Semantic Management of Web Services

Daniel Oberle?!, Steffen Lamparterl, Andreas Eberhart?, and Steffen Staab®

! Institute AIFB, University of Karlsruhe, Germany
lastname@aifb.uni-karlsruhe.de
2 Hewlett-Packard, Waldorf, Germany
andreas.eberhart@hp.com
3 ISWeb, University of Koblenz-Landau, Germany
staab@uni-koblenz.de

Abstract. We present semantic management of Web Services as a paradigm that
is located between the two extremes of current Web Services standards descrip-
tions and tools, which we abbreviate by WS*, and Semantic Web Services. On
the one hand, WS* does not have an integrated formal model incurring high costs
for managing Web Services in a declarative, but mostly manual fashion. On the
other hand, the latter aims at the formal modelling of Web Services such that
full automation of Web Service discovery, composition, invocation, etc., becomes
possible — thereby incurring unbearably high costs for modelling. Based on a set
of use cases, we identify who benefits from what kind of semantic modelling of
Web Services, when and for what purposes. We present how an ontology is used
in an implemented prototype.

1 Introduction

Different Web Service standards, we refer to them as WS*, factorize Web Service man-
agement tasks into different aspects, such as input/output signatures, workflow, or se-
curity. The advantages of WS* are multiple and have already benefited some industrial
cases. WS* descriptions are exchangeable and developers may use different implemen-
tations for the same Web Service description. The disadvantages of WS*, however, are
also visible, yet: Even though the different standards are complementary, they must
overlap and one may produce models composed of different WS* descriptions, which
are inconsistent, but do not easily reveal their inconsistencies. The reason is that there
is no coherent formal model of WS* and, thus, it is impossible to ask for conclusions
that come from integrating several WS* descriptions. Hence, solving such Web Service
management problems or asking for other kinds of conclusions that derive from the in-
tegration of WS* descriptions remains a purely manual task of the software developers
accompanied by little to no formal machinery.

Researchers investigating Semantic Web Services have clearly articulated these short-
comings of WS* standardizations and have been presenting interesting proposals to
counter some of them [1,2]. The core of their proposals lies in creating semantic stan-
dards. Their principal objective is a wide-reaching formalization that allows full au-
tomation of the Web Service management tasks such as discovery and composition. The
potential advantage is the reduction of management efforts to a minimum; the disadvan-
tages, however, are also apparent: Neither is it clear, what kind of powerful machinery
could constitute a semantic model that would allow for full automation, including all

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 514-[319] 2005.
(© Springer-Verlag Berlin Heidelberg 2005



Semantic Management of Web Services 515

aspects of all web services that might matter in some way, nor does it appear to be pos-
sible that real-world developers could specify a semantic model of Web Services that
would be fine-grained enough to allow for full automation anytime soon.

Therefore, we postulate that semantic management of Web Services should not try
to tackle full automation of all Web Service management tasks as its objective. We
claim that the full breadth of Web Service management requires an understanding of
the world that is too deep to be modelled explicitly. Instead, we foresee a more passive
role for semantic management of Web Services. One that is driven by the needs of the
developers who must cope with the complexity of Web Service integration and who
could use valuable tools for integrating previously separated aspects.

It is the contribution of this paper to clarify what kind of objectives could and
should be targeted by semantics modelling of Web Services and to present a prototype
that implements this framework. The kind of objectives that are to be approached are
constrained by a trade-off between expending efforts for managing Web Services and
expending efforts for semantic modelling of Web Services. At the one end, the ob-
jective of full automation by semantic modelling will need very fine-grained, detailed
modelling of all aspects of Web Services — essentially everything that an intelligent
human agent must know. Thus, modelling efforts skyrocket at the end of fine-grained
modelling. At the other end, where modelling is very coarse and little modelling facili-
tates management, management efforts of distributed systems soar as experiences have
shown in the past.

In this paper we try to approach the trade-off by identifying promising use cases. The
use cases demonstrate that some management tasks can be facilitated by a justifiable
amount of semantic modelling (section[2)). For each use case, we identify who benefits
from what kind of semantic modelling of Web Services, when and for what purposes.
In addition, the use cases allow us to derive a set of modelling requirements for an
appropriate management ontology which has been presented in [5]. We describe our
implemented prototype, and detail how one of the use cases is realized by this system
(cf. section[3)) before we conclude.

2 Use Cases

This section discusses three use cases that trade off between management and modelling
efforts (an extensive survey of use cases is given in [4]). That means, they propose to
facilitate some of the typical Web Service management tasks by a justifiable amount of
semantic descriptions (i.e., metadata in terms of an ontology). They try to approach the
trade-off point by answering the following questions:

Question 1. Who uses the semantic descriptions of Web Services?

We see two major groups of users constituted by (i) software developers and (ii)
administrators. These two groups of users have the need to predict or observe how Web
Services interact, (might) get into conflict, (might) behave, etc. It will be very useful
for them to query a system for semantic management of Web Services that integrates
aspects from multiple WS* descriptions — which has not been possible so far, but is
now allowed by the approach and system we present here.



516 D. Oberle et al.

Question 2. What does he/she/it use the semantic descriptions of Web Services for?

There is a large number of use cases where the integration of semantic descriptions
may help the developer or administrator. Hence, the list below is neither exhaustive nor
are the individual use cases mutually exclusive. The reader may note that it is germane
to semantic descriptions to state what there is and not how it is to be combined and what
is its sole purpose.

Question 3. When does he/she/it use the semantic descriptions of Web Services?
We consider development time, deployment time and runtime.
Question 4. Which aspects should be formalized by our ontology?

The answers to the last questions let us derive a set of modelling requirements for a
suitable ontology.

Detecting Loops in Interorganizational Workflows. Web Services based applications
usually make use of asynchronous messaging, bringing upon quite complex interaction
protocols between business partners. Current workflow design workbenches only visu-
alize the local flow and leave the orchestration of messages with the business partners
up to the developer. Enough information is available in machine-readable format such
that a tool can assist the developer in this task. For instance, the structure of the local
flow can be combined with publicly available abstract flows of the partners in order to
detect loops in the invocation chain that would lead to non-termination of the system.
As shown in the bioinformatics domain [3]], automated composition of workflows is
likely to be inappropriate in most cases. Hence, we propose to support the developers
in their management tasks and not to replace them.

Who: Developer When: Development time
What for:  Code debugging Which aspects: Workflow information (plans)

Policy Handling. Policies play an increasing role, as demonstrated by the recent WS-
Policy proposal. The idea of a policy is to lay out general rules and principles for service
selection. Thus, rather than deciding whether an invocation is allowed on a case by
case basis at runtime, one excludes services whose policy violates the local policy at
development time. The major benefit is that policies can be specified declaratively. This
use case does not aim at fully automated policy matching at run time, as we think
that the full generality of policy matching imposes further problems that remain to be
solved. Let alone the lack of WS-Policy engines so far. Instead we propose to apply
semantic modelling in order to make policy handling more convenient for the developer.
As our running example, we consider a large WS-BPEL workflow where checking for
external task service invocations which are associated with a policy remains a tedious
and manual task.

Who: Developer, System What for: Excluding unsuitable services
When: Development time Which aspects:Policies

Aggregating Service Information. Services will often be implemented based on other
services. A service provider publishes information about its service. This might include
service level agreements indicating a guaranteed worst-case response time, the cost
of the service, or average availability measures. The service requestor, in this case a



Semantic Management of Web Services 517

composite service under development, can collect this information from the respective
service providers. In turn, it offers a service and needs to publish similar measures. The
semantic management must support the administrator supports the administrator by pro-
viding a first cut of this data by aggregating the data gathered from external providers.
Similar to the statements given in [3]], we argue that full automatic generation of such
data will probably yield unwanted and inappropriate results. We see the computation
results as an estimate which can be overridden manually by the administrator.

Who: Administrator What for: Suggestion for deployment parameters
When: Deployment time Which aspects: Quality of service

The answers to Which aspects? give us a clear indications of what concepts a suitable
management ontology must contain. The organization of these concepts into our Core
Ontology of Web Services is described in [S]].

3 KAON SERVER

This section presents our prototype for semantic management of Web Services, called
KAON SERVER!] We first discuss its architecture and demonstrate how it realizes our
policy handling use case.

3.1 Overview

KAON SERVER is based on the open-source application server J Bos? and applies the
tools of the KAON ontology toolsuite for reasoning and querying with the various as-
pects of Web services according to our Core Ontology of Web Services [S]. KAON
SERVER obtains semantic descriptions from existing WS* descriptions, programme
code, performance measurements, code reflection and modelling tools already in use.
Obtaining comprises: i) parsing the XML documents, ii) extraction of relevant tags and
iii) addition of the extracted information as instances to the ontology. The Metadata
Collector component of the KAON SERVER carries out this task by taking the URLs
of WS* descriptions as input. Runtime information stemming from monitoring compo-
nents can be integrated, too. Another advantage of our approach is that the application
logic (servlets, EJBs) may exploit the inference engine by reflection techniques in order
to reflect on its own status. Finally, the developer might query the inference engine by
using the admin console which is essentially an ontology browser with query interface.

3.2 Realizing the Policy Handling Use Case with the KAON SERVER

In this section we demonstrate how we have realized the policy handling use case by
applying KAON SERVER. As an example for a conclusion derived from both a WS-
BPEL and WS-Policy description, consider the following scenario. Let’s assume a web
shop realized with internal and external Web Services composed and managed by a
WS-BPEL engine. After the submission of an order, we have to check the type of the

! Available atlhttp: //kaon.semanticweb.org/server]
2 http://www. jboss.org


http://kaon.semanticweb.org/server
http://www.jboss.org

518 D. Oberle et al.

<process name="checkAccount"> <wsp:Policy>

<switch ...> <wsp:ExactlyOne>
<case condition="getVariableData <wsse:SecurityToken>
(‘creditcard’)='VISA' "> <wsse:TokenType>
<invoke partnerLink="toVISA" wsse:Kerberosv5TGT
portType="visa:CCPortType" </wsse:TokenType>
operation="checkCard"...> </wsse:SecurityToken>
</invoke> <wsse:SecurityToken>
</case> <wsse:TokenType>
<case condition="getVariableData wsse:X509v3
('creditcard’)='MasterCard’ "> </wsse:TokenType>
<invoke partnerLink="toMastercard" </wsse:SecurityToken>
portType="mastercard:CCPortType" </wsp:ExactlyOne>
operation="validateCardData"...> </wsp:Policy>

</invoke>
Fig. 1. WS-BPEL example on the left and WS-Policy example on the right hand side

customer’s credit card for validity depending on the credit card type (VISA, MasterCard
etc.). We assume that credit card providers offer this functionality via Web Services. The
corresponding WS-BPEL process checkAccount thus invokes one of the provider’s
Web Services depending on the customer’s credit card. The left hand side of Figure/[I]
below shows a snippet of the WS-BPEL process definition.

Suppose now that the Web Service of one credit card provider, say MasterCard,
only accepts authenticated invocations conforming to Kerberos or X509. It states such
policies in a corresponding WS-Policy document, such as the one sketched on the right
hand side in Figure [[I The invocation will fail unless the developer ensures that the
policies are met.

Applying KAON SERVER, checking for the existence of external policies boils
down to simply querying the inference engine (cf. [3]] for the complete example). Both
the WS-BPEL process and the WS-Policy document are obtained by the metadata col-
lector of KAON SERVER. That means, the documents are retrieved, parsed, relevant
tags are extracted and added as instances to the ontology. WS-BPEL information and
WS-BPEL processes are represented by means of the ontology. Note that for this ex-
ample it suffices to model the existence of a policy and not the policy itself.

The developer can employ a simple query to find out whether an external service
requires compliance with a specific policy. Without our approach the developer would
have to collect and check this information manually by analyzing WS-BPEL and WS-
Policy documents.

As we may recognize from this small example, it is desirable to pose a query rather
than manually checking a complex set of process definitions. Without KAON SERVER,
the developer would have to check all WS-BPEL nodes for external invocations and cor-
responding WS-Policy documents manually at development time. We encounter more
sophisticated examples where we query for particular policy constraints or where we
have large indirect process cascades.

As mentioned in the policy handling use case in section 2} we do not aim at fully
automated policy matching at run time, as we think that the full generality of policy
matching imposes further problems that remain to be solved. In addition, there are no
WS-Policy engines available so far.

Finally, Table[Il shows the benefit of our approach by comparing the effort with and
without semantic management for the running example. While using the paradigm of



Semantic Management of Web Services 519

Table 1. Effort comparison for the running example

Effort Without semantics Using semantic management
Management For each process in the WS-BPEL document: One query to retrieve
Check for external Web service invocation and external Web service processes
check for existence of WS-Policy document with attached policies
Modelling creating and maintaining the Same as without semantics
WS-BPEL and WS-Policy documents because semantic descriptions

are automatically obtained

semantic management of Web Services reduces management efforts, no additional mod-
elling efforts are required because KAON SERVER obtains the semantic descriptions
automatically from WS* documents.

4 Conclusion

We have shown in this paper what semantic management of Web Services may con-
tribute to Web Service management in general. We have described use cases for seman-
tic management of Web Services that can be realized with existing technology and that
provide immediate benefits to their target groups, i.e. software developers and adminis-
trators who deal with Web Services. Through the use cases we have shown that semantic
descriptions may play a fruitful role supporting an integrated view onto Web Service
definitions in WS*. At the basis of the integration we have put our Core Ontology of
Web Services.

While we have implemented a prototype as proof-of-concept of our approach, in the
long run the viability and success of semantic descriptions will only be shown in their
successful use of integrated development and runtime environments. The development
of the corresponding paradigm of Semantic Management of Web Services through use
cases, ontologies, prototypes and examples is an important step into this direction.

Acknowledgements. This work was financed by WonderWeb, an EU IST project, by
SmartWeb, a German BMBF project and by ASG (IST-004617), an EU IST project.

References

1. V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal, and B. Srivastava. A
service creation environment based on end to end composition of web services. In Proceedings
of WWW 2005, pages 128-137. ACM, 2005.

2. R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T. Schmidt, A. Sheth, and K. Verma. Web
Service Semantics - WSDL-S. Technical report, University of Georgia, Apr 2005.

3. P.Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. Gessler, D. Hull, C. Goble, and L. Stein.
Applying Semantic Web Services to Bioinformatics: Experiences Gained, Lessons Learnt. In
3rd Int. Semantic Web Conference, volume 3298 of LNCS. Springer, 2004.

4. D. Oberle, S. Lamparter, A. Eberhart, and S. Staab. Semantic management of web services.
Technical report, University of Karlsruhe, 2005.

5. D. Oberle, S. Lamparter, S. Grimm, D. Vrandecic, S. Staab, and A. Gangemi. Towards ontolo-
gies for formalizing modularization and communication in large software systems. Technical
report, University of Karlsruhe, 2005.



	Introduction
	Use Cases
	KAON SERVER
	Overview
	Realizing the Policy Handling Use Case with the KAON SERVER

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




