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Abstract. We evaluated several multivariate stream data reduction techniques that 
can be used in sensor network applications. The evaluated techniques include 
Wavelet-based methods, sampling, hierarchical clustering, and singular value de-
composition (SVD). We tested the reduction methods over the range of different 
parameters including data reduction rate, data types, number of dimensions and 
data window size of the input stream. Both real and synthetic time series data 
were used for the evaluation. The results of experiments suggested that the reduc-
tion techniques should be evaluated in the context of applications, as different ap-
plications generate different types of data and that has a substantial impact on the 
performance of different reduction methods. The findings reported in this paper 
can serve as a useful guideline for sensor network design and construction. 

1   Introduction 

A typical wireless sensor network (WSN) consists of small battery-powered wireless 
devices and sensors. Conserving battery power on such devices is crucial to improve 
the life span of a WSN. Among many operations that a sensor node performs, trans-
mitting data among sensor nodes typically consumes the most energy. Many data 
reduction techniques have been proposed to address this problem [1, 2, 3]. However, 
different sensor networks have different data requirements depending on the types of 
applications they run and characteristics of data generated by different applications 
can be also different. Thus, such data reduction techniques need to be evaluated in the 
context of applications and the types of data they generate. In this paper, we attempt 
to identify such application specific requirements, and to propose different data reduc-
tion techniques for different types of application scenarios. 

Three broad areas of sensor network applications are environmental monitoring, 
object tracking, and object guarding [4, 5, 6, 9]. First, examples of environmental 
monitoring are flood detection, home application and habitat monitoring. Long-term 
data analysis over low frequency data is usually used in this type of applications.  
Second, examples of object tracking include vehicle tracking, military applications 
and SCM (Supply Chain Management). These applications typically generate high 
                                                           
*  Work performed while the author visited North Carolina State University. 



 Multivariate Stream Data Reduction in Sensor Network Applications 199 

frequency multivariate data. Finally, examples of object guarding are emergency 
medical care, intrusion detection and earthquake risk assessment. These applications 
require real-time monitoring of outliers and detection of abnormality in the data. As 
we see here, different applications need different models for data acquisition, trans-
mission, and storage. These need to be considered together with physical constraints 
such as limited bandwidth and power, and unreliable network, when the data reduc-
tion techniques are evaluated. 

A typical sensor network example is shown in Fig. 1. A sensor node has one or 
more sensors. A node periodically collects data from its own sensors as well as data 
transmitted from other children sensor nodes. Thus, data collected by a sensor node 
naturally forms a multivariate time series. Previous researches on data acquisition and 
transmission have suggested data reduction techniques suitable for single or relatively 
small numbers of attributes [2, 7]. However, these techniques may not suitable for 
applications such as object tracking and guarding as they typically generate multivari-
ate data with large numbers of attributes. This problem is even more exacerbated in 
sink nodes (see Fig. 1) where data generated by all sensor nodes in the network is 
collected and aggregated.  

In this work, we studied efficient, multivariate approximate data transmission tech-
niques as follows. First, we defined the hierarchical/distributed sensor network archi-
tecture and data model. Second, we classified application areas in wireless sensor 
networks, and then briefly introduced the multivariate data reduction techniques, such 
as Wavelet, HCL (Hierarchical Clustering), Sampling and SVD (Singular Value De-
composition). Finally, we experimented with data reduction methods with respect to 
relative error and reduction ratio.  

The rest of the paper is organized as follows. Section 2 presents related work. Sec-
tion 3 defines a hierarchical/distributed sensor network architecture and data model. 
In section 4 we suggest a simulation model and introduce some multivariate data 
reduction techniques. Section 5 reports the result of our experiments. Section 6 pre-
sents concluding remarks. 

2   Related Work 

Many previous work [1, 2, 3] in sensor networks studied data aggregation and ap-
proximate data transmission between sink nodes and base stations. Generally, data 
analysis and reduction techniques in sensor network include clustering, wavelet, his-
togram, regression, aggregation, sampling, PCA and SVD. Aggregation is an effective 
mean to get a synopsis (avg., max., min.), but is rather crude for applications that need 
detailed historical information [3]. Spectral models such as DWT, DFT and DCT are 
tuned for time sequence, ideally with a few low-frequency harmonics, but it is inef-
fective under the multi-dimensional attributes [11, 13]. Sampling has a good perform-
ance, but has some problems such as sampling ratio, relational join over arbitrary 
schemas and set-valued approximate queries [10, 11]. Clustering techniques for 
stream data is presented in [15] which analyzed the complexity and requirements of 
one-pass clustering over streaming data. 

These previous work focused on solving the problems with intrinsic characteristics 
and limitations of sensor networks, but these techniques don’t take into account the 
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application specific requirements and different types of nodes with varying capabili-
ties. In this paper, we evaluated the multivariate data reduction methods in the context 
of different applications. The findings reported in this paper can serve as a useful 
guideline for sensor network design and construction. 

3   System Architecture 

Hierarchical/Distributed organization is the most widely adopted model in sensor 
network [4]. Fig. 1 shows its architecture. Each type of nodes has the following char-
acteristics. 

• Sensor node gathers periodically the multivariate data collected from sensors or 
target nodes. Data transmission is done by a multi-hop or cluster-based communi-
cation method and not typically done by a point-to-point direct communication.  

• Each sensor node has a small processor and main memory, and periodically sends 
the data to sink node by wireless communication. Sink node collects the data from 
the nodes and usually contains in-memory DBMS. 

• Sink nodes transmit data to a base station through a wireless communication. 
Aggregated data collected in a base station can be stored in a server node for ar-
chiving and for serving historical queries spanning over long period of time. 

• Server node and base station use an existing network infrastructure and have a 
traditional DBMS. Generally, a server node has a multi-dimensional data cube in 
order to serve aggregate queries efficiently. 
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Fig. 1. General architecture and simulation model in wireless sensor network 
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As shown in Fig. 1, data collected by each sensor node is transmitted to the sink 
node. The sink node then temporarily stores the data for some time, and periodically 
sends the data to the base station. Data reduction is typically performed in this trans-
mission because the size of aggregated data can be large, and depending on the appli-
cations, often times large, exact original data is out of favor to compact approximate 
summarization [8]. 

Communication between the base station and the server node typically use a wired 
network such as LAN, and hence the data transmission and reduction methods for 
these nodes should be considered differently. Unlike sensor and sink nodes, these 
nodes contain a powerful CPU, a large amount of memory, and reliable power 
sources. Efficient query processing over the large collection of aggregated data should 
be the more important consideration in these nodes. Similar to the transmission 
model, the query and data acquisition model also have to be determined according to 
the application requirements. 

4   Multivariate Data Reduction Methods in Sensor Networks 

We compared the multivariate data reduction methods, such as DWT (Discrete Wave-
let Transformation), HCL (Hierarchical Clustering), Sampling, and SVD (Singular 
Value Decomposition) over different types of data generated from different applica-
tion scenarios. In what follows, we present brief descriptions of the data reduction 
techniques and their characteristics. 

DWT: The DWT is a linear signal processing technique using a hierarchical decom-
position function. DWT is closely related to the DFT (Discrete Fourier Transform) 
and performs well with a low frequency data type. However, its performance de-
grades if data has several spikes or abnormal jumps [10, 13]. The advantages of DWT 
are the fast computation and small space complexity. A fast DWT algorithm has a 
complexity of O(n) for an input vector of length n [10]. Some researchers [7, 11] 
proposed the improved versions of the wavelet method, but it is still inefficient with 
the presence of multi-dimensional attributes. 

HCL: Clustering is partitioning the objects into groups or clusters so that objects 
within a cluster are similar to one another and dissimilar to objects in other clusters 
[10, 15]. It can be used for data reduction as a group of similar objects in a cluster can 
be replaced with a single centroid. In order to cluster multivariate data set, in our 
experiments, we used the hierarchical clustering method using single, average and 
complete-linkage method. The HCL with multi-dimensional index tree can be used 
for hierarchical data reduction as well as for the fast approximate answers to queries. 

Sampling: Sampling can be used as a data reduction technique since it allows a large 
data set to be represented by a much smaller random sample of the data [10, 11]. An 
advantage of sampling for data reduction is that the cost of obtaining a sample is pro-
portional to the size of the sample. The complexity of sampling is potentially linear 
and we can easily control sampling rate according to the error ratio. But it is ineffec-
tive for ad-hoc relational joins over arbitrary schema and effectiveness for set-valued 
approximate queries is unclear [11]. 
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SVD: SVD can be used for multivariate data reduction and is defined as follows.  

Definition 1. (SVD): Given an m×n real matrix X, we can express it as X=UΣVT 
where U and V are column-orthonormal and Σ is a diagonal matrix such that  

m mU ×  = T TUU U U I= = , n nV ×  = T TVV V V I= =                          (1) 

m n×∑ = [ ] 0
ij

∑ = , i j≠ , [ ] 0iii
σ∑ = ≥ , 1 2 min{ , }m nσ σ σ≥ ≥ ⋅ ⋅ ⋅ ≥               (2) 

Recall that a matrix U is called column-orthonormal if its columns ui are mutually 
orthogonal unit vectors.  So, UT is equal to U-1 and U × UT=I, where I is the identity 
matrix. Σ is a diagonal matrix with values called singular values {σi} in its diagonal. 
The rank k of X equals to the number of nonzero singular values of X. The SVD of 
X=UΣVT can be illustrated as follows. 

[ ] [ ]1 k m 1 k+1 nu u u v v v
T

X

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⎢ ⎥
⎢ ⎥
⎣ ⎦

min{ , }m nσ
⋅⋅

0⋅
⋅

1σ

kσ
⋅⋅⋅

0

k = rank of X

Basis for column space of X Basis for null space of X

[ ] [ ]1 k m 1 k+1 nu u u v v v
T

X

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⎢ ⎥
⎢ ⎥
⎣ ⎦

min{ , }m nσ
⋅⋅⋅⋅

0⋅
⋅

1σ

kσ
⋅⋅⋅

0

1σ

kσ
⋅⋅⋅⋅⋅⋅⋅⋅

0

k = rank of X

Basis for column space of X Basis for null space of X

  

Fig. 2.  Column space, rank and null space 

As for the space complexity, the original matrix X contains N×M data elements 
while the SVD representation, after truncating to k principal components, will need 
N× k data elements for U, k data elements for the Eigen values, and k×M data ele-
ments for the V matrix. Thus, the reduced data to the original data ratio, s_ratio, is as 
follows [12, 13]. 

_
N k k k M k

s ratio
N M M

× + + ×= ≈
×

 ( N M k≥ )                          (3) 

5   Experiments and Analysis 

5.1   Data Sets 

Our results are based on experiments over three data sets obtained from [16, 19]. The 
first data set, SCCTS (Synthetic Control Chart Time Series), contains 600 examples 
of control charts synthetically generated by the process introduced by Alcock and 
Manolopoulos in [16]. 

The SSCTS consists of the six different classes of control charts (Normal (a), Cy-
clic (b), Increasing trend (c), Decreasing trend (d), Upward shift (e), Downward shift 
(f)). The second data set include five synthetic data sets generated using the waveform 
generator. Each data set is created applying different combinations of parameters 
including waveform (one of sine, cosine, square, and saw-tooth), frequency (in Hz), 
DC level and random noise [19]. The third data set is the robot traces containing force 
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and torque measurements on a robot moving an object from one location to another. 
Each movement is characterized by 15 force/torque samples collected at regular time 
intervals [14, 16]. 
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(a) SCCTS (Synthetic Control Chart Time Series)

 
(b) Random waveform generator 
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(c) Examples of typical robot traces 

Fig. 3. Data sets of multivariate time series and sensor data 

In order to measure the relative error ( σ ) between the original matrix A  and its 

approximation A , we used the following metric.  

                                       F

F

A A

A
σ

−
= , where ( )1

2 2

ijF ij
A a= ∑                                 (4) 

In order to compute the relative errors for the reduction methods, we need to be 

able to recover the original matrix from its reduced form. The recovered matrix, A , is 
an approximation of the original matrix, A, and has the same dimensionality as A. 

Computing A  is straightforward for all reduction methods by their definition except 
the sampling method. We interpolated the sample points to approximate the missing 
values in the time points where the samples were not taken. For the experiments, we 
used the multivariate data reduction algorithms available from [17, 18] after some 
modification.  

5.2   SSCTS Data (Data Size vs. Performance) 

Fig. 4 shows the result of experiments where we compared the relative errors of the 
reduction methods over the range of different parameters. Fig. 4 (top left) compares 
the relative errors over the range of different data reduction ratios from 50% to 95% 
(e.g., 95% means the size of data after reduction is just 5% of the original). HCL was 
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the worst performer while sampling showed the best performance.  Fig. 4(top right) 
compared the reduction methods over the varying numbers of attributes (or dimen-
sions) in the input data. For example, at x=50 (the first data point in the x axis), the 
algorithms are compared over data with 50 sensor readings in each time point. In this 
test and the next test (shown on the bottom left), we fixed the reduction ratio to 90%.  
As the figure shows, all methods are not affected much by dimension size.  
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Fig. 4. Data size vs. Reduction methods performance 

Fig. 4(bottom left) shows if the data window size has any influence on the perform-
ance of the methods. In each sensor node, data is accumulated for a while before 
transmitted to the node in the upper layer. The window size determines how much 
readings will be accumulated for each transmission. For example, if the window size is 
10, then sensor readings are accumulated for 10 time points and transmitted as a unit. 
In this test, SVD showed a stable performance over the increasing window sizes while 
the others, especially HCL and Wavelet, showed increasing errors for larger windows.  

Fig. 4(bottom right) compares the execution time for each method as the data size 
increases. This result shows that HCL and wavelet are more computationally expen-
sive than others.  Overall, sampling was superior to others for six different classes in 
SSCTS. Wavelet took longer than others and was susceptible to the increase of win-
dow size. SVD showed a reliable performance in most of the cases. 
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5.3   Synthetic Data (Data Type vs. Relative Error Ratio) 

Fig. 5 compares the performance of the data reduction methods over the different 
types of data generated from different application areas. The synthetic data set gener-
ated from the waveform generator was used. In order to emulate the object tracking 
and object guarding scenarios, we inserted randomly generated outliers to the data. In 
this experiment, we fixed the data reduction ratio to 80% while varying the window 
size and the number of attributes. Fig. 5 (top left) shows the result with low frequency 
data set such as sine or cosine curves having low harmonic characteristics in the same 
attribute. All methods performed well in this test except HCL. HCL failed to produce 
comparable results.  

Fig. 5 (top right) shows the result with the high frequency data set. HCL was the 
worst while sampling was the best. SVD and Wavelet performed reasonably well. Fig. 
5 (bottom left) shows the result with the mixed input data with the ratio of high fre-
quency to low frequency being 3:2. Fig. 5 (bottom right) shows the result with the 
data set containing outliers and abnormal patterns. SVD performed well while HCL 
and wavelet did not.  
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Fig. 5. Data types vs. Relative error ratio 
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5.4   Robot Trace Data (SVD vs. Adaptive Reduction) 

Fig. 6 shows the results of experiments performed with the robot trace data (obtained 
from [14, 16]). In Fig. 6 (left), we compared the four methods over five different 
types of trace data including Normal, Collision, Obstruction, Lost, and Move as de-
scribed in [16]. The reduction rate is fixed to 80% in this test. Overall, SVD showed 
more stable performance than others throughout the test. Fig. 6 (right) compares the 
SVD method (the best performer in the previous test) with the adaptive reduction 
method where we apply the reduction method adaptively for each window. The data 
set used in this test also has five different types of traces, represented as LP1 to LP5 
as described in [16].  

In this adaptive method, data in each window is first examined and the best reduc-
tion method for the given window is determined and applied. In order to implement 
this approach correctly, we need a classifier that predicts the labels for each window 
characterizing the properties of data in the window. Although it is an interesting and 
important area of research, exploring multivariate classifiers is out of scope of this 
paper. In our implementation of the adaptive approach, we simply assumed the cor-
rect labels for each window are given. As the result suggests, given an accurate classi-
fier, we can achieve a significant improvement on the reduction performance over the 
static methods. We plan to investigate this adaptive reduction framework in our future 
work.  

0

0.1

0.2

0.3

0.4

0.5

Normal Collision Obstruction Lost Move

Robot Failure Class

R
el

at
iv

e 
E

rr
or

 R
at

io

Wavelet
HCL
Sampling
SVD

0

0.1

0.2

0.3

0.4

0.5

Normal Collision Obstruction Lost Move

Robot Failure Class

R
el

at
iv

e 
E

rr
or

 R
at

io

Wavelet
HCL
Sampling
SVD

Wavelet
HCL
Sampling
SVD

 

0

0.1

0.2

0.3

0.4

LP1 LP2 LP3 LP4 LP5

Failure behavior group

R
el

at
iv

e 
E

rr
or

 R
at

io

SVD
Adaptive Reduction

0

0.1

0.2

0.3

0.4

LP1 LP2 LP3 LP4 LP5

Failure behavior group

R
el

at
iv

e 
E

rr
or

 R
at

io

SVD
Adaptive Reduction
SVD

Adaptive Reduction

 

Fig. 6. Relative error ratio of robot failure behavior 

6   Conclusion 

We compared multivariate data reduction techniques that can be used in various sen-
sor network applications, including wavelet, HCL, sampling and SVD methods, over 
both the real and synthetic time series data. We showed the relative performance of 
different methods vary over the data sets with different data characteristics. The find-
ings reported in this paper can serve as a useful guideline for sensor network design 
and construction. 
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