
Service-Oriented Design: The Roots

Tiziana Margaria1, Bernhard Steffen2, and Manfred Reitenspieß3

1 Service Engineering for Distributed Systems, Universität Göttingen, Germany
margaria@cs.uni-goettingen.de

2 Chair of Programming Systems, Universität Dortmund, Germany
steffen@cs.uni-dortmund.de

3 Director Business Development, RTP 4 Continuous Services,
Fujitsu Siemens Computers, Munich, Germany
Manfred.Reitenspiess@fujitsu-siemens.com

Abstract. Service-Oriented Design has driven the development of tele-
communication infrastructure and applications, in particular the
so-called Intelligent Network (IN) Services, since the early 90s. A service-
oriented, feature-based architecture, a corresponding standardization of
basic services and applications in real standards, and adequate program-
ming environments enabled flexibilization of services, and dramatically
reduced the time to market. Today the current trend toward triple-play
services, which blend voice, video, and data on broadband wireline and
wireless services builds on this successful experience when reaching for
new technological and operational challenges. In this paper, we review
our 10 years of experience in service engineering for telecommunication
systems from the point of view of Service-Oriented Design then and now.

1 Motivation

Service-Oriented Design has driven the development of telecommunication in-
frastructure and applications, in particular the so-called Intelligent Network (IN)
Services, since the early 90s: IN services are customized telephone services, like
e.g., ‘Free-Phone’, where the receiver of the call can be billed if some conditions
are met, ‘Virtual Private Network’, enabling groups of customers to define their
own private net within the public net, or credit card calling’, where a number
of services can be billed directly on a credit card account. The realization of
new IN services was quite complex, error prone, and extremely costly until a
service-oriented, feature-based architecture, a corresponding standardization of
basic services and applications in real standards, and adequate programming en-
vironments came up: they set the market, enabled flexibilization of services, and
dramatically reduced the time to market. Today the current trend moves toward
triple-play services, which blend voice, video, and data on broadband wireline
and wireless services. It builds on this successful experience when reaching for
new technological and operational challenges.

In this paper, we review our 10 years of experience in service engineering for
telecommunication systems from the point of view of Service-Oriented Design

B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 450–464, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Service-Oriented Design: The Roots 451

then and now. In particular, we aim at establishing a link to the notions used
by the service-oriented programming (SO) community.

The central observation is that both communities pursue the same goals,
a coarse granular approach to programming, where whole programs serve as
elementary building blocks. However, they have quite a different view on what
a service is and how it is organized. In the terminology of the SO-community,
a service is a ”nugget” of functionality (essentially a building block) that is
directly executable and can be published for use in complex applications. In
the telecommunication world, such elementary components are called Service-
Independent Building blocks (SIBs), and the notion of service is typically used for
the resulting (overall) application. In addition, in the telecommunication world
the notion of feature is used to denote substructures of services (applications)
that impose additional functionality (like e.g. call forwarding, or blacklisting)
on the generic basic telecommunication functionality. In the IN-architecture, the
basic functionality was POTS (plain old telephony service), and feature were
typically only executable in the context of POTS.

It was always our point of view that some of these distinctions would dis-
appear as soon as one lives in a fully hierarchical context, where services may
themselves be regarded as elementary building blocks at a higher level of abstrac-
tion. In this scenario, which is supported by MetaFrame, our service definition
environment, the notion of service capture the corresponding notions of both
the SO- and the telecommunication communities. Moreover, the notion of SIB
simply characterizes services which cannot be refined, and the notion of feature
characterizes subservices that cannot be executed on their own. The remainder of
this paper is written from this unifying perspective and it focusses on the impact
on formal methods to improve the service development process. This concerns in
particular the idea of incremental formalization, which allows users to already
exploit very partial knowledge about the service and its environment for verifi-
cation. In turn, this enables a division of labour, which in particular enables the
application expert to directly cooperate in the service definition process.

In the following, Sect. 2 introduces the traditional concept of services in an
Intelligent Networks Architecture, Sect. 3 describes the current telecommunica-
tion perspective, and Sect. 4 presents a unifying feature-oriented description of
services that goes beyond the IN understanding. Finally, Sect. 5 summarizes our
conclusions.

2 Services in an Intelligent Networks Architecture

By integrating telecommunication and computer technology, the Intelligent Net-
work concept (see [10] for an overview) helps (network) providers to make new
and flexible telecommunication services available for their customers. Particu-
larly complex examples of such services are Universal Personal Telecommuni-
cation (UPT), that combines personal mobility with the access to and from
telecommunication over a unique number and account, and Virtual Card Call-
ing (VCC), that allows subscribers to make calls from every private or public

452 T. Margaria, B. Steffen, and M. Reitenspieß

telephone charging their own VCC account. Widely used IN services are Free-
Phone (FPH, the family of 0180- or 800-services), Televoting (VOT, e.g. for
selection of Saturday night movies via telephone or for the winner of the Euro-
pean song context), Universal Access Number (UAN, where service subscribers
can be reached from anywhere under a unique universal, network-independent
directory number), Premium Rate Service (PRM, which enables the service sub-
scriber to supply any information under a unique number and against a usage
fee), and Virtual Private Network Service (VPN, which allows subscribers to
define a private number plan based on a public telephone exchange).

The underlying intelligent networks are composed of several subsystems that
together implement the intended functionality. They form complex distributed
systems, which require the cooperation of central computers, of databases, of
the telephone network, and of a huge number of peripherals under real-time
and performance constraints. In particular, the design of new services must take
into account requirements imposed by the underlying intelligent network: e.g.,
system-dependent frame conditions must be obeyed in order to guarantee reliable
execution of the new services. Figure 1 shows an abstract functional decomposi-
tion of an intelligent network, which comprehends management, control, switch
and service creation units. A more detailed description of IN components and
their functions can be found in [3,9].

Data Communication
Network (DCN)

CCS No. 7

SCEP Service Definition

Service Control Point

SCP

Service
Administration

Data
Transmission

Service
Control

Signalling
Transfer

Service
Access

SMP

Service Management Point

Data Communication
Network

Service Switching Point

SSP IP

(A-Party) (B-Party)

Telephone network/ISDN

Intelligent
Peripheral

SCEP
Customer Service Control

SCEP
Service Customisation

Fig. 1. Global Architecture of an Intelligent Network

Service-Oriented Design: The Roots 453

– The Service Management Point (SMP) serves as the central component for
the creation, customization and management of services and service sub-
scribers/users. Based on a database system and on an advanced authoriza-
tion system, the SMP allows the installation and administration of services
and service customers by service subscribers and providers using the associ-
ated interfaces (Service Creation Environment, SCE). The SMP also provides
interfaces for statistic raw data and for mass data entry.

– The Service Control Point (SCP) controls the Service Switching Point ac-
cording to the control parameters provided by the SMP. The SCP also com-
piles statistical information of the calling activities and other call-related
data and makes them available via the SMP for further processing. Infor-
mation between SCP and SSP is exchanged via the INAP communication
protocol.

– The CCS7 network is used to exchange the signalling information between
the SCP and the Service Switching Point (SSP). The SSP sets up the call
between the calling party and the called party in conjunction with the un-
derlying telephone network (mobile or public exchange). An Intelligent Pe-
ripheral (IP) can be attached to the SSP for playing announcements or for
other automatic voice services.

– The Service Creation Environment Point (SCEP) provides Customer Service
Control (CSC), Service Customization (SC) and Service Definition (SD).
• The Customer Service Control component supports the handling of the

subscriber-specific service data such as parametrization of a subscribed
service, modification and adaptation of service logic and statistics in-
quiries.

• The Service Customization process serves to define which service func-
tions and features the service subscribers are allowed to use according
to their needs.

• The aim of Service Definition is to establish the logic of a service and the
parameters which control the processing of the service. The definition of
a service begins with the creative process of detailed service specification,
in which various aspects such as market requirements, technical perfor-
mance (load criteria) and serviceability must be taken into account.

The complexity of the new services and the complexity of the distributed environ-
ment in which they must correctly function under strict real-time requirements
of availability and performance currently make service definition intricate and
error prone. In a pure direct programming based approach, the introduction of
new complex services like the ones mentioned above used to take several expert
years for development and testing.

A model-driven Service Definition approach has supplanted the programming
style already in the ’90s, supporting a reliable service design and development
tailored to the specifica of the intelligent network. This has led to a much shorter
time to market (days instead of months), with shortened development and testing
phases. It has enabled low-cost development of high-quality services, boosting
the differentiation of services to the richness we experience today.

454 T. Margaria, B. Steffen, and M. Reitenspieß

2.1 The MetaFrame Environment for Service Definition

The implementation of the Service Design Environment was based on the
MetaFrame R© environment [29]. At that time, the service-oriented terminol-
ogy was not yet defined, and the IN community defined and standardized own
names for the entities they were working with. In the following we stick to that
original terminology. The parallel to the modern SO-world is astonishing.

Behaviour-Oriented Development: Application development consists in the be-
haviour-oriented combination of Service Independent Building Blocks (SIBs) on
a coarse granular level. SIBs are software components with a particularly sim-
ple interface. This kind of interface enables one to view SIBs semantically just
as input/output transformations. Additional interaction structures can also be
modelled, but are not subject to the formal synthesis and verification methods
offered by the MetaFrameenvironment. SIBs are here identified on a functional
basis, understandable to application experts, and usually encompass a num-
ber of ‘classical’ programming units (be they procedures, classes, modules, or
functions). They are organized in application-specific collections. In contrast to
(other) component-based approaches, e.g., for object-oriented program develop-
ment, MetaFrame focusses on the dynamic behaviour: (complex) functionalities
are graphically stuck together to yield flow graph-like structures called Service
Logic Graphs (SLGs) embodying the application behaviour in terms of control.
This graph structure is independent of the paradigm of the underlying program-
ming language, which may, e.g., well be an object-oriented language: here the
coarse granular SIBs are themselves implemented using all the object oriented
features, and only their combination is organized operationally. In particular,
we view this flow-graph structure as a control-oriented coordination layer on top
of data-oriented communication mechanisms enforced e.g. via RMI, CORBA
or (D)COM. Accordingly, the purely graphical combination of SIBs’ behav-
iours happens at a more abstract level, and can be implemented in any of these
technologies.

Incremental Formalization: The successive enrichment of the application-specific
development environment is two-dimensional. Besides the library of application
specific SIBs, which dynamically grows whenever new functionalities are made
available, MetaFrame supports the dynamic growth of a hierarchically organized
library of constraints, controlling and governing the adequate use of these SIBs
within application programs. This library is intended to grow with the experience
gained while using the environment, e.g., detected errors, strengthened policies,
and new SIBs may directly impose the addition of constraints. It is the possible
looseness of these constraints which makes the constraints highly reusable and
intuitively understandable. Here we consciously privilege understandability and
practicality of the specification mechanisms over their completeness.

Library-Based Consistency Checking: Throughout the behaviour-oriented devel-
opment process, MetaFrame offers access to mechanisms for the verification of

Service-Oriented Design: The Roots 455

libraries of constraints by means of model checking. The model checker individu-
ally checks hundreds of typically very small and application- and purpose-specific
constraints over the flow graph structure. This allows concise and comprehen-
sible diagnostic information in the case of a constraint violation, in particular
as the information is given at the application rather than at the programming
level.

These characteristics are the key towards a well-functioning distribution of
labour, according to the various levels of expertise. The groups that crystallized
were

– Programming Experts, responsible for the software infrastructure, the
runtime-environment for the compiled services, as well as the programming
of SIBs.

– Constraint Modelling Experts, who are experts of the protocols and
frame conditions of the underlying infrastructure formulate the correctness
conditions for services to properly run and interact.

– Application Experts, who develop concrete applications, by graphically
combining SIBs into coarse-granular flow graphs. These graphs can be imme-
diately executed by means of an interpreter, in order to validate the intended
behaviour (rapid prototyping). Model checking guarantees the consistency
of the constructed graph with respect to the constraint library.

– End Users may customize a given (global) service according to their needs
by parametrization and specialization [6].

The resulting overall lifecycle for application development using MetaFrame
is two-dimensional: both the application and the environment can be enriched
during the development process.

Consistency Rules

IN-Service

View Executable Prototype

Synthesis

Compilation

Abstraction

Concretization

Modification Control Control

Service Logic
Libraries

Selection

Fig. 2. The Service Creation Process

456 T. Margaria, B. Steffen, and M. Reitenspieß

2.2 Service Definition in Practice

The Service Definition Environment is constructed for the flexible and reli-
able, aspect-driven creation of telephone services in a ‘divide and conquer’ fash-
ion [34,4]. As shown in Fig. 2, initial service prototypes are successively modified
until each feature satisfies the current requirements. The entire service creation
process is supported by thematic views that focus on particular aspects of the
service under consideration. Moreover, the service creation is constantly accom-
panied by on-line verification: the validity of the required features and of the
executability conditions for intermediate prototypes are checked directly at de-
sign time. Design decisions that conflict with the constraints and consistency
conditions of the intended service are immediately detected via model checking.

The novelty of this SD environment is due the impact of formal verification
and abstract views on service creation [33,32]. In fact,

– Formal verification allows designers to check for global consistency of each
design step with implementation-related or service-dependent frame condi-
tions. Being based on model checking techniques [28], it is fully automatic
and does not require any particular technical knowledge of the user. This
simplifies the service design since sources for typical failures are detected
immediately.

– Abstract or thematic views concentrate on the required global context and
hide unnecessary details. They allow the designer to choose a particular
aspect of interest, and to develop and investigate the services under that
point of view. This supports a much more focussed service development,
which concentrates on the design of the aspect currently under investigation.
Of particular interest are error views that concentrate on the essence of a
detected error.

– SIBs and reusable services are classified typically according to technical cri-
teria (like their version or specific hardware or software requirements), their
origin (where they were developed) and, here most importantly, according to
their intent for a given application area. The resulting classification scheme
(called taxonomy, [32,30,20]) is the basis for the constraint definition in terms
of modal formulas.

– Both formal verification and abstract views are fully compatible with the
macro facility of the environment. This allows developers to define whole
sub-services (usually called features) as primitive entities, which can be used
just as SIBs. Macros may be defined on-line and expanded whenever the
internal structure of a macro becomes relevant: this way the SDE supports
a truly hierarchical service construction [35].

The design of the taxonomies goes hand in hand with the definition of aspect-
specific views, since both are mutually supportive means to an application spe-
cific structuring of the design process.

IN services soon reached sizes and complexities which demand for automated
support for error detection, diagnosis, and correction. The IN-MetaFrame en-
vironment encourages the use of the new methods, as they can be introduced

Service-Oriented Design: The Roots 457

incrementally: if no formal constraints are defined, the system behaves like stan-
dard systems for service creation. However, the more constraints are added, the
more reliable are the created services [31].

To allow verification in real time, we use finite-state model checkers [28,23]
optimized for dealing with large numbers of constraints. The algorithms verify
whether a given model satisfies properties expressed in a modal logic called the
modal mu-calculus [18]. In the SD-IN setting:

– the properties express correctness or consistency constraints the target IN
service is required to respect. They are expressed in a natural language-
like macro language, internally based on the temporal logic SLTL (Semantic
Linear Time Logic, cf. [30]). This is a linear-time variant of Kozen’s mu-
calculus [18], which comes together with efficient verification tools;

– the models are directly the Service Logic Graphs, where SIB names corre-
spond to atomic propositions, and branching conditions correspond to action
names in the SLTL formulas.

Model checking a service, as shown in [35] on a concrete case, may lead to the
discovery of paths in the graph that violate some constraints. When the model
checker detects such an inconsistency, a plain text explanation of the violated
constraint appears in a window. To ease the location and correction of the error,
an abstract error view is automatically generated, which evidences only the
nodes which are relevant to the error detection [5]. Errors can be corrected
directly on the error view, and the subsequent view application transmits the
modifications to the concrete model. Examples have been already discussed in
previous papers [33,32].

3 The Current Telecommunication Perspective

During the last 10 years, smooth but steady transition has taken place from the
switch-based IN-Architecture described in the previous section to Computer-
Telephony Integrated solutions [12], and more recently to the integrated, open
IT-based architectures that are being developed and deployed today as high-
availability service solutions [26,24], or as distributed service integration and
collaboration platforms [20]. The internet has supplanted the ISDN backbone
as basis network, and the picture has reversed: cutting edge telecommunication
services are being provided on an IP basic infrastructure.

The transition from the pure telecommunication scenario (which was still
dominating the IN architecture) to a holistic service-oriented attitude, that in-
cludes also middleware and applications, has been actively pursued in the past
years and it starts paying off. An example of this trend are the Open Specifi-
cations for Service AvailabilityTM, a collection of specifications spanning from
hardware interfaces to the application level, which are available from the SAFo-
rum webpage [27]: they are increasingly influencing the way 3G telecommunica-
tion services are built. As such, they are a new success story for the feasibility
and readiness of adoption of guidelines (a de facto standard) in shaping service

458 T. Margaria, B. Steffen, and M. Reitenspieß

Fig. 3. The Service-Oriented Architecture and the Web Services Standards Stack

interfaces with the aim of granting interoperability also in the software applica-
tion domain!

The Service Availability Forum itself is a consortium of industry-leading com-
munications and computing companies working together to develop and publish
high availability and management software interface specifications. Member com-
panies include e.g. Fujitsu Siemens Computers, IBM, Intel, Motorola, Oracle,
Veritas Software, and a large number of smaller companies that offer solution
that need to interwork with the platforms of the global players. The goal of the
SAForum is to create complete and robust specifications to manage complex,
highly-available platforms, with a specific focus on supporting high availability
services. The SA Forum then promotes and facilitates specification adoption by
the industry.

It is widely perceived by the participating companies that this goal by far
exceeds the current aims of the SOA community: the SOA interaction structure
establishes a simple, but very generic way of communication shown in Fig.3(a),
and there are a number of layers for specific SOA architectures which are object
of standardization efforts. SOAP [11] is a standard for XML messaging, the Web
Services Description Language [8](WSDL) for service descriptions and UDDI
for service repositories are de-facto standards for today’s most popular imple-
mentation of service orientation: Web services [1]. The Web Services Standards
Stack is summarized in Fig.3(b). A Web services implementation aims at allow-
ing loose coupling between business partners. Since all the needed interactions
can be automated, it allows also just-in-time queries to find available services.

Still, the standardization in Web services concerns interface programming lan-
guages (WSDL), data description languages (XML and derivatives like OWL-S),
behaviour composition languages (BPEL4WS) and mechanisms (WSMO [37]),
but not services. In other words, it tackles formats - not content, syntax - not
semantics. A catalogue of service behaviours that

– service providers in one domain must provide,
– which must satisfy a given standard, but whose implementation might differ,

e.g. resorting to different technologies or platforms, and

Service-Oriented Design: The Roots 459

– which must be capable of interoperation, in the sense that they are guaran-
teed to be interchangeable,

is not yet in sight. Only such (domain-specific) standardizations will realize the
full potential of service orientation in the sense of a major shift of development
paradigm.

This is far away from what is customary in the telecommunication world,
as described in the previous sections, and far weaker. The concept of concrete
sets of Features and of Services as objects of standardization, which is natural
and well accepted in the telecommunication world, is in fact still extraneous
to the SOA community. For specific industrial sectors, names for categories and
services are slowly becoming established and agreement is building up. Ontology-
based approaches are one of the emerging technologies that are being intensively
investigated within the semantic web paradigm to handle this. But they are still
insufficient since they are island-solutions, not accepted standards. In the IN
world, and consequently in the MetaFrame environment, this standardized way
of thinking was already realized in the ’90s.

4 Feature-Oriented Service Description Beyond IN

There are many definitions of features, depending heavily on their context and
their use. Although we too learned to know and appreciate the concept and the
use of features in the context of Intelligent Networks [14,15,35], our notion of
features is meanwhile more general in order to also capture a more general class
of services like online, financial, monitoring, reporting, and intelligence services:

Definition 1 (Feature).

1. A feature is a piece of (optional) functionality built on top of a base system.
2. It is monotonic, in the sense that each feature extends the base system by an

increment of functionality.
3. The description of each feature may consider or require other features, ad-

ditionally to the base system.
4. It is defined from an external point of view, i.e., by the viewpoint of users

and/or providers of services.
5. Its granularity is determined by marketing or provisioning purposes.

In the IN setting, the base system was a switch that offered POTS (plain
old telephone service) functionality, and the features were comparatively small
extensions of that behaviour. Instead, today we tend to have a lean basis ser-
vice that deals with session, user, and role-rights management, and a very rich
collection of features. Complex internet services with a strongly CSCW-oriented
character and online decision support systems like the Online Conference Service
described in [17], have been entirely developed this way. This brings a different
perspective on the role and purpose of features.

Features were traditionally understood as local modifiers of the basic service:
they were individually executed, i.e. a single feature was triggered by some event,

460 T. Margaria, B. Steffen, and M. Reitenspieß

executed, and it retuned upon termination to the basic service. This is no longer
sufficient: in order to account for complex evolutions of services, we allow in to-
day’s SD a multilevel organization of features, whereby more specialistic features
build upon the availability of other, more basic, functionalities.

In order to keep this structure manageable and the behaviours easily under-
standable, we restrict us to monotonic features, which are guaranteed to add
behaviour. Restricting behaviour, which is also done via features in other con-
texts (e.g. [13]), is done in an orthogonal way in our setting, via constraints at
the requirements level.

Additionally, we distinguish between features as implementations and prop-
erties of feature behaviours. Both together give the feature-oriented description
of services enforced in the ABC.

Definition 2 (Feature-Oriented Description).

1. A feature-oriented service description of a complex service specifies the be-
haviours of a base system and a set of optional features.

2. The behaviour of each feature and of the basic system are given by means of
Service Logic Graphs (SLGs) [15].

3. The realization of each SLG bases on a library of reusable components called
Service Independent Building-Blocks (SIBs).

4. The feature-oriented service description includes also a set of abstract re-
quirements that ensure that the intended purposes are met.

5. Interactions between features are regulated explicitely and are usually ex-
pressed via constraints.

6. Any feature composition is allowed that does not violate any constraint.

The library of SIBs for IN services was itself standardized [16], thus leading to
a well-defined set of capabilities that ensured interoperation between function-
alities offered by the different vendors.

In contrast to the proposal by [7], which is still close to the IN point of view,
we distinguish the description of the feature’s behaviour from that of the legal
use of a feature. Restrictions to behaviours are in fact expressed at a different
level, i.e. at the requirements level, and they are part of an aspect-oriented
description of properties that we want to be able to check automatically, using
formal verification methods.

As we successively discovered, the INXpress SDE was already largely orga-
nized that way, since it was strongly influenced by more complex IN-services,
which themselves were built from a combination of pre-existing individual ser-
vices. Examples of such leading-edge IN services are the already mentioned UPT
and VCC.

– The UPT service examined in [35] combines personal mobility with the ac-
cess to and from telecommunication over a unique number and account.
Using a personal identifier, a service subscriber can access telecommunica-
tion services at any terminal and use those services provided by the network
which are defined in their own service profile. Personal mobility involves the

Service-Oriented Design: The Roots 461

capability to identify the location of the terminal currently associated with
the subscriber. Incoming UPT calls must be routed to the current destina-
tion address, and the associated charge may be split between the calling line
and the UPT subscriber. Subscribers can use any terminal in the network for
outgoing UPT calls, which are charged to their accounts. This requires user
identification and authentication on a per-call basis. The use of the optional
follow-on feature allows one authentication procedure to continue to be valid
for subsequent calls or procedures. The service package can be tailored to
the subscriber’s requirements selecting from a comprehensive service feature
portfolio.

– The VCC service allows subscribers to make calls from every private or
public telephone charging their own VCC account. VCC calls are free of
charge for the originating telephone line, so that cash or cards are no more
needed at public telephones. After dialling the defined access code, VCC
subscribers have to identify themselves by entering their virtual card number,
used by the VCC service provider to determine the subscriber’s account for
billing purposes, and a Personal Identification Number (PIN) for personal
authorization. If the virtual card number and the PIN are valid and match,
the VCC user can dial the desired destination number and will be connected.

5 Conclusions

The INXpress Service Development Environment (SDE), the Siemens solution to
Advanced Intelligent Networks that came out of our cooperation in 1995-1996,
is a commercial product that shaped the state-of-the-art of IN-service defini-
tion in the late ’90s. Presented at various international fairs (e.g. CeBIT’97), it
was installed at a number of early-adopter customers (e.g. Deutsche Telekom,
South Africa’s Vodacom, Finnland’s RadioLinja), while a number of further key
contracts followed, where our SDE was a key factor for the decision of chang-
ing to Siemens technology. The success of the IN services since then has clearly
demonstrated the validity and adequacy of the service-oriented way of thinking.

The same approach to service definition, composition, and verification has
been meanwhile successfully applied in other application domains. With the ABC
(Application Building Center) and the jABC (Java ABC)1 we have meanwhile
built internet based distributed decision support systems [19], an integrated test
environment for regression test of complex CTI systems [25], a management in-
frastructure for remote intelligent configuration of pervasive systems [2], as well
as many other industrial applications in e-business, supply chain management,
and production control systems. In the area of internet-based service orchestra-
tion and coordination we have developed since 1997 the Electronic Tool Integra-
tion Platform, ETI [30], and its Web services based successor, jETI [21]. jETI
is unique in providing (1) lightweight remote component (tool) integration by
rregistration, (2) distributed component (tool) libraries, (3) a graphical coordi-

1 The ABC and the jABC are the successors of the MetaFrame environment.

462 T. Margaria, B. Steffen, and M. Reitenspieß

nation environment, and (4) a distributed execution environment. Currently its
application focus is on tools for program analysis, verification and validation.

The current challenge is to enhance this approach to today’s Telecommuni-
cation scenarios, e.g. to 3G VoIP solutions, that blend voice, video, and data on
broadband wireline and wireless services, and even beyond, reaching to the full
range of unified communication and data management scenarios. This should
encompasses correctness, interoperability, security, and other aspects which are
not yet sufficiently supported by the standards and by the service design and
validation environments. In particular, the security issue is new in this dimen-
sion to the telecommunication culture, since these concerns have been brought
in by the transition to IP-based networks.

Service-level standardization efforts are still going to be the approach of choice
in the telecommunication domain. Back then, the IN application consortia of
competing vendors like FINNET Group, CSELT/STET, Deutsche Telekom AG,
France Tlcom, Swiss Telecom PTT, Telecom Eireann, Telecom Finland Ltd.,
Telecom Portugal S.A. had joined forces into EURESCOM, and set the (still
valid) standard of services and features in that specific domain.

This way of standardizing services and features according to their content is
still infant in the area of Web services. Here the accent is still on the applica-
tion indepedent infrastructure, as in the METEOR-S project [22], with initial
catalogues of concrete services being developed (see e.g. the UN/SPSC service
taxonomy).

We are convinced that combined approaches, that blend the flexibility of the
current SO-scenario with the rigour and semantic standardization culture of the
telecommunication community can be the key to the new generation of personal-
ized, secure, and available ”triple play” services. Incremental formalization and
automatic verification techniques may be again the key to achieving confidence
and reliability for services that interact and interoperate on a large distributed
scale.

References

1. Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004). Web Services - Con-
cepts, Architectures and Applications. Springer Verlag.

2. M. Bajohr, T. Margaria: MaTRICS: A Management Tool for Remote Intelligent
Configuration of (Pervasive) Systems, Proc. ICPS 2005, IEEE Int. Confer-ence on
Pervasive Services, 11-14.July 2005, Santorini, Greece, pp. 457-460, IEEE Com-
puter Society Press, 2005.

3. J. Biala: “Mobilfunk und Intelligente Netze,” ISBN 3-528-15302-4, Vieweg, Braun-
schweig (D), 1995.

4. F.-K. Bruhns, V. Kriete, T. Margaria: “Service Creation Environments: Today and
Tomorrow” tutorial, 4th Int. Conf. on Intelligent Networks (ICIN’96), Nov. 1996,
Bordeaux (France).

5. V. Braun, T. Margaria, B. Steffen, H. Yoo: Automatic Error Location for IN Service
Definition, Proc. AIN’97, 2nd Int. Workshop on Advanced Intelligent Networks,
Cesena, 4.-5. Juli 1997, in “Services and Visualization: Towards User-Friendly De-
sign’, LNCS 1385, Springer Verlag, März 1998, pp.222-237.

Service-Oriented Design: The Roots 463

6. V. Braun, T. Margaria, B. Steffen, H. Yoo, T. Rychly: Safe Service Customiza-
tion, Proc. IN’97, IEEE Communication Soc. Workshop on Intelligent Network,
Colorado Springs, CO (USA), 4-7 May 1997, IEEE Comm. Soc. Press.

7. J. Bredereke: On Feature Orientation and Requirements Encapsulation, in ”Ob-
jects, Agents, and Features”, pp. 26-44, Springer Verlag, LNCS 2975 (2004)

8. Chinnici, R., Gudgin, M., Moreau, J.-J., Schlimmer, J., and Weerawarana,
S. (2004). Web Services Description Language (WSDL) version 2.0.
http://www.w3.org/TR/wsdl20/.

9. B.E. Christensen, D. Underwood: “Kommunikationsnetze werden intelligenter,”
Telecom Report 14 (1991), Heft 5, pp. 262-265.

10. J. Garrahan, P. Russo, K. Kitami, R. Kung: “Intelligent Network Overview,” IEEE
Communications Magazine, March 1993, pp. 30-37.

11. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., and Nielsen, H. F. (2003)
SOAP Version 1.2 Part 1: Messaging Framework. http://www.w3.org/TR/soap12-
part1/. W3C Recommendation 24 June 2003.

12. A. Hagerer, T. Margaria, O. Niese, B. Steffen, G. Brune, H.-D. Ide: Efficient Regres-
sion Testing of CTI-Systems: Testing a Complex Call-Center Solution, in Annual
Review of Communication, Int. Engineering Consortium Chicago (USA), Vol. 55,
pp.1033–1039, IEC, 2002.

13. H. Harris, M. Ryan: Theoretical Foundations of Updating Systems. ASE 2003, 18th
IEEE Int. Conf. on Automated Software Engineering, IEEE-CS Press, 2003.

14. ITU: General recommendations on telephone switching and signaling intelligent
network: Introduction to intelligent network capability set 1, Recommendation
Q.1211, Telecommunication Standardization Sector of ITU, Geneva, Mar. 1993.

15. ITU-T: Recommendation Q.1203. ”Intelligent Network - Global Functional Plane
Architecture”, Oct. 1992.

16. ITU-T: Recommendation Q.1204. ”Distributed Functional Plane for Intelligent
Network Capability Set 2: Parts 1-4”, Sept. 1997.

17. M. Karusseit, T. Margaria: Feature-based Modelling of a Complex, Online-
Reconfigurable Decision Support Service, WWV’05. 1st Int’l Workshop on Auto-
mated Specification and Verification of Web Sites, Valencia, Spain, March 14-15,
2005, – Post Workshop Proc. appear in ENTCS.

18. D. Kozen: “Results on the Propositional µ-Calculus”, Theoretical Computer Sci-
ence, Vol. 27, 1983, pp. 333-354.

19. Tiziana Margaria: Components, Features, and Agents in the ABC. In Objects,
Agents, and Features, Revised and Invited Papers from the International Semi-
nar on Objects, Agents, and Features, Dagstuhl Castle, Germany, February 2003,
LNCS 2975, pp. 154-174, Springer Verlag, 2003

20. T. Margaria: Web Services-Based Tool-Integration in the ETI Platform, SoSyM,
Int. Journal on Software and System Modelling, Springer Verlag, (available in
Online First, DOI: 10.1007/s10270-004-0072-z).

21. T. Margaria, R. Nagel, B. Steffen: Remote Integration and Coordination of Verifi-
cation Tools in jETI Proc. ECBS 2005, 12th IEEE Int. Conf. on the Engineering
of Computer Based Systems, April 2005, Greenbelt (USA), IEEE Computer Soc.
Press, pp. 431-436.

22. METEOR-S: see the project site at lsdis.cs.uga.edu/projects/meteor-s/
23. M. Müller-Olm, H.Yoo: MetaGame: An Animation Tool for Model-Checking

Games, Proc. TACAS 2004, LNCS N. 2988, pp. 163-167.
24. J. Neises: Benefit Evaluation of High-Availability Middleware, Proc. ISAS 2004,

1st Int. Service Availability Symposium, LNCS N. 3335, pp.73-85, Springer Verlag,
2005.

464 T. Margaria, B. Steffen, and M. Reitenspieß

25. O. Niese, B. Steffen, T. Margaria, A. Hagerer, G. Brune, H.-D. Ide: Library-Based
Design and Con-sistency Checking of System-Level Industrial Test Cases, Proc.
FASE 2001, Int. Conf. on Fundamental Approaches to Software Engineering, Genoa
(I), April 2001, LNCS 2029, pp. 233-248, Springer-Verlag.

26. M. Reitenspieß: High-Availability and Standards - The Way to Go! Proc. ARCS
Workshop 2004 - Organic and Pervasive Computing, Workshops Proceedings,
March 26, 2004, Augsburg, Germany. LNI Volume 41, pp. 12-18 - Gesellschaft
für Informatik.

27. The Service Availability Forum - http://www.saforum.org .
28. B. Steffen, A. Claßen, M. Klein, J. Knoop. T. Margaria: “The Fixpoint Analysis

Machine”, (invited paper) to CONCUR’95, Pittsburgh (USA), August 1995, LNCS
962, Springer Verlag.

29. B. Steffen, T. Margaria: METAFrame in Practice: Intelligent Network Service De-
sign, In Correct System Design – Issues, Methods and Perspectives, LNCS 1710,
Springer Verlag, 1999, pp. 390-415.

30. B. Steffen, T. Margaria, V. Braun: The Electronic Tool Integration platform: con-
cepts and design, [36], pp. 9-30.

31. B. Steffen, T. Margaria, A. Claßen, V. Braun: “Incremental Formalization: A Key
to Industrial Success ”, In “SOFTWARE: Concepts and Tools”, Vol. 17, No 2, pp.
78-91, Springer Verlag, July 1996.

32. B. Steffen, T. Margaria, A. Claßen, V. Braun, M. Reitenspieß: “A Constraint-
Oriented Service Creation Environment,” Proc. PACT’96, Int. Conf on Practical
Applications of Constraint Technology, April 1996, London (UK), Ed. by The Prac-
tical Application Company, pp. 283-298.

33. B. Steffen, T. Margaria, A. Claßen, V. Braun, M. Reitenspieß: “An Environment
for the Creation of Intelligent Network Services”, invited contribution to the book
“Intelligent Networks: IN/AIN Technologies, Operations, Services, and Applica-
tions – A Comprehensive Report” Int. Engineering Consortium, Chicago IL, 1996,
pp. 287-300 – also invited to the Annual Review of Communications, IEC, 1996,
pp. 919-935.

34. B. Steffen, T. Margaria, A. Claßen, V. Braun, M. Reitenspieß, H. Wendler: Ser-
vice Creation: Formal Verification and Abstract Views, Proc. 4th Int. Conf. on
Intelligent Networks (ICIN’96), Nov. 1996, Bordeaux (F).

35. B. Steffen, T. Margaria, V. Braun, N. Kalt: Hierarchical Service Definition, Annual
Review of Communic., Int. Engineering Consortium, Chicago, 1997, pp.847-856.

36. Special section on the Electronic Tool Integration Platform, Int. Journal on Software
Tools for Technology Transfer, Vol. 1, Springer Verlag, November 1997

37. Web Service Modeling Ontology (see www.wsmo.org).

	Motivation
	Services in an Intelligent Networks Architecture
	The MetaFrame Environment for Service Definition
	Service Definition in Practice

	The Current Telecommunication Perspective
	Feature-Oriented Service Description Beyond IN
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

