [3] by describing an example scenario. We firstly describe the
scenario from a service consumer viewpoint. Then, we provide a description of
the scenario from a behind-the-scenes perspective. Finally, we explicitly map
the conceptual model component elements over the scenario. Services are for-
matted in typewriter style, while in Sect.[£3 conceptual model items are again
capitalized and formatted in italic the first time they appear.

4.1 Pizza Delivery System: The Service Consumer Viewpoint

James and his wife Sarah want to have pizza for dinner at home. Through his
PDA, James connects to the service directory of his Internet Service Provider
(ISP) and searches for ‘pizza’. He gets assorted results (pizza restaurants, pizza
parlors offering delivery or takeaway, supermarkets selling frozen pizzas, recipes
to prepare and bake pizza at home, etc.).

James refines his request searching for ‘pizza parlor and delivery’. Then he
selects one of the available parlors, taking into account criteria such as oven type,
price range, maximum delivery time and rating expressed by previous clients of
that service. The selected service is PizzaOverall.

James accesses the PizzaOverall service interface and orders two pizzas pro-
viding his and Sarah’s preferences as for topping and baking options (with pep-
peroni and crusty for James, with mushrooms and soft for Sarah) together with
other required information such as delivery address and time. He invokes the
proper service operations providing necessary input data.

James is also requested to select a payment method to complete the order. He
chooses to pay by credit card, so he has to provide further details such as card
company, card number, expiration date, etc. After this, the service invocation is
finished and James receives a receipt via e-mail with a detailed summary.

At 8 p.m., perfectly on time, a delivery boy knocks at James and Sarah’s door
and delivers their pizzas. James signs a delivery receipt on the delivery boy’s
PDA which records the delivery time and completes the payment transaction.

56 M. Colombo et al.

James and Sarah have a very nice dinner and at the end, since they are very
satisfied of the service received, they decide to recommend the service to other
Internet users.

4.2 Pizza Delivery System: Behind the Scenes

Pizza0verall, the service chosen by James, is a ‘virtual’ pizza parlor: it repre-
sents a service capable of dynamically discovering and combining actual services
in order to accomplish its task. In particular, PizzaOverall has to discover
and compose services such as an actual pizza parlor, a delivery service, and a
payment gateway service.

In order to discover other services, PizzaOverall relies on the ‘local’ registry
made available by its service provider. Through the discovery phase, Pizza-
Overall can find services that, once properly composed, can satisfy James’s
request and meet the related criteria (price range, delivery time, etc.).

PizzalOverall finds PizzaExpress, a pizza parlor which also offers deliv-
ery. The credit card transaction will be handled through PayBridge, as most
of PizzaOverall payment transactions. In this case there was no need to dy-
namically discover a payment gateway since PayBridge is a well-known service,
which, in addition, offers to its clients a price per transaction decreasing with
the number of processed transactions.

PizzaOverall forwards James’s order to PizzaExpress. PizzaExpress
starts to bake two pizzas as requested, but then it encounters a problem: its
drivers unexpectedly go on strike. PizzaOverall recognizes that PizzaExpress
will not be able to perform the delivery task, so a substitutive service has to be
found not to loose James’ order.

PizzaOverall searches the registry again, this time broadening the search
scope: this is possible because the local registry links to other external registries,
so service requests can be properly propagated to other registries (e.g., follow-
ing a topic-based approach). PizzaOverall discovers a delivery service, named
PizzaWherever, which is likely to solve the delivery issue. A delivery is booked
in order to pick up the pizzas baked by PizzaExpress and bring them to James’s
place all the same.

PizzaWherever has tens of delivery boys spread all over the city, driving bikes
or mopeds equipped with wireless devices that they use to receive delivery orders,
directions, and to communicate delivery status information to PizzaWherever’s
central logistic system.

One delivery boy is thus notified to pick up two pizzas at PizzaExpress’s
parlor at 7.45 p.m., and to promptly deliver them to James’s place. He reaches
James’s apartment at 8 p.m. sharp. PizzaWherever, and then PizzaOverall in
turn, are notified of the final delivery, as James signs the delivery receipt. All
the pending payment transactions are finalized as well.

Another service, named DeliveryMonitor, transparently to James and
Sarah, has followed the pizza order and delivery process, and is also notified
of the time of delivery, then stored in the service history.

Speaking a Common Language: A Conceptual Model 57

4.3 Explaining the Mapping Between the Example and the
Conceptual Model

James is a Person acting as a Service Consumer. He uses his PDA to query
his ISP Service Registry in order to discover Services and then invoke the
Operations they expose. James’s ISP is an Organization acting as a Service
Provider.

James’s Service Requests (e.g., ‘have pizza for dinner’) can be considered as
Abstract Services, i.e., they represent the description (more or less detailed) of
Services.

Through the discovery phase, James finds one or more Service Descriptions
of one or more abstract or concrete Services that match or are relevant to his
Service Requests. In particular, Service Requests are matched up with the Ser-
vice Properties. Service Properties may belong to the Service Specification (i.e.,
type of oven, price range) or to the Service Additional Information (e.g., ratings
expressed by previous customers) stored in the Service Registry by means of
Facet structures. The Service Specification and Service Additional Information
form the Service Description.

PizzaOverall, the Service James has chosen, is actually an Abstract Service,
i.e., it describes a Service which does not correspond to any fixed concrete imple-
mentation. Such an Abstract Service has been published by the ISP itself on its
own Service Registry, in order to globally represent a possible way to compose
some of the available concrete Services.

James’s choice to invoke PizzaOverall leads to the concretization of the
Service which will actually satisfy his request. PizzaOverall is concretized by
means of a Service Integrator, that is able to perform dynamic Composition of
Services, based on the goals to be achieved (i.e., pizza baking, delivery, and pay-
ment), and according to one or more specific Composition Architectural Styles
(e.g., peer to peer). The resulting process is annotated with assertions which
enable run-time monitoring. For example, the fact that PizzaExpress could
not perform the delivery corresponds to a violation of the postcondition of its
Operation ‘bake and delivery’, thus triggering a proper Recovery Action (i.e.,
federated discovery of a delivery service) leading to run-time discovery of a sub-
stitute Service. This time the discovery phase involves external Service Reg-
istries which are linked by the local registry and form with this a Federation of
Registries.

PizzaWherever’s central logistic system can be seen as a Legacy System, which
has been enabled to communicate with delivery boy’s wireless devices. PayBridge
is a Stateful Service, i.e., the results of its invocation depend also on its inner Cur-
rent Service State (e.g., number of previous invocations by the same
consumer).

The feedback provided by James and Sarah enriches the Service Additional
Information available for PizzaOverall. DeliveryMonitor, finally, is a Service
Monitor that tracks James’s order till the pizzas are delivered, and uses proper
Metrics to measure PizzaOverall service properties, such as delivery time, then
storing the Monitoring Data in the service History.

58 M. Colombo et al.

5 Related Work

Several attempts to conceptualize the world of services can be found in the
literature, and our work was initially inspired by some of them. In particular, our
core model is rooted in the Web Service Architecture (WSA) [6] drafted by the
W3C. The WSA conceptual model is structured in four parts each focusing on a
specific aspect, namely the service (Service Model), messages (Message Oriented
Model), resources (Resource Oriented Model), and policies that can constrain
resources and behaviors (Policy Model).

In general, the WSA model and our model can be seen as complementary
since we do not fully address the message oriented, resource oriented, and policy
models of the WSA, but we try to clarify and detail more than the WSA does
the concept of service, as well as all the concepts relevant to the service-related
activities (i.e., publication, discovery, composition, and monitoring). Also, we try
to clarify the relationships between the concepts of service description, semantics,
and service interface, while the distinction among these concepts is not evident
in the WSA. Moreover, we have choosen a different approach to characterize
agents and actors which allows us to express the fact that roles can be covered,
in principle, by any agent and vice versa.

Our model also has similarities with the Service-Oriented Solutions Approach
(SOSA) [7] proposed by Computer Associates International, Inc. technology ser-
vices department. The SOSA conceptual model is part of a method that aims to
maximize the potential of Web services and SOA within medium and large enter-
prises. Such method is based on best practices (e.g., tracks, techniques, work pack-
ages, and deliverables) for service-oriented development [7]. The SOSA model has
a complementary relationship to our model since it focuses more on service inter-
faces and business oriented issues, while it is less detailed with respect to other
aspects related, e.g., to the publication, discovery, and execution of services.

Our model is quite different in objectives and scopes to other works such
as OWL-S [] and the Web Services Modeling Ontology (WSMO) [§]. A first
difference between our model and OWL-S stands in their different objectives.
Our model provides a common understanding for human readers about the main
actors, entities and artifacts that are somehow involved in the creation of a
service-centric system. On the contrary, the OWL-S ontology was created to
provide a computer-interpretable description of a service (particularly, web-based
services), to allow software agents to discover, invoke, compose, and monitor
Web resources offering services having particular properties. As a consequence,
the OWL-S ontology pursues a very detailed service description suitable for the
needs of software agents. On the other hand, our model tries to embrace a larger
application domain than OWL-S, i.e., the overall set of main actors and concepts
involved in the various steps of the service-centric system creation process.

The WSMO, in line with the Web Services Modeling Framework (WSMF) [9],
aims at providing a conceptual model for developing and describing Web services
and their composition by means of a language (Web Services Modeling Language,
WSML) and an execution environment (Web Services Modeling eXecution Envi-
ronment, WSMX). The WSMF consists of four different main elements: ontologies

Speaking a Common Language: A Conceptual Model 59

that provide the terminology used by other elements, goal repositories that define
the problems that should be solved by Web services, Web services descriptions that
define various aspects of a Web service, and mediators which bypass interoperabil-
ity problems. The WSMO extends these main elements by defining a set of cross-
wise non-functional properties named core-properties. WSMO mainly focuses on
service descriptions, i.e., pre and post-conditions, non-functional properties, etc.
Differently from our model, it does not provide a conceptual model of some key
activities of a service-centric scenario, such as discovery, delivery, and monitoring.

6 Conclusions

The aim of this work is to provide a conceptual model that is complementary to
the ones already presented in the literature, and is focused on the main issues
concerning the development and operation of service-oriented systems.

We are currently enacting the adoption of the model within the SeCSE project
as a unique reference for definitions and main concepts for the whole consortium.
We experimented the first release of the model by having the other project
partners check if their main ideas, requirements, and technical solutions fit into
it. All partners provided comments and inputs that will be included in the next
releases.

The model now plays a key role in the project, since it is used as a means
for exchanging ideas and results in a coherent framework, thus helping every
partner to better achieve the project goals (e.g., the development of a platform
supporting the life cycle of SOA-based solutions).

The interest of the project partners, their willingness to participate in our
discussions, and the number of debates we are still triggering convince us that
the model can evolve to become a good common language, not necessarily limited
to the SeCSE project.

Our model is already being exploited by the European Commission (Direc-
torate D — Network and Communication Technologies, Software Technologies)
as a framework to classify and explain the European projects related to service
development [10].

Acknowledgements

This work is framed within the IST European Integrated Project SeCSE (Service
Centric Systems Engineering) [3], 6th Framework Programme, Contract No.
511680. We thank all our partners in the project for their valuable comments
and proposals aiming at improving the conceptual model.

References

1. Hong Gao, T., Huffman Hayes, J., Cai, H.: Integrating Biological Research through
Web Services. IEEE Computer 38 (2005) 26-31

2. de Mes, A., Rongen, E.: Technical note: Web service credentials. IBM Systems
Journal 42 (2003) 532-537

60

w

10.

M. Colombo et al.

. SeCSE Website: hitp://secse.eng.it/ (2005)
. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S.,

Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: OWL-S: Semantic Markup for Web Services. W3C Member Submission (2004)

. Colombo, M., Di Nitto, E.; Di Penta, M., Distante, D., Zuccala, M.: Speaking a

Common Language: A Conceptual Model for Describing Service-Oriented Systems.
Technical report, RCOST (2005) hitp://www.rcost.unisannio.it/mdipenta/cm.pdf.

. W3C: Web Services Architecture (WSA). W3C Working Group Note 11 February

2004. (2004)

. Lefever, B.: Service-Oriented Solutions Approach (SOSA). Technical report, Com-

puter Associates International, Inc. (2005) hitp://www.ca.com/be/english/past-
events/lunch-s3/041209-sosa-lb-final-lefever. pdf.

. de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Kifer, M., Konig-

Ries, B., Kopecky, J., Rubén, L., Oren, E., Polleres, A., Scicluna, J., Stollberg, M.:
Web Service Modeling Ontology WSMO (2005)

. Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF. Electronic

Commerce: Research and Applications (2002) 113-137

Sassen, A.M., Macmillan, C.: The service engineering area: An overview of its
current state and a vision of its future. Furopean Commission, Directorate
D — Network and Communication Technologies, Software Technologies (2005)
ftp://ftp.cordis.lu/pub/ist/docs/directorate d/st-ds/sota v1-0.pdf.

	Introduction
	Requirements for the Conceptual Model
	Conceptual Model Overview
	Agents and Actors
	Core Model
	Service Description
	Service Discovery
	Service Composition
	Service Monitoring
	Service Publication

	An Example Scenario: The Pizza Delivery System
	Pizza Delivery System: The Service Consumer Viewpoint
	Pizza Delivery System: Behind the Scenes
	Explaining the Mapping Between the Example and the Conceptual Model

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

