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Abstract. Privacy is a major concern with RFID tags and many solutions have
been proposed. As many approach requires secure hash function on each tag, cost
of tags imposed by those solutions is significantly high for wide development. We
propose a protocol that uses pre-calculated Bloom filter to send tag identity for
increased privacy with little additional cost per tag. In our approach, secure hash
function calculation is done in tag production phase and each tag does not have
any hash functions. Instead, each tag must have random number generator and
volatile memory.

1 Background

RFID (Radio-Frequency IDentification) tags are emerging devices that make automatic
identification more convenient. However, convenient automatic identification is some-
times dangerous with respect to privacy. Some consumer groups oppose to RFID due
to the privacy infringement. If a store uses RFID tags for inventory control and leaves
the tags on the items after the checkout, customers themselves may be traced by the
RFID tags. Tags on some personal belongings like purses, shoes, and clothes can help
tracking a customer without being noticed. In this paper, we call this problem owner
tracing. To keep user’s privacy, one can use high-end tags. Some of high-end tags like
Ferica 1 may provide high level security using cryptographic function.

On the other hand, low cost tags are needed for wide deployment of RFID systems.
Because a major objective of RFID is cost reduction of item handling in distribution
systems, RFID system must be low cost as much as possible to deploy. Peoples in Auto-
ID Labs protests that a tag must be as cheap as 5 or 10 cents for wide deployment[1].
At the same time, a 5 cents tag is a difficult target to accomplish[2]. Hence, RFID tag
system that aims wide deployment can afford very little cost for security per tag.

1.1 Assumptions

We assume the following entities in our RFID system model.
A victim has an item. The item has an RFID tag attached on it. RFID tag sends

signals on read request.

1 http://www.sony.net/Products/felica/
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An attacker has an RFID reader that can read signal of RFID tags within its range.
We assume the attacker has no other clue than RFID signal to identify what item is in
the range. For example, attacker may use a video camera with the reader to bind RFID
signals and people. In case if an attacker can bind a RFID signal with the victim, the
attack becomes easier. The case is discussed in the section 4.1.

We also assume the victim and other people appear within the attacker’s range in
random pattern. The reader captures many signals from those people and the attacker
has no knowledge which one is from the victim’s. In addition, a reader captures other
casual signals from other tags that comes by chance. We assume arrival pattern and
signals from those tags are random.

Owner tracing occurs as the reader successfully identify the signal from the victim’s
item. More precisely, attacker receives a sequence of signals from the reader. The at-
tacker can trace a victim if the attacker can find relation between two or more signals
of the victim’s tag out of the sequence. In other words, owner tracing fails if attacker
cannot find relation between the sequence of signals from the reader.

In addition, our model of trust assumes that a reader is a legitimate reader for a
RFID tag if the reader knows the tag’s identifier. The identifier itself is the shared secret
to make trust relationship between the tag and the reader.

1.2 Our Goals

Our goal is to enable the development of RFID tags that has 1) resistance against owner
tracing 2) with smallest additional cost per tag.

2 Related Works

Many studies on the prevention of owner tracing have been carried out. Some solutions
reduce usability while others increase cost per tag by complex hardware for secure hash
function.

Weis et al.[3] and Juels et al.[4] addressed the security problems of RFID systems
and proposed some solutions for low-cost tags. One of their solutions (hash-lock) uti-
lizes the one-way hash function. Due to the difficulty of implementing the hash function
in small hardware logic (e.g. the SHA-1 hash function requires 20K to 50K gates), this
solution entails a small but significant extra cost. In addition, this approach has a weak-
ness in the unlocked state, that is, attackers can override the tag’s authority in the un-
locked state. Attackers may also turn their attention to the readers, because the readers
may leak the secret if an attacker repeats a metaID sent by a locked tag. Although these
attacks are detectable, it is also possible for denial-of-service attacks to be attempted
against whole systems. Another solution (blocker tag) blocks the anti collision process
to keep the tag ID be anonymous. However, the blocker tag itself has no intelligence
and works indiscriminately. This may cause trouble as some blocker tag may block
authorized readers.

A proposal from Ohkubo et al.[5] uses randomized hash chain to protect tag privacy.
At ith read, a tag sends ai = G(si). At the same time, si+1 = H(si). Both H and
G are different secure hash functions, and si is secret of the tag. Their argument de-
scribes forward security against tracing. Even if an attacker seized secret si of the tag,
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the attacker cannot find past traces out of read records. With their proposal, a tag sys-
tem can provide forward security. However, their approach also requires hash function
implemented inside the tags.

3 Our Approach

As a step toward cheap RFID tags with privacy, we utilize a pre-calculated Bloom
filter[6] in the protocol between RFID tags and readers. In this section we propose a
tag-reader protocol called Kallima.

To prevent unauthorized readers from tracing a tag, communication between tags
and readers must have no fixed id in plain form. In Kallima, the tag sends a Bloom
filter with noise (NBF: noisy Bloom filter) and the reader tests its known IDs against
the filter. We describe the protocol in the following order: bloom filter, components, tag
identification, and anti collision.

3.1 Bloom Filter

A Bloom filter is a simple data structure that utilizes a set of secure hash functions and
represents a data set S . We adopt it because it is resistant to one-way noise to make bits
of value 0 to 1. With the resistance, a tag can disguise its identity in noise.

Generally speaking, one can test a Bloom filter of a set S if a data x is in S. The test
yields a positive or negative result. A negative result means that x is definitely not in S.
However, there is a risk of false-positives, which has a tradeoff relationship with space
efficiency.

In Kallima, a Bloom filter is created from a tag ID x alone. A Bloom filter that
represents S = {x} is called SBF This Bloom filter is called a seeding Bloom filter
(SBF). A SBF is created in the following steps.

First, a bit array B of length m is initialized to 0. Then, a set of k independent secure
hash functions h1, · · · , hk with range {1, · · · , m} is applied to x. The hash value of x
is assumed to be distributed uniformly between 1 and m. Finally, for each hash value v,
the corresponding value of the bit array is set to 1. The result B is a SBF for x.

Receivers of a Bloom filter can find source tag ID of the filter if they know a tag ID
y by testing y against the filter. Testing on a Bloom filter is performed in similar steps
with Bloom filter creation steps. The same set of hash functions used in creation steps
is applied to y. For each hash value v, the corresponding bit of the filter is checked. The
test result is positive if all the checked bits are 1. The result is negative otherwise. In
other words, tests with B&(1 << v) == 1 for all v = hi(y) in i = {1 · · ·k} yields a
positive result.

A false positive occurs if all the hashed values of y are 1 by chance. In our case,
noise can make some random bits to have value of 1. Figure 1 shows an example (each
cube represents a bit and shadowed cubes are set to 1). In this case, h1(x) = h2(y),
h2(x) = h1(y), and x �= y. As a result, y seems to be in S. Actually it is not. The risk
of a false positive for a Bloom filter is given as sk, as s (saturation) is ratio of bits set to
one among all bits in the filter. For example, saturation of filter 0b01101010 is 0.5. If
k = 3, false positive rate is 0.125.
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Fig. 1. An example of a false positive on a Bloom filter 0b01101010

3.2 Tags and Readers

Figure 2 shows an example of abstract block diagram of a tag. A tag’s memory has two
types of identifiers written in it. The tag ID and static Bloom filters calculated from the
ID (SBFs: Source Bloom Filters). A SBF is calculated by standard computer at the time
of tag production.

Note that a tag may have one or more SBFs with different parameters. We assume
each SBF belongs to a class that defines the parameters for calculating the SBF. For
example, a class A SBF may have m = 512, k = 7 and Hn(d) = SHA1(d + n); a
class B SBF may have m = 1024, k = 13,and the same Hn(d) as in class A; and so on.

The simplest tag consists of a controller, a read-only memory for the ID, an RF mod-
ule, and a one-way noise imposer. The one-way noise imposer is a method to disguise
tag’s identity. Other modules are the same as those in regular RFID tags without any
security mechanism.

The one-way noise imposer has a simple function. It imposes one-way noise on the
input bit streams. The one-way noise imposer turns 0 at a random place in the input bit
stream into 1 until the bit stream saturation s comes to predefined value. We assume an
expected saturation of the output bit stream as s = 0.5 for example.
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Fig. 2. Block diagram of a tag with Kallima
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Fig. 3. Block diagram of a reader for Kallima

To turn an SBF of the tag into a bit stream looks random, the SBF is sent to the
one-way noise imposer. The output is called a noisy Bloom filter (NBF). A Bloom filter
does not become broken even if any additional bits are set to 1. A side effect of the
added noise is an increased false positive rate (( k

m)k becomes sk).
Figure 3 shows an example of abstracted structure of a reader. A reader consists of

an RF module, an ID-DB, and a Bloom filter checker. The ID-DB and the Bloom filter
checker are the modules specially required for Kallima; the other modules are the same
as those in ordinary RFID tag readers.

The ID-DB contains a list of tag IDs. In our model, a reader is an authorized reader
for a tag if the tag’s ID is in the reader’s ID-DB. Otherwise, the reader is not authorized
to identify the tag.

3.3 Identification of a Tag

Readers receive NBFs. They must test the filter to find tag IDs in their communication
range.

The reader uses the Bloom filter checker to find candidate tag IDs. In the simplest
implementation, it tries the known ID in the ID-DB one by one against the received
NBF. The filter check process returns a set of candidate IDs or an empty set.

The process can produce three results that can lead for four implementation patterns.

– The process results in an empty set: there are no known tags
– Only one ID in the candidate set: the candidate ID as the detected tag (may perform

validation process)
– Two or more IDs in the candidate set:

• report entire candidate IDs
• perform conflict resolution in some way

The conflict resolution process and validation process is not described in this paper.
The saturation of NBFs is controlled by one-way noise imposer, and the reader can

estimate how false positives may occur. For example, if a reader knows 100 tag IDs,
a 0.01% false positive rate corresponds to one expected read error among 100 trials.
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If this risk is not negligible, the reader may request tags to send NBFs with increased
m and k (i.e. NBFs of a higher class). If a reader knows 106 IDs and its application
accepts only 1 misdetection for 106 reads, the situation requires an FPR of as low as
10−12. This can be achieved with a Bloom filter with k = 40 if the filter saturation is
0.5 because FPR = sk = 0.540 < 10−12.

An additional note is that the filter length m has a lower impact than in regular uses
of Bloom filters as long as k is far lower than m. This is because the false positive rate
is strongly bound with s and k, and the s of an NBF can be controlled by the one-way
noise imposer. Discussions on m against k is described in section 4.1.

3.4 Anti Collision and Temporary ID

If the above protocol does not transmit any ID at all, application of ALOHA-style anti
collision[7] is difficult. To avoid the problem, a tag should have a temporary ID that is
valid for a period. Because tags have random number generators, it is easy to generate
a randomized temporary ID at the beginning of communication. The temporary ID is
held in a temporary memory such as an SRAM with capacitor, and is reused until the
memory expires. Usually, ALOHA-style anti collision provide continuous energy until
the process finishes.

4 Discussions

Here we discuss how our proposal achieve the goles outlined in section 1.2. We discuss
the first goal in subsection 4.1 and the second goal in subsection 4.2 below.

4.1 Strength Against Owner Tracing

Compared to hash-lock and randomized hash chain, our approach has limited strength
against owner tracing. In this section we describe when an attacker can trace tag and its
owner.

An unauthorized reader for a tag is that do not know the tag’s ID. In our model, the
tag only sends NBFs and owner tracing occurs as an attacker reveals relation between
one NBF and another.

If an attacker can take multiple NBFs from a tag, identification of an NBF becomes
easy. First, an attacker collects two or more NBFs from the victim’s tag. Then the at-
tacker takes bitwise-and between all the NBFs. The bit stream produced by the opera-
tion contains less noise. The produced filter is called a guessed Bloom filter (GBF).

A well-produced GBF contains all the bits set to 1 in the SBF and some noise.
Because k of the filter is a known number, the attacker can guess how much noise is
left in the GBF and the certainty of each bits set to 1 in the GBF. Thus, with a GBF, the
attacker can estimate if another anonymous NBF is related to the GBF. Figure 4 shows
an example GBF constructed using four NBFs.

To make this kind of attack difficult, a tag should avoid to give multiple NBFs to
attackers. In our assumptions, readers have no knowledge in advance to find a couple
of NBFs out of many has come from a tag. If NBFs from a different tag are mixed in,
half (actually, s) of the traces of the SBF of the victim’s tag will be lost in the produced
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NBFs (s=0.5)

GBF (s=0.21)

SBF (m=24, k=3, s=0.125)

Fig. 4. An example of GBF

GBF. Hence, as long as the reader cannot isolate the victim’s tag from the other tags,
received series of signals are not usable to make a GBF.

To prevent attackers from obtaining multiple NBFs easily, a previously used NBF may
be kept in a static memory with a reasonable lifetime. Because a tag needs a static memory
to store the temporary ID for anti collision (described in subsection 3.4), the previously
used NBF may be stored instead of temporary ID to make anti collision process.

Too long lifetimes, such as a day, help attackers to trace tags using the NBF or
temporary ID, and too short lifetimes result in an increased chance for attackers to have
successive access to an isolated tag. Expected period of time of tag isolation is longer if
tags are placed or carried alone. If application expects many tags in an area the period
of time can be short.

In addition to correlation of two NBFs, there are two ways that enables ID leakage.
The first is leakage from an authorized tag reader, while the other is ID calculation from
an anonymous NBF. Leakage from readers is beyond the scope of this paper because
it includes various topics ranging from tamper-resistant hardware for readers to laws
against intentional secret leakage.

The other mechanism is brute force attack. Our approach is not strong enough if an
attacker deploys more computing power to track an ID.

An attacker with an NBF may try a brute force attack to find out the tag’s ID. How-
ever, brute force does not help much in the situation because of the false-positives and
the vast amount of tag ID data. For an NBF with k = 40 and s = 0.5, even a 64-bit
long ID space can result in more than 16 million (0.540 × 264) IDs as candidate IDs.

It is clear that 16 million candidate IDs out of 64-bit long ID space is enough to
identify a tag out of limited size of NBFs. If a newly received NBF is from the victim’s
tag, at least one of candidate IDs matches. If attacker receives an anonymous NBF, it
may match with one or more candidates with as much possibility as (1 − (1 − sk)nc)
where nc is number of candidate IDs. If k = 40, s = 0.5, and ID width is 64bits, only
one NBF out of more than 65000 NBFs returns one or more candidate IDs as positive.

The attacker may use two or more NBFs from the tag to find small set of ID candi-
dates. In that case, the risk of owner tracing will be described as follows.

Each NBF has possibility of false positive rate of sk . With i NBFs from the same tag,
false positive rate becomes sm·i . For two NBF with k = 40 and s = 0.5, one can find
a 64-bit ID string that matches both NBFs with high probability (0.580 × 264 << 1).
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4.2 Tag Complexity

We believe tags for Kallima is simple enough for low cost manufacturing because our
approach works without secure hash function and persistent memory on tags. As the
result from previous discussions, a tag with Kallima should have a static memory as
large as a maximum class of NBF, a capacitor to maintain the memory, and a one-way
noise imposer in addition to the regular tag components.

For comparison, hash-lock requires secure hash function in addition to rewritable
persistent memory to keep metaIDs. Randomized hash chain also requires hash function
and rewritable persistent memory to keep ID secret.

5 Conclusions

In this paper, we discussed a solution for privacy issues on RFID systems of 5-cent tags.
We can solve privacy issues on RFID systems as long as we can afford high price tag that
uses complex hash function. However, we cannot afford it on low end system for now.

The challenge is how to hide tag identity without hash, and we propose combination
of one-way noise with Bloom filter. As a solution, we propose Kallima, a tag-reader
protocol that utilizes Bloom filter with noise as tag identifier. Because tags with Kallima
does not need any secure hash functions and persistent rewritable memory on each tag,
we expect Kallima can be as cheap as simplest tags used in the market.
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