
Identity-Based Universal Designated Verifier
Signatures�

Fangguo Zhang1, Willy Susilo2, Yi Mu2, and Xiaofeng Chen3

1 Department of Electronics and Communication Engineering,
Sun Yat-sen University, Guangzhou 510275, P.R. China

isdzhfg@zsu.edu.cn
2 School of Information Technology and Computer Science,

University of Wollongong, Australia
{wsusilo, ymu}@uow.edu.au

3 Department of Computer Science,
Sun Yat-sen University, Guangzhou 510275, P.R. China

isschxf@zsu.edu.cn

Abstract. The notion of Universal Designated Verifier Signatures
(UDVS) was introduced in the seminal paper of Steinfeld et. al. in [6]. In
this paper, we firstly propose a model of identity-based (ID-based) UDVS
schemes.Wenote that there are twomethods to achieve an ID-basedUDVS
scheme. We provide two constructions of ID-based UDVS schemes based
on bilinear pairings that use the two methods that we have identified. We
provide our security proof based on the random oracle model.

1 Introduction

In a certificate-based public key system, before a user’s public key is used, the
participants must firstly verify the user’s certificate. As a consequence, this sys-
tem requires a large storage and computing time to store and verify each user’s
public key and the corresponding certificate. In 1984, Shamir [5] proposed ID-
based cryptosystem to simplify key management procedures in certificate-based
public key setting. Since then, many ID-based encryption and signature schemes
have been proposed. The main idea of ID-based cryptosystems is that the iden-
tity information of each user serves as his/her public key.

In [6], Steinfeld et. al. proposed a special type of digital signature scheme called
Universal Designated Verifier Signatures (UDVS), which directly addresses the
user privacy issue in user certification systems. On one hand, UDVS scheme pro-
tects user’s privacy, and on the other hand, it maintains a similar convenience of
use for the user and for the certificate issuer CA as in certification systems using
standard digital signatures. The scenario of UDVS schemes is as follows. A user
Alice is issued a signed certificate by the CA. When Alice wishes to send her cer-
tificate to a verifier Bob, she uses Bob’s public key to transform the CA’s signature

� This work is supported by the National Natural Science Foundation of China (No.
60403007) and ARC Discovery Grant DP0557493.

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 825–834, 2005.
c© IFIP International Federation for Information Processing 2005

826 F. Zhang et al.

into a designated signature for Bob, using the UDVS scheme’s designation algo-
rithm, and sends the transformed CA’s signature to Bob. Bob can use the CA’s
public key to verify the designated signature on the certificate, but is unable to
use this designated signature to convince any other third party that the certificate
was indeed signed by the CA, even if Bob is willing to reveal his secret-key to the
third party. This is achieved because Bob’s secret-key allows him to forge desig-
nated signatures by himself, so the third party is unable to tell who produced the
signature (whereas Bob can, because he knows that he did not produce it). There-
fore, through the use of a UDVS scheme, Alice’s privacy is preserved in the sense
that Bob is unable to disseminate convincing statements about Alice (of course,
nothing prevents Bob from revealing the certificate statements themselves to any
third party, but the third party will be unable to tell whether these statements
are authentic, i.e. whether they have been signed by the CA or not). A question
that directly arises from this model is “how could one design an ID-based UDVS
scheme that allows Alice to convince Bob, by only knowing Bob’s identity, such
as email address, IP, etc.”?

Our Contribution
In this paper, firstly we introduce the notion of ID-based UDVS schemes. We
provide a model for such schemes together with its security requirements. We
also propose two concrete constructions of ID-based UDVS schemes.

2 Preliminaries

2.1 Bilinear Pairings

Let G1 be a cyclic additive group generated by P , whose order is a prime q, and
G2 be a cyclic multiplicative group with the same order q. Let e : G1 ×G1 → G2
be a map with the following properties:

1. Bilinearity: e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1, a, b ∈ ZZq

2. Non-degeneracy: There exists P, Q ∈ G1 such that e(P, Q) �= 1, in other
words, the map does not send all pairs in G1 × G1 to the identity in G2;

3. Computability: There is an efficient algorithm to compute e(P, Q) for all
P, Q ∈ G1.

In our setting of prime order groups, the Non-degeneracy property is equiv-
alent to e(P, Q) �= 1 for all P, Q ∈ G1. So, when P is a generator of G1, e(P, P)
is a generator of G2.

Definition 1. Bilinear Diffie-Hellman (BDH) Problem:
Given a randomly chosen P ∈ G1, as well as aP, bP and cP (for unknown
randomly chosen a, b, c ∈ ZZq), compute e(P, P)abc.

For the BDH problem to be hard, G1 and G2 must be chosen so that there is
no known algorithm for efficiently solving the Diffie-Hellman problem in either
G1 or G2. We note that if the BDH problem is hard for a pairing e, then it
follows that e is non-degenerate.

Identity-Based Universal Designated Verifier Signatures 827

Definition 2. Bilinear Diffie-Hellman Assumption:
If IG is a BDH parameter generator, the advantage AdvIG(A) that an algorithm
A has in solving the BDH problem is defined to be the probability that the algo-
rithm A outputs e(P, P)abc on inputs G1, G2, e, P, aP, bP, cP , where (G1, G2, e)
is the output of IG for sufficiently large security parameter k, P is a random
generator of G1 and a, b, c are random elements of ZZq. The BDH assumption is
that AdvIG(A) is negligible for all efficient algorithms A.

Throughout this paper, we define the system parameters in all schemes as
follows: Let P be a generator of G1 with order q. The bilinear pairing is given
by e : G1 × G1 → G2. Define two cryptographic hash functions H1 : {0, 1}∗ →
{0, 1}λ, in general, |q| ≥ λ ≥ 160, and H0 : {0, 1}∗ → G∗

1. Denote params=
{G1, G2, e, q, λ, P, H0, H1}, and let |q| denote size of q in bits.

2.2 ID-Based Chameleon Hash Functions

A chameleon hash function is associated with a pair of public and private keys
and has the following properties [4]: (1) Anyone who knows the public key can
compute the associated hash function. (2) For people who do not have the knowl-
edge of the trapdoor (i.e. the secret key), the hash function is collision resistant:
it is infeasible to find two inputs which are mapped to the same output. (3) The
trapdoor information’s holder can easily find collisions for every given input.

The idea of chameleon hashing has been recently extended in [1] to construct
an identity-based chameleon hash. An ID-based chameleon hash scheme is defined
by a family of efficiently computable algorithms (Setup, Extract, Hash, Forge).

A number of ID-based Chameleon hash functions have been proposed, follow-
ing the first paper proposed in [1]. In the setting of any ID-based system, there
is a trusted party PKG, who only exists to initialize the system. In the following,
we will review an ID-based Chameleon hash function from bilinear pairings in
[8]. The four computable algorithms are defined as follows.
– Setup. PKG chooses a random number s ∈ Z∗

q and sets Ppub = sP. PKG pub-
lishes params = {G1, G2, e, q, P, Ppub, H0, H1}, and keeps s as the master

key, which is known only by the PKG.
– Extract. A user submits his identity information ID to PKG. PKG computes

the user’s public key as QID = H0(ID), and returns SID = sQID to the user
as his private key.

– Hash. Given a message m, choose a random element R from G1.
Define the hash as Hash(ID, m, R) = e(R, P)e(H1(m)H0(ID), Ppub).

– Forge. Forge(ID, SID, m, R, m′) = R′ = (H1(m) − H1(m′))SID + R. One can
verify that Hash(ID, m, R) ?= Hash(ID, m′, R′) holds with equality.

3 ID-Based Universal Designated Verifier Signature
Schemes

An ID-based Universal Designated Verifier Signature scheme ID-UDVS consists
of six algorithms, namely (Setup, Extract, Sign, Public Verification, Designation,
Designated Verification). There are four parties involved in the scheme:

828 F. Zhang et al.

– a PKG: is a trusted party who executes two operations: system setup (Setup)
and user’s private key generation (Extract).

– a signer S: who issued an ID based signature to be given to a signature
holder.

– a signature holder SH: is a party who has a valid signature provided by a
signer.

– a designated verifier DV: is any third party whose ID is published. Anyone
who obtains a signature signed by the signer can always designate this sig-
nature to any third party, and this third party is referred as the designated
verifier. In our scenario, any signature holder SH(who does not have any
access to the signer’s secret key) can designate the original signer’s signa-
ture to a designated verifier DV, such that DV can be convinced with the
authenticity of the signature, but he cannot convince any other third party
about this fact, since he can always generate such a signature by himself
which is indistinguishable from the original one.

The six algorithms defined in ID-UDVS are as follows.

1. Setup is a probabilistic polynomial algorithm, run by the PKG, that takes a
security parameter k and returns params (system parameters) and master-

key.
2. Extract is a probabilistic polynomial algorithm, run by the PKG, that takes

as input params, master-key, and an arbitrary ID ∈ {0, 1}∗. It returns
a private key SID. Here ID is the signer’s identity and will be used as the
signer’s public key.

3. Sign is a probabilistic polynomial algorithm that is executed by the signer S. It
takes params, a private key SID, an identity IDS corresponding to the secret
key SID, and a message m. The algorithm outputs a signature σ(m) for m.

4. Public Verification is a deterministic polynomial algorithm that takes params,
an identity of the signer IDS , a message m and its signature σ(m), and outputs
either accept or reject as the verification decision.

5. Designation is a deterministic polynomial algorithm that takes as input
params, a message m, a valid signature on m, σ(m), and an identity of the
designated verifier IDDV, and outputs a designated signature σ′(m) for m.

6. Designated Verification is a deterministic polynomial-time algorithm that
takes a message m, a designated signature σ′(m), the identity of the signer
S, IDS, and the secret key of the designated verifier SDV and outputs either
accept or reject.

There are essentially two ways to achieve an ID-UDVS scheme. We note that
these methods do not imply a generic construction of an ID-UDVS scheme.

1. By incorporating the identity or public key of the designated verifier to en-
crypt the signature. Using this mechanism, a signature holder can encrypt a
signature that he has with the designated verifier’s ID (or public key), such
that only the designated verifier can be convinced with the authenticity of
the message. This way, only the designated verifier can verify the authentic-
ity of the signature. We call this method as an ID-UDVS scheme with PK
encryption.

Identity-Based Universal Designated Verifier Signatures 829

2. By incorporating a chameleon hash function. Using this mechanism, a sig-
nature holder uses a published chameleon hash function that is owned by
the designated verifier. The designated verifier can be convinced with the
authenticity of the signature, but no any other third party can, since the
designated verifier can always generate another valid message signature pair
by himself. We call this method as an ID-UDVS scheme with a Chameleon
Hash.

In section 4 and 5, we provide two schemes that use the above two mechanisms.

3.1 Security Requirements

Security Against Existential Forgery on Adaptively Chosen Message and ID At-
tacks. We say an ID − UDVS scheme, which consists of six algorithms (Setup,
Extract, Sign, Public Verification, Designation, Designated Verification), is secure
against existential forgery on adaptively chosen message and ID attacks if no
polynomial time algorithm A has a non-negligible advantage against a challenger
C in the following game.

1. C runs Setup of the scheme. The resulting params is given to A. master

keyis kept secret from A.
2. A issues the following queries as he wants.

(a) Extract query: Given an identity ID, C returns the private key SID cor-
responding to ID which is obtained by executing Extract.

(b) Sign query: Given an identity ID and a message m, C returns a signature
σ(m) which is obtained by running Sign.

3. A outputs (IDS, IDDV, m, σ′(m)) where IDS is the identity of a signer, IDDV is
the identity of a designated verifier, IDS and IDDV have never been queried
to the Extract query and (IDS, m) has never been queried before to the Sign
query. A wins the game if σ′(m) is a valid designated signature on m. That
is, DesignatedVerification(m, σ′(m), IDS, SDV) ?= accept holds with equality.

We define A’s guessing advantage AdvID−UDV S(A) = |Pr[β′ = β] − 1
2 |.

4 An ID-UDVS Scheme with a PK Encryption from
Bilinear Pairings

In this section, we provide our first construction of an ID-based UDVS (ID-
UDVS) scheme based on bilinear pairings. Our ID-UDVS scheme functions as
a standard Cha-Cheon signature [3] scheme when no designation is performed.
Hence, it is compatible with the key generation, signing and verifying algorithms
of the Cha-Cheon signature scheme [3]. The scheme is as follows.

1. Setup: PKG chooses a random number s ∈ Z∗
q and sets Ppub = sP. PKG

publishes system parameters params= {G1, G2, e, q, P, Ppub, H0, H1}, and
keeps s as the master key, which is known only by itself.

830 F. Zhang et al.

2. Extract: A user submits his/her identity information ID to PKG. After a
valid identification, PKG computes the user’s public key as QID = H0(ID),
and returns SID = sQID to the user as his/her private key.

3. Sign. Given a secret key SID, and a message m, perform the following.
– Compute U = rQID, where r ∈R Z∗

q , h = H1(U ||m)
– Compute V = (r + h)SID.
– Output the signature on m as (U, V).

4. Public Verification. Given ID, a message m, and a signature (U, V), verify if

e(V, P) ?= e(U + H1(U ||m)QID, Ppub)

holds with equality. If so, then output accept. Otherwise, output reject.
5. Designation. Given the signer’s public key ID, a verifier’s public key IDDV

and a message-signature pair (m, U, V), compute σ′ = e(V, QIDDV), where
QIDDV = H0(IDDV). The designated verifier signature is (U, σ′).

6. Designated Verification. Given the signer’s public key ID, a verifier’s secret
key SIDDV and a message/designated signature pair (m, U, σ′), accept if and
only if

e(U + H1(U ||m)QID, SIDDV)
?= σ′

holds with equality. Otherwise, output reject.

4.1 Security Analysis

Correctness and Consistency.
The correctness and consistency of the scheme is justified as follows.

e(V, P) = e((r + h)SID, P) = e((r + h)sQID, P)
= e((r + h)QID, Ppub) = e(rQID, Ppub)e(hQID, Ppub)
= e(U, Ppub)e(H1(U ||m)QID, Ppub) = e(U + H1(U ||m)QID, Ppub)

e(U + H1(U ||m)QID, SIDDV) = e(rQID + H1(U ||m)QID, sQIDDV)
= e((r + h)sQID, QIDDV) = e((r + h)SID, QIDDV) = e(V, QIDDV) = σ′

Theorem 1. If a valid universal designated signature can be generated without
the knowledge of a valid signature or a secret key of the signer, then the BDH
problem may be solved in a polynomial time.

Proof. Let us recall the BDH problem as follows. Given a randomly chosen
P ∈ G1, as well as aP, bP and cP (for unknown randomly chosen a, b, c ∈
ZZq), compute e(P, P)abc. To show the proof, we assume there is a polynomial
algorithm A that can generate a valid universal designated signature σ′ for a
message m, without the knowledge of a signature σ generated by the signer, and
without the signer’s secret key. The algorithm A accepts an ID of the signer,

Identity-Based Universal Designated Verifier Signatures 831

IDA, an ID of the designated verifier, IDC , and a message m, and it outputs a
valid universal designated signature (U, σ′), where

Pr[DesignatedVerification(m, (U, σ′), IDC) = accept] = 1.

We will show how to use this algorithm to solve the BDH problem.
In our setting, we know the public information Ppub, IDA (the ID of the signer)

and IDC (the ID of the designated verifier). From this public information, we
can obtain QIDA = H0(IDA) and QIDC = H0(IDC). Since P is a generator in G1,
then we can rewrite these three parameters as

QIDA = aP Ppub = bP QIDC = cP

We note that SIDA
= bQIDA = abP and SIDC

= bQIDC = bcP . Now, we construct
an algorithm Â to solve the BDH problem as follows. Algorithm Â will control A
and replaces A’s interaction with the signer by simulation. Firstly, Â generates
a list of ID of its choice, together with a random si associated with it. The
size of this set is 2�, where � is the security parameter. The idea of the game
is illustrated as follows. The purpose of Â is to inject the information above
(aP, bP, cP) during the simulation. Without losing generality, we only show the
interaction where A interacts with Â for the information that Â wants. There
is a probability that Â will fail, i.e. when A queries the secret key for either
IDA or IDC that will match with the published Ppub. Since Â does not have
this information, then Â will halt the game. The probability of this failure to
happen is ≤ 1

2� . A will be run twice with a different random query set, but
from the same list of ID’s generated at the first place. The attack is successful,
when A outputs two signatures for the given parameters (forking lemma). More
concretely, the algorithm is described as follows. Firstly, Â selects two random
numbers a′, a′′ ∈ ZZq, where a′ − a′′ = 1 (mod q). Then, Â will control A as
follows.

First Round
H1 - Hash Query. When A requests the value of H1(U1||m), for the targeted
parameters, Â responds with a′QIDA . Otherwise, responds with the list that he
has generated.
Random Generation Query. When A requests Â to generate a random number
r ∈ ZZq and returns U , if the targeted parameters are used, then Â responds by
r ∈ Zq, keeps this r in his separate list and returns rP .
Output. Eventually, the output of the first round is (U, σ′

1) where σ′
1 = e(U +

a′QIDA , SIDC
).

Second Round
H1 - Hash Query. When A requests the value of H1(U1||m), for the targeted
parameters, Â responds with a′′QIDA . Otherwise, responds with the list that he
has generated.
Random Generation Query. When A requests Â to generate a random number
r ∈ ZZq and returns U , if the targeted parameters are used, then Â responds
returning rP , where r is the number that he kept from the first round.

832 F. Zhang et al.

Output. Eventually, the output of the first round is (U, σ′
2) where σ′

2 = e(U +
a′′QIDA , SIDC

).

Obtaining (U, σ′
1) and (U, σ′

2), Â can solve the BDH problem by first computing
d = σ′

1
σ′
2

and output d as the solution of BDH problem.
The correctness of this algorithm is justified as follows.

d =
σ′

1

σ′
2

= e(U + a′QIDA , SIDC
)/e(U + a′′QIDA , SIDC

) = e((a′ − a′′)QIDA , SIDC
)

= e(QIDA , SIDC
) = e(aP, bcP) = e(P, P)abc

This contradicts with the BDH assumption, and hence, we complete the proof.
As mentioned earlier, the probability that the simulation will fail is ≤ 1

2� , where
� is the security parameter.

Theorem 2. Having received a UDVS signature (U, σ′), the designated verifier
DV cannot convince any other third party about the authenticity of the designated
signature.

Proof. The designated verifier DV cannot convince anyone else about the authen-
ticity of (U, σ′) because he can always generate this signature by himself after
observing U . More precisely, he can always generate Û = rQIDA , for a random
r ∈ ZZq, and compute σ̂′ = e(Û + H1(Û ||m′)QID, SIDDV), for a random m′ ∈ ZZq,
where m′ �= m, which is indistinguishable from the original signature. We note
that the new pair (Û , σ̂′) will pass the Designated Verification algorithm.

5 An ID-UDVS Scheme with a Chameleon Hash from
Bilinear Pairings

In this section, we present our second ID-based UDVS scheme. In contrast to
our first scheme, our second scheme makes use of bilinear pairings together with
an ID-based chameleon hash function. The scheme is as follows.

– Setup: PKG selects a random number s ∈ Z∗
q and sets Ppub = sP. De-

fine another cryptographic hash function: H1 : {0, 1}∗ → Z∗
q and ID-Based

Chameleon Hash: Hash. The center publishes system parameters params=
{G1, G2, e, q, P, Ppub, H0, H1} and the ID-based Chameleon Hash Hash.

– Extract: A user submits his/her identity information ID to PKG. PKG com-
putes the user’s public key as QID = H0(ID), and returns SID = sQID to the
user as his/her private key.

– Sign. Given a secret key SID, and a message m ∈ ZZq, compute r = e(P, P)k,
where k ∈R Z∗

q , c = H1(m||r) and U = kP − cSID. The signature on a
message m is σ = (c, U).

– Public Verification. Given ID, a message m, and a signature (c, U), verify if

c
?= H1(m||e(U, P)e(QID, Ppub)c)

holds with equality.

Identity-Based Universal Designated Verifier Signatures 833

– Designation. Given the signer’s public key ID, a verifier’s public key IDDV and
a message/signature pair (m, c, U), create a UDVS signature as follows.

• Compute r = e(U, P)e(QID, Ppub)c.
• Compute r′ = H1(e(P, P)k′

) for a random k′ ∈ Z∗
q .

• Compute h = Hash(IDDV, r′, R) for a random R ∈ G1.
• Compute c′ = H1(m, c, r, h).
• Compute S′ = k′P − c′U .
• Output the designated signature as σ′ = (r, R, c′, S′).

– Designated Verification. Given the signer’s public key ID, a verifier’s secret
key SIDDV and a message/UDVS signature pair m, (r, R, c′, S′), accept if and
only if

c′ ?= H1(m, c, r, h)

holds with equality. Here, c = H1(m||r), h = Hash(IDDV, R, r′), and r′ =
H1(e(S′, P)(r · e(QID, Ppub)−c)c′

).

5.1 Security Analysis

Correctness and Consistency
The correctness and consistency of our second scheme are justified as follows.

c = H1(m||e(U, P)e(QID, Ppub)c) = H1(m||e(kP − cSID, P)e(QID, Ppub)c

= H1(m||e(P, P)ke(cSID, P)e(cSID, P)−1) = H1(m||e(P, P)k) = H1(m||r)

It is easy to see that the following equation holds with equality when it is gen-
erated correctly: c′ ?= H1(m, c, r, h) for c = H1(m||r), h = Hash(IDDV, R, r′), and
r′ = H1(e(S′, P)(r · e(QID, Ppub)−c)c′

).

Theorem 3. The designated signature (r, R, c′, S′) on a message m cannot be
used by the designated verifier DV to convince any other third party.

Proof. DV can always generate the designated verifier (r, R, c′, S′) on a message
m′ ∈ ZZq, where m′ �= m, by himself, which is indistinguishable from the original
signature. The way to do this is as follows.

– Select a random message m′ ∈ ZZq, and a random number r ∈ ZZq.
– Compute c = H1(m′||r).
– Compute r′ = e(P, P)k′

, for a random k′ ∈ ZZq.
– Compute h = Hash(IDDV, R, r′), for a random R ∈ G1.
– Compute S′ = k′P − c′U .
– Output (r, R, c′, S′).

Moreover, after receiving a valid designated signature (r, R, c′, S′), the desig-
nated signature still can modify this signature by executing the Forge algo-
rithm. Due to the construction of the ID-based Chameleon Hash function used,
he can always find a different R′ �= R that will satisfy the DesignatedVerification
algorithm.

The formal security proof is omitted due to page limitation.

834 F. Zhang et al.

6 Conclusion

In this paper, we propose a formal definition for identity-based Universal Des-
ignated Verifier Signatures (ID-UDVS). We provide two secure ID-UDVS schemes
based on bilinear pairings. Our first scheme uses the Cha-Cheon ID-based
signature scheme, while our second scheme uses an ID-based Chameleon Hash
function.

References

1. G. Ateniese and B. de Medeiros. Identity-based Chameleon Hash and Applications.
Financial Cryptography 2004, LNCS 3110, pages 164 - 180, 2004.

2. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. Ad-
vanced in Cryptology - Asiacrypt 2001, LNCS 2248, pages 514–532, 2001.

3. J. C. Cha and J. H. Cheon. An Identity-Based Signature from Gap Diffie-Hellman
Groups. 6th International Workshop on Theory and Practice in PKC (PKC 2003),
LNCS 2567, pages 18–30, 2003.

4. H. Krawczyk and T. Rabin. Chameleon hashing and signatures. Network and Distr
System Security Symp, The Internet Society, pages 143 – 154, 2000.

5. A. Shamir. Identity-based cryptosystems and signature schemes. Advances in Cryp-
tology - Crypto ’84, LNCS 196, pages 47–53, 1985.

6. R. Steinfeld, L. Bull, H. Wang, and J. Pieprzyk. Universal designated-verifier sig-
natures. Advances in Cryptology - Asiacrypt 2003, LNCS 2894, pages 523 – 543,
2003.

7. R. Steinfeld, H. Wang, and J. Pieprzyk. Efficient Extension of Standard
Schnorr/RSA signatures into Universal Designated-Verifier Signatures. 7th Interna-
tional Workshop on Theory and Practice in PKC (PKC 2004), LNCS 2947, pages
86–100, 2004.

8. F. Zhang, R. Safavi-Naini, and W. Susilo. ID-Based Chameleon Hashes from Bilinear
Pairings. Cryptology ePrint Archive, Report 2003/208, 2003.

	Introduction
	Preliminaries
	Bilinear Pairings
	ID-Based Chameleon Hash Functions

	ID-Based Universal Designated Verifier Signature Schemes
	Security Requirements

	An ID-UDVS Scheme with a PK Encryption from Bilinear Pairings
	Security Analysis

	An ID-UDVS Scheme with a Chameleon Hash from Bilinear Pairings
	Security Analysis

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

