
T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 776 – 784, 2005.
© IFIP International Federation for Information Processing 2005

Dynamic Object Assignment in Object-Based
Storage Devices

Lingjun Qin and Dan Feng

Key Laboratory of Data Storage Systems, Ministry of Education of China,
School of Computer, Huazhong University of Science and Technology, Wuhan, China

dfeng@hust.edu.cn, qinlingjun@yahoo.com.cn

Abstract. Object-based Storage Devices (OSDs) are the building block of Ob-
ject-based Storage Systems. Object assignment in OSDs can largely affect the
performance of OSDs. A real-time object assignment algorithm is proposed in
the paper. The algorithm aims at minimizing the variance of Mean Response
Time (MRT) across disks. To address the online problem with a priori un-
known workload parameters, the algorithm employs an adaptive mechanism to
estimate the parameters of workloads. The simulation results show that the al-
gorithm can effectively balance the MRT in the disk I/O sub-systems.

1 Introduction

Object-Based Storage (OBS) is the new trends in network storage field [1]. Combin-
ing the benefits of the NAS and SAN architecture, OBS is allowing storage systems to
reach petaBytes-scale levels. As the building block of OBS, Object-based Storage
Devices (OSDs) play an important role in OBS and have great effects on the overall
performance of the storage systems. Many efforts have been made to improve the
performance of OSDs. RAID is one of the performance enhancing techniques that
have been studied widely [2]. Through data striping, one object can be distributed
among multiple disks to achieve parallel data transfer. Another important technology
is object assignment. In order to remove the system bottleneck, objects should also be
uniformly allocated among all the disks, thus balancing the load in a disk sub-system.

In on-line storage applications built on OBS systems, real-time object assignment
is an essential issue which affects the overall performance. In such applications, data
objects usually need to be stored immediately they are produced. For example, in
high-energy physics, a particle accelerator can produce 100MB raw data per second.
Moreover, these large mount of data should be stored in OSDs as quickly as possible
for scientific research. This requires parallel I/O sub-systems to support on-line stor-
age, involving providing a real-time algorithm for assigning objects to multiple disks.

Many data assignment algorithms have been proposed [3,4,5,6,7]. However, these
algorithms employ off-line methods. Although off-line algorithms can produce opti-
mized results, they are not suitable for real-time environment. Lin-Wen Lee et al. [6]
have introduced an on-line algorithm for file assignment based on Mean Response
Time (MRT), and assumed that the workload characteristics are known in advance
and the service time of files is fixed. However, in some situation, it is unreasonable to

 Dynamic Object Assignment in Object-Based Storage Devices 777

suppose that the characteristics of workload are known a priori. To tackle this prob-
lem, Scheuermann P. et al. [7] present a method to keep tracking of the change of
workload and balance the heat (access rate) of disks using temperature (ratio between
block heat and block size) as the criterion for selecting blocks in disks to be reallo-
cated. Balancing heat of disks can reduce system response time, but only consider the
access rate as the metric of response time is insufficient. To evaluate the response
time of disks, we also need to consider the service time of objects, as well as the ac-
cess rate of objects.

In this paper, we propose a dynamic algorithm for object assignment adopting
MRT as cost function in real-time environment. Different from other algorithms, our
algorithm can learn the parameters of workload and adaptively update information
according to object access history.

The rest of this paper is organized as follow: In section 2 we introduce the object
assignment in OSDs. Section 3 describes the dynamic assignment algorithm. Section
4 gives the simulation results and analyses. At last, we conclude the paper.

2 Object Assignment in OSD

OSD is a real-time system which exports an object-based interface. It contains proces-
sor, RAM, multiple Gigabit Ethernet channels and multiple high-speed disk drives,
allowing it to process OSD commands (e.g., CREATE_OBJECT, READ_OBJECT
and WRITE_OBJECT [8]) and perform much more sophisticated object management.

Fig. 1. Object Assignment in OSD. m is the total number of network ports, and N is the total
number of disks in OSD

The process of OSD commands is shown in Fig. 1. Each network port has an I/O
command queue, and all the commands are scheduled by the Dispatcher. When a
CREATE_OBJECT command is processed, the Dispatcher should assign one of the
disks for the incoming object. The Assigner is the decision maker for object assign-
ment. It returns the most optimized results in response to the inquiry of the Dis-
patcher. The Dispatcher also sends update notice to the Assigner after processing an
I/O command, so the Assigner can maintain up-to-date information.

778 L. Qin and D. Feng

The goal of assignment is to minimize the MRT of disks and reduce the variance of
MRT between disks. The Assigner uses the dynamic greedy assignment policy to
choose a disk with the minimal MRT. In this way, we can do real-time load balancing
among all the disks.

Usually, an M/G/1 queue is used to model a single disk. Suppose that
kD (0≤k≤N-

1) denotes the kth disk in OSD, and the bandwidth of the
kD is

kB . Let
kOS be the set

of indices corresponding to the objects which are stored in
kD , and Ok,i be the ith ob-

ject in
kD . According to the model of M/G/1, the MRT of

kD can be given as follow-

ing three formulas [6]:

2
,

, , ,
,

()
() () ()

2 1 ()
k s k

k w k s k s k

k s k

E T
MRT E T E T E T

E T

λ
λ

= + = +
⎡ ⎤−⎣ ⎦

, (1)

,
, , ,()

k k

k i
s k k i k ii OS i OS

k

S
E T

B
λ λ

∈ ∈
=∑ ∑ , (2)

2

,2
, , ,()

k k

k i
s k k i k ii OS i OS

k

S
E T

B
λ λ

∈ ∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ . (3)

,r kT ,
,w kT and

,s kT denote the response time, wait time and service time of
kD re-

spectively.
kλ is the total object access rate in

kD , and
,

k
k k ii OS

λ λ
∈

=∑ , where
,k iλ is

the access rate for Ok,i. ,k iS denotes the mean request size for Ok,i. From the formula

(1)~(3), we get:

1

2()
k k

k
k k k k

P Q
MRT

B B Q λ
⎡ ⎤

= +⎢ ⎥−⎣ ⎦
. (4)

Here 2
, ,

k
k k i k ii SO

P Sλ
∈

=∑ and
, ,

k
k k i k ii SO

Q Sλ
∈

=∑ . Formula (4) is the cost function for

object assignment. OSD maintains the real-time value MRTk (0≤k≤N-1) for each disk.
When disk allocation is requested, OSD selects the disk with the minimal MRT.

Note that the value of MRTk is computed by λk,i and Sk,i. Although we know nothing
about the characteristics of workload, we use an adaptive method to learn and dy-
namically update the value of λk,i and Sk,i.

3 Dynamic Object Assignment Algorithm

The load characteristics of objects need to be tracked dynamically since they change
with time. To do this, OSD records the history access information of Ok,i within a
moving window which has the length WLk,i .

We treat the history information as attributes of object. Here we define a new at-
tribute page following the T10 OSD protocol to save this information [8]. The page,
named Access Attribute Page, is shown in Fig. 2.

 Dynamic Object Assignment in Object-Based Storage Devices 779

In Fig. 2, the attributes with subscript “k,i” denotes the attributes belonging to the
ith object in Dk. Array Ak,i[j] and Bk,i[j] (0≤j≤Mk,i-1) store the access time and request
size for the same request. Here Mk,i is the maximal length of array. Mk,i can be deter-
mined by Mk,i≤WLk,i•MAX(λk,i), where MAX(λk,i) is the maximal possible access rate
of Ok,i. The pointer pk,i is the index of array Ak,i and Bk,i, and points to the latest re-
quest information within WLk,i. The counter ck,i is the total access number of the object
in WLk,i.

We also need to store the up-to-date value of Qk, Pk and MRTk. Because they are
only related to Dk, we save them in attribute page of Root object in Dk.

Fig. 2. Access Attribute Page for Ok,i

Using the attributes of objects, the Assigner automatically learns load characteris-
tics and adaptively assigns objects. When inquired by the Dispatcher, the Assigner
should return a disk ID with the minimal MRT. While I/O command except for
CREATE_OBJECT is processed, the Assigner will be informed to update values of
λk,i and Sk,i and recompute MRTk. The estimated value of λk,i can be obtained from the
access frequency within WLk,i. Similarly, Sk,i can be get from the average request size
within WLk,i.

The message passing between the Dispatcher and the Assigner contains following
items:

 Type: The type of the message;
 Oi: The object to be accessed, and i is the index of the object;
 k: The index of disk which Oi is located in;
 O: The object to be created;
 m: The index of disk which O will be assigned to;
 CT: Current time;
 RS: Request size for Oi in Dk

The pseudocode for the dynamic assignment algorithm used in the Assigner is de-
picted as follows:

780 L. Qin and D. Feng

for(;;){
Receive message from the Dispatcher;
if(Type ≠ CREATE_OBJECT_NOTICE){
 Get Qk and Pk from Root object attribute page;
 Get Access Attribute Page associated with Oi in Dk, as is shown in Fig. 2;
}
switch(Type){
 case CREATE_OBJECT_NOTICE:

 For 0≤j≤N-1, get MRTj from Root object attribute page in Dj;
 MRTm=MIN{MRTj | 0≤j≤N-1 and Qj/Bj<1};

 if(Can not find MRTm)
exit(); /* OSD is overloaded*/

 Assign O to Dm (Suppose the index of O is l after O is created);
 Create Access Attribute Page associated with Ol in Dm;

, , , , 0m l m l m l m lS p cλ = = = = ;

 Initialize Mm,l and WLm,l according to the type of Ol;
 Initialize Am,l[j] and Bm,l[j] (0≤j≤Mm,l-1);

break;
 case REMOVE_OBJECT_NOTICE:

, ,k k k i k iQ Q Sλ= − ; 2
, ,k k k i k iP P Sλ= − ;

 Update MRTk using formula (4);
break;

 case READ_OBJECT_NOTICE:
 case WRITE_OBJECT_NOTICE:
 X=Ф; c=ck,i;
 if(pk,i+1<ck,i)
 init_index = pk,i+Mk,i-ck,i+1;
 else

init_index = pk,i-ck,i+1;
 pk,i=pk,i+1; Ak,i [pk,i]=CT; Bk,i [pk,i]=RS; ck,i=ck,i+1;
 index = init_index;
 while(index ≠ init_index){
 if(Ak,i[index]<CT-WLk,i){
 ck,i=ck,i-1;
 index=(index+1)%Mk,i;
 X=X {index}U ;

}
}

, . ,k i k i k ic WLλ′ = ;
, , , ,([])k i k i k i k ij X

S S c B j RS c
∈

′ = − +∑� ;

, , , ,k k k i k i k i k iQ Q S Sλ λ′ ′= − + ; 2 2
, , , ,k k k i k i k i k iP P S Sλ λ′ ′= − + ;

, ,k i k iλ λ′= ;
, ,k i k iS S ′= ;

Update MRTk using formula (4);
}

}

 Dynamic Object Assignment in Object-Based Storage Devices 781

It should be pointed out that different types of objects need different WLk,i. For ex-
ample, a multimedia object should have a short WLk,i since users access pattern
changes frequently, whereas a history archive object needs a long WLk,i due to its low
access frequency.

Note that the utilization of Dk is Qk/Bk. We avoid assigning objects to an over-
loaded disk when its utilization is close to 1 and assign object to the disk which sat-
isfy the condition Qk/Bk<1.

4 Simulation Results and Analyses

The simulation is based on the synthetic workload. In our tests, NO=5000 objects are
partitioned to N=4 disks. The objects are numbered from 0 to 4999, and created in
OSD with the ascending order. For the sake of simplification, objects will not be
removed from OSD after they are assigned to disks. In order to generate unbalanced
MRT across disks, the access rate and request size of objects are distributed according
to exponent distribution. To make sure that the utilization of each Dk (0≤k≤N-1) is
less then 1, the mean values of the access rate and request size of objects in Dk , that is

kλ and
kS , will satisfy the following condition: N

k k kS B
NO

λ <� . In our experiments, we

set 2kλ = (accesses/minute), 20kS = (ms). We also assume that all the disks have the

same bandwidth, that is Bk=1.

Fig. 3. Workload characteristics tracking

In order to evaluate the effect of workload tracking, we produce an access se-
quence. For each object, we generate a Poisson arrival sequence according to its arri-
val rate. The item in the sequence indicates the time the object will be accessed. We
also associate each item with a service time according to the mean service time of the
object. Then we synthesize all the sequences into one big sequence in ascending time
order and input it into our simulation program. The program reads the sequence and
gets the object access time and service time, and dynamically estimates the mean

782 L. Qin and D. Feng

arrival rate and mean service time for each object. Fig. 3 plots the arrival rate esti-
mates for one object. The object has the changing workload with Poisson request
arrival rate. At first the mean arrival rate λ is 1, and then changes to λ =2. We can
see that the estimated value fluctuates around its actual value, which means that our
algorithm can successfully learn the workload. In order to show the influence of the
length of the moving window (WL), we set two window length, that is
WL=200(minutes) and WL=800. Fig. 3 tells us that the longer the length of window is,
the more precise the estimated value can get. But the long window also leads to low
sensitivity to the change of workload. In Fig. 3, the curve of WL=200 keeps up with
the changing workload more quickly (but with larger fluctuation) than the curve of
WL=800. So it is important to choose an appropriate length of moving window.

We compare the dynamic assignment algorithm with a random assignment algo-
rithm. The MRT of each disk and the covariance of MRT of all the disks are plotted
in object creating order as shown in Fig. 4 and 5. The results show that, under dy-
namic algorithm, the covariance of MRT among disks tends to be smaller, while the
covariance under random algorithm rapidly increases with more and more object
being assigned to disks. It is worth to notice that there is some fluctuation at the be-
ginning of curve. This is because the accumulated MRT of each disk is small at first,
and any coming object makes the MRT change drastically.

We also study the efficiency of the dynamic object assignment when the workload
characteristics changes. To do this, we randomly change the access rate and request
size of all the assigned objects after the 5000th object is assigned. Due to the change of
workload, the MRT of each disk is markedly different from others. Then we generate
a new workload with another 4000 new objects and continue to assign these objects to
disks. In this way we evaluate the adaptability of our algorithm, and the results are
drawn in Fig. 6.

Fig. 4. Effect of dynamic algorithm

 Dynamic Object Assignment in Object-Based Storage Devices 783

Fig. 5. Effect of random algorithm

Fig. 6. Effect of dynamic algorithm after workload changes

From Fig. 6, we can see that the algorithm quickly learns the new workload pa-
rameters and has the ability to balance the MRT among disks. With more objects
assigned, the covariance of MRT drops to a low value, despite the covariance was
large before.

784 L. Qin and D. Feng

5 Conclusions

In this paper, we have presented a dynamic object assignment algorithm that aims at
minimizing the covariance of Mean Response Time (MRT). The algorithm can learn
the parameter of the workload under the real-time environment with the changing
workload. The simulation results show that the algorithm can effectively balance the
MRT across disks.

Acknowledgements

This work was supported by “973” project of China No.2004CB318201, National
Science Foundation of China No.60273074 and Huo Yingdong Education Foundation
No.91068.

References

1. Mesnier M., Ganger G.R., Riedel, E.: Object-based Storage. IEEE Communications Maga-
zine, Vol 41, No. 8. (2003)84-91

2. Sahai, A.K.: Performance aspects of RAID architectures. Performance, Computing, and
Communications Conference, Phoenix, USA. (1997) 321-327

3. Pattipati K.R., and Wolf, J.L.: A file assignment problem model for extended local area
network environments. 10th International Conference on Distributed Computing Systems,
Paris, France. (1990) 554-561

4. Xiangwu Meng, and Hu Cheng: Solving file allocation problem based on genetic algo-
rithms. Journal of Software, Vol 8, No. 2. (1997) 122-127

5. Deng-Jyi Chen, Ruey-Shun Chen, Hol W.C., and Ku K.L.: A heuristic algorithm for the
reliability-oriented file assignment in a distributed computing system. International Confer-
ence on Parallel and Distributed Systems, Hsinchu, Taiwan. (1994) 454-459

6. Lin-Wen Lee, Scheuermann P., Vingralek R.: File assignment in parallel I/O systems with
minimal variance of service time, IEEE Transactions on Computers, Vol 49, No.2. (2000)
127-140

7. Scheuermann P., Weikum G., Zabback P.: Data partitioning and load balancing in parallel
disk systems, The VLDB Journal - The International Journal on Very Large Data Bases,
Vol. 7, No. 1. (1998) 48-66

8. Draft OSD Standard, T10 Committee, Storage Networking Industry Association (SNIA),
ftp://ftp.t10.org/t10/drafts/osd/osd2r00.pdf

	Introduction
	Object Assignment in OSD
	Dynamic Object Assignment Algorithm
	Simulation Results and Analyses
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

