
T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 1108 – 1117, 2005.
© IFIP International Federation for Information Processing 2005

A Load-Balancing and Energy-Aware Clustering
Algorithm in Wireless Ad-Hoc Networks

Wang Jin, Shu Lei, Jinsung Cho, Young-Koo Lee,
Sungyoung Lee*1, and Yonil Zhong

Department of Computer Engineering, Kyung Hee University, Korea
{wangjin, sl8132, sylee, zhungs}@oslab.khu.ac.kr

{chojs, yklee}@khu.ac.kr

Abstract. Wireless ad-hoc network is a collection of wireless mobile nodes dy-
namically forming a temporary communication network without the use of any
existing infrastructure or centralized administration. It is characterized by both
highly dynamic network topology and limited energy. So, the efficiency of
MANET depends not only on its control protocol, but also on its topology and
energy management. Clustering strategy can improve the performance of flexi-
bility and scalability in the network. With the aid of graph theory, genetic algo-
rithm and simulated annealing hybrid optimization algorithm, this paper pro-
poses a new clustering strategy to perform topology management and energy
conservation. Performance comparison is made between the original algorithms
and our two new algorithms, namely an improved weighting clustering algo-
rithm and a novel Genetic Annealing based Clustering Algorithm (GACA), in
the aspects of average cluster number, topology stability, load-balancing and
network lifetime. The experimental results show that our clustering algorithms
have a better performance on average.

1 Introduction

Wireless ad hoc wireless network is a collection of wireless mobile nodes that self-
configure to form a network without the aid of any established infrastructure [1]. It
can be rapidly deployed and reconfigured where the communication infrastructure is
either unavailable or destroyed. However, it is confronted with many challenges too,
such as the mobility of hosts, the dynamic topology, the multi-hop nature in transmis-
sion, the limited bandwidth and battery, etc. So, the study of MANET (Mobile Ad-
hoc NETwork) is a very demanding and challenging task.

Up to now, there are many routing protocols based on various strategies in
MANET, and they can be classified into several kinds as follows: (1) proactive and
reactive; (2) flat and hierarchical; (3) GPS assisted and non-GPS assisted, etc. These
kinds of protocols can be used solely or together. Here we mainly discuss the hierar-
chical routing protocols, which are based on the clustering algorithm [2, 3].

The rest of the paper is organized as follows. In section 2, some relevant back-
ground and commonly used clustering algorithms are presented. Based on which, an

* Corresponding author.

 A Load-Balancing and Energy-Aware Clustering Algorithm 1109

improved clustering algorithm is proposed in section3. In section 4, another novel
Genetic Annealing based Clustering Algorithm (GACA) is given so as to optimize the
overall network performance. The simulation results and comparison is made in the
aspects of average cluster number, topology stability, load-balancing and network
lifetime in section 5. Section 6 concludes the paper.

2 Related Work

Similar to the cellular network, the MANET can be divided into several clusters. Each
cluster is composed of one clusterhead and many normal nodes, and all the cluster-
heads form an entire dominant set. The clusterhead is in charge of collecting informa-
tion (signaling, message, etc.) and allocating resources within its cluster and commu-
nicating with other clusterheads. And the normal nodes communicate with each other
through their clusterhead, no matter they are in the same cluster or not.

Several original clustering algorithms have been proposed in MANET. These in-
clude: (1) Highest-Degree Algorithm; (2) Lowest-ID Algorithm; (3) Node-weight
Algorithm; (4) Weighted Clustering Algorithm. (5) Others, like RCC (Random Com-
petition based Clustering), LCC (Least Cluster Change), LEACH etc. We will give
some of them a brief description as follows.

2.1 Highest-Degree Algorithm

The Highest-Degree Algorithm was originally proposed by Gerla. and Parekh [4,5]. A
node x is considered to be a neighbor of another node y if x lies within the transmis-
sion range of y. The node with maximum number of neighbors (i.e., maximum de-
gree) is chosen as a clusterhead.

Experiments demonstrate that the system has a low rate of clusterhead change but
the throughput is low under the Highest-Degree Algorithm. As the number of nodes
in a cluster increases, the throughput drops and hence a gradual degradation in the
system performance is caused. All these drawbacks occur because this approach does
not have any restriction on the upper bound of node degree in a cluster.

2.2 Lowest-ID Algorithm

This Lowest-ID Algorithm was originally proposed by Baker and Ephremides [6]. It
assigns a unique id to each node and chooses the node with the minimum id as a clus-
terhead.

As for this algorithm, the system performance is better compared with the Highest-
Degree Algorithm in terms of throughput. But it does not attempt to balance the load
uniformly across all the nodes.

2.3 Node-Weight Algorithm

Basagni et al. [7] proposed two algorithms, namely distributed clustering algorithm
(DCA) and distributed mobility adaptive clustering algorithm (DMAC). In these two
approaches, each node is assigned a weight based on its suitability of being a cluster-
head. A node is chosen to be a clusterhead if its weight is higher than any of its
neighbor’s weight; otherwise, it joins a neighboring clusterhead.

1110 W. Jin et al.

Results show that the number of updates required is smaller than the Highest-
Degree and Lowest-ID Algorithms. Since node weights vary in each simulation cycle,
computing the clusterheads becomes very expensive and there are no optimizations on
the system parameters such as throughput and power control.

2.4 Weighted Clustering Algorithm

The Weighted Clustering Algorithm (WCA) was originally proposed by M. Chatter-
jee et al.[8]. It takes four factors into consideration and makes the selection of cluster-
head and maintenance of cluster more reasonable. As is shown in equation (1), the
four factors are node degree difference, distance summation to all its neighboring
nodes, velocity and remaining battery power respectively. And their corresponding

weights are 1w to 4w .Besides, it converts the clustering problem into an optimiza-

tion problem and an objective function is formulated.

iiiii EwVwDwwW 4321 +++∆= (1)

However, only those nodes whose neighbor number is less than a fixed threshold
value can be selected as a clusterhead in WCA. It is not very desirable in the practical
application. For example, many well-connected nodes whose neighbor number is
larger than the fixed threshold might be a good candidate as well. Besides, its energy
model is too simple. It treats the clusterhead and the normal nodes equally and its
remaining power is a linear function of time, which is also not very desirable. So, we
proposed an improved clustering algorithm as follows.

3 The Improved Weighted Clustering Algorithm

From the discussion mentioned above, we can see that most clustering algorithms,
except for the WCA, only take one of the following factors into consideration, such as
the node degree, ID, speed or remaining power. When the problem in one aspect is
solved, some other problems are introduced simultaneously. Inspired by the basic idea
of WCA, we proposed an improved clustering algorithm.

On the one hand, WCA only chooses those nodes whose neighbor number is less
than a fixed threshold as a clusterhead candidate. However, many well-connected
nodes whose neighbor number is larger than the fixed threshold might be a good can-
didate as well. So we can also treat them as clusterheads candidates and select an af-
fordable number of normal nodes from their neighboring nodes. On the other hand, we
established a more practical energy-consumption model which we will explain later.

By solving the optimization problem of min (iW), the clusterheads and their af-

filiated normal nodes are selected and a trade-off is made from four aspects.

3.1 Principles of the Improved Weighted Clustering Algorithm

In order to determine the fitness value iW of a node as a clusterhead, we need to

consider from the following four aspects.

 A Load-Balancing and Energy-Aware Clustering Algorithm 1111

If the node degree is higher, then the node is more stable as a clusterhead. Here we

make a simple conversion MNii −=∆ , where iN is the practical degree of node i

and M is the maximum degree. The smaller i∆ is, the better node i will be as a clus-

terhead. As for those nodes whose practical degree is larger than the maximum degree
M, we also treat them as clusterhead candidates. Once they are chosen as cluster-

heads, we will choose M nodes with less iW as their normal nodes. It is a distinctive

difference between the original WCA and our improved algorithm, and it can work
very well under densely deployed ad hoc networks where the WCA becomes useless.

If the node velocity iV is lower, then the node will be more stable as a clusterhead.

If the distance summation of node i to all its neighbors iD is smaller, it will con-

sume less transmission power to communication with the normal nodes within its
cluster. In other words, the cost will be smaller.

If the remaining battery power iE is higher, the longer it will be for node i to serve

as a clusterhead. Here we make another conversion and set an energy-consuming

model. All the iE s are set to zero initiatorily. If the node serves as a clusterhead, we

assume that it consumes 0.1 unit of energy and if normal node, 0.02 unit of energy.

Once some iE is above 1 (normalized), we believe that this node is out of energy and

the network will become useless rapidly due to the avalanche effect [9]. The energy-
consuming relationship of 5:1 is commonly used among some papers. And it meets
with the minimization problem very well. As for some specific application, one can
infer to the related technical report, such as the Mica2 Motes [10].And the model is also
applicable through minor modification.

3.2 Steps of the Proposed Algorithm

Taking node i as an example, we compute its iW according to the following steps and

then judge whether it is a clusterhead or a normal node.

Step 1: Compute its practical degree and then derive the equation MNii −=∆ .

Step 2: Compute the distance summation iD to its neighboring nodes.

Step 3: Set the velocity iV according to the random waypoint mobility model.

Step 4: At first, set iE to zero and increase their values according to the energy-

consuming model. Our algorithm terminates once some iE is above 1 (nor-

malized).

Step 5: Compute iW according to various iw under different application.

Step 6: Taking the node with minimum iW as the first clusterhead and its neighboring

nodes as its normal nodes within the same cluster. Then we go on with this
process until all nodes act as either clusterheads or normal nodes.

1112 W. Jin et al.

Step 7: All the nodes move randomly after some unit time and it goes back to step 1
again. And it terminates until a maximum number of time is reached or some
node is out of energy.

4 A Novel Genetic Annealing Based Clustering Algorithm
(GACA)

The selection of clusterheads set, which is also called dominant set in Graphic The-
ory, is a NP-hard problem. Therefore, it is very difficult to find a global optimum. So,
we can take a further step to use the computational intelligence methods, such as
Genetic Algorithm (GA) or Simulated Annealing (SA), to optimize the objective
function.

Considering the length of our paper, we will skip the principles of GA and SA, and
explain the steps of our new Genetic Annealing based Clustering Algorithm (GACA)
directly.

The steps of our GACA are as follows. And it usually takes 5 to 10 iterations to
convergence. So, we can say that it converges very fast.

Step 1: As for N nodes, randomly generate L integer arrangements in the range of
[1, N].

Step 2: According to these random arrangements and the clustering principle of
WCA, derive L sets of clusterheads and compute their correspond-

ing ioldw∑ .

Step 3: According to the Roulette Wheel Selection and Elitism in GA, select L sets of
clusterheads which are better, and replace the original ones.

Step 4: As for each of the L sets of clusterheads, perform the crossover operator and

derive the new L sets of clusterheads and their ineww∑ .

Step 5: According to the Metropolis “accept or reject” criteria in SA, decide whether

to take the one from L sets of clusterheads in ioldw∑ or in ineww∑ . And

the new L sets of clusterheads in the next generation are obtained.
Step 6: Repeat Step 3 to 5 until it converges or a certain number of iteration is

reached. And in our simulation, it usually takes 5 to 10 iterations to converge.

Then the global optimal or sub-optimal solution min (ineww∑) (i=1, 2…L)

is obtained and their corresponding set of clusterheads is known.

In Step 2, we make L random arrangements in order to reduce the randomness in
the clustering process, because there is much difference in the set of clusterheads (or
dominant set) for different nodes arrangements.

As for the Roulette Wheel Selection in Step 3, we do not take the traditional selec-

tion probability

1

()

i
i L

i
i

w
P

w
=

= ∑
∑ ∑

, but

1

()

i

i

w

i L
w

i

e
P

e

−

−

=

∑
=

∑∑
. In that case, the set of

 A Load-Balancing and Energy-Aware Clustering Algorithm 1113

clusterheads whose iw∑ is smaller will have more chance to be selected. Besides,

to overcome the randomness in the probability problem, we preserve the best set of

ioldw∑ directly to the ineww∑ in Elitism.

To further reduce the randomness and increase the probability that the global solu-
tion may occur, we perform M pairs of crossovers as for each of L random arranged
integers (i.e. mobile nodes). And the new L sets of clusterheads and their

ineww∑ (i=1,2,…L) are derived.

In Step 5, we make the “accept or reject” decision according to the Metropolis cri-

teria. If inew ioldw w≤∑ ∑ , then we accept ineww∑ directly. If

inew ioldw w>∑ ∑ , we do not reject it directly, but accept it with some probability.

In other words, if T

w ioldinew

e α
∑∑ −

−
 is larger than a randomly generated number in the

range of (0,1), which shows that ineww∑ and ioldw∑ may be very close to each

other, we will still take it. Or else, we will reject the one in ineww∑ and take its

counterpart in ioldw∑ . Besides, we let T Tα= (α is a constant between 0 and 1

and we normally take 0.9) after each iteration, so that ineww∑ and ioldw∑ must

be closer if ineww∑ is to be accepted. In this way, our GACA will not be trapped in

the local optima and the premature effect can be avoided. In other words, the diversity
of searching space can be ensured and it is similar to the mutation operator in GA.

5 Performance Evaluation

We set our simulation environment as follows. There are N nodes randomly placed
within a range of 100 by 100 m2, whose transmission range varies from 15m to 50m.
A Random Waypoint mobility model is adopted here. And our GACA parameters are
listed in table 1.

Table 1. GACA parameters

M L α ε
 1 10 0.9 0.01

5.1 Analysis of Average Cluster Number

As is shown in figure 1, we simulate N nodes whose transmission range varies from
15m to 50m. We can conclude that:

1114 W. Jin et al.

(1) The average cluster number (ACN) decreases as the transmission range increases.
(2) As for a smaller transmission range, the average number of cluster differs greatly

for various N. But when the transmission range is about 50m, one node can almost
cover the entire network. So it only takes 3 to 5 clusters to cover all the N nodes.

Fig. 1. ACN under various transmission range Fig. 2. ACN under various maximum velocities

Besides, we do the same research under various velocities. Taking N=R=30 as an
example, we can draw the conclusion from figure 2 that: the average number of clus-
ter varies randomly between 5 and 7, and it is not related with the velocity. In fact, it
matches with the practical situation too. For example, when one node with large ve-
locity moves out of a cluster, it is highly possible that some other node gets into the
same cluster. Or some of the nodes might move toward the same direction, which
results in a relatively slow velocity and a stable cluster too.

5.2 Analysis of Topology Stability

As is mentioned before, the clusterhead and their affiliated normal nodes may change
their roles as they move. Here, we define a cluster reaffiliation factor (CRF) as follows:

CRF＝ 1 2

1

2 i ii
N N−∑ (2)

here, i is the average number of cluster, and 1iN , 2iN are the degree of node i at

different times. For example, we assume that clusterhead 1 and 2 have 6 and 5

neighbors at first, i.e. 11 216, 5N N= = . As they move after one unit time, their

neighbors (degrees) become 5 and 6, i.e. 6,5 2212 == NN . We can derive that CRF

is equal to 1. So, we believe equivalently that one node in cluster 1 moves into cluster
2 and one reaffiliation is made.

Under the maximum velocity of 10 m/s, we compared the CRF performance of
Highest-Degree Algorithm, WCA and our GACA. From figure 3, we can see that
GACA has the lowest CRF, which shows that it is the stablest clustering strategy
among three of them. And WCA has the highest CRF value. The average CRF values
of them are 1.56, 0.77 and 0.17 respectively.

Besides, we did some other experiments about CRF. We got the conclusion that the
CRF increases as the velocity increases.

 A Load-Balancing and Energy-Aware Clustering Algorithm 1115

(a) Highest-Degree Algorithm (b) WCA (c) GACA

Fig. 3. CRF under various clustering algorithms

5.3 Analysis of Clusterhead Load-Balancing

We take the same definition of load-balancing factor (LBF) as is defined in [8]:

LBF＝
2()

c

ii

n

x µ−∑
，

)c

c

N n

n
µ −（
＝

where, cn is the average cluster number, N is the number of all nodes, and ix is the

practical degree of node i. The larger LBF is, the better the load is balanced. Taking

 (a) LBF under Highest-Degree Algorithm (b) LBF under WCA

 (c) LBF under Our Improved Algorithm (d) LBF under our GACA

Fig. 4. LBF under various clustering algorithms

1116 W. Jin et al.

N=20, M=4 as an example. The ideal case is that there are 4 clusters and each cluster-

head has a degree of 4, i.e. 4== ic xn . Then, 44/)420(=−=µ . So LBF is

infinite, which shows that the load is perfectly balanced.
For simplicity, we do not consider the factor of network lifetime here (we will dis-

cuss it later in next section). So we set the simulation parameters as follows.

(X,Y)=[100,100], N=20, R=30, M=4, maximum velocity max 5V = and

1 2 3 40.7, 0.2, 0.1, 0w w w w= = = = . It should be noted that we make iN as our

primary focus of attention 1(0.7)w = , because it represents the matching degree of

the practical case and ideal case directly. Figure 4 shows the LBF distribution under
Highest-Degree Algorithm, WCA, our improved weighted clustering algorithm and
GACA. From figure 4 we can see that: the Highest-Degree Algorithm has the worst
performance, WCA is secondary to it, and our two improved clustering algorithms are
better. Besides, the WCA will become useless under densely deployed ad hoc net-
works while our algorithm still works well. And their average values are 0.09, 0.38,
1.19 and 1.86 respectively.

5.4 Analysis of Network Lifetime

Finally, we made a comparison between the aforementioned four clustering algo-
rithms in the aspect of network lifetime, as is shown in figure 5. From which, we can
see that GACA achieves the best performance, our improved weighted clustering
algorithm is second to it, the WCA and the Highest-Degree algorithm are worse.

0

5

10

15

20

25

30

35

80 100 120 140

(X,Y) range

n
e
t
w
o
r
k

l
i
f
e
t
i
m
e GACA

Our Improved
Algorithm

WCA

Highest-Degree
Algorithm

Fig. 5. Network lifetime under various clustering algorithms

6 Conclusion

We proposed an improved weighted clustering algorithm based on the WCA and
another novel Genetic Annealing based Clustering Algorithm (GACA) in this paper.
Some performance comparison is made in the aspect of average cluster number, to-
pology stability, load-balancing and network lifetime. The simulation results show
that our two clustering algorithms have a better performance on average.

 A Load-Balancing and Energy-Aware Clustering Algorithm 1117

Acknowledgement

This work was supported by grant No. R01-2005-000-10267-0 from Korea Science
and Engineering Foundation in Ministry of Science and Technology.

References

1. Internet Engineering Task Force MANET Working Group. Mobile Ad Hoc Network
(MANET) Charter [EB/OL]. Available at http://www.ietf.org/html.charters/manet-
charter.html.

2. C.C. Chiang. Routing in Clustered Multihop, Mobile Wireless Networks with Fading
Channel [C]. Proceedings of IEEE SICON'97, April1997, pp.197-211.

3. Mingliang Jiang, Jinyang Li, Y.C. Tay. Cluster Based Routing Protocol [EB/OL]. August,
1999 IETF Draft.

4. A.K. Parekh. Selecting routers in ad-hoc wireless networks [C]. Proceedings of the
SBT/IEEE International Telecommunications Symposium, August 1994.

5. M. Gerla and J.T.C. Tsai. Multicluster, mobile, multimedia radio network [J].
ACM/Baltzer Wireless Networks, 1(3),1995, pp. 255-265.

6. D.J. Baker and A. Ephremides. The architectural organization of a mobile radio network
via a distributed algorithm [J]. IEEE Transactions on Commicationuns COM-29 11(1981)
pp. 1694–1701.

7. S. Basagni. Distributed clustering for ad hoc networks [C]. Proceedings of International
Symposium on Parallel Architectures, Algorithms and Networks, June 1999, pp. 310–315.

8. M. Chatterjee, S.K. Das and D. Turgut. An On-Demand Weighted Clustering Algorithm
(WCA) for Ad hoc Networks [C]. Proceedings of IEEE GLOBECOM 2000, San Fran-
cisco, November 2000, pp.1697-1701.

9. Nishant Gupta, Samir R. Das. Energy-aware On-demand Routing for Mobile Ad Hoc Net-
work. [EB/OL], Available form http://crewman.uta.edu/~choi/energy.pdf.

10. MICA2 Mote Datasheet, http://www.xbow.com/Products/Product_pdf_files/ Wirelesspdf/
6020-0042-01_A_MICA2.pdf, 2004.

	Introduction
	Related Work
	Highest-Degree Algorithm
	Lowest-ID Algorithm
	Node-Weight Algorithm
	Weighted Clustering Algorithm

	The Improved Weighted Clustering Algorithm
	Principles of the Improved Weighted Clustering Algorithm
	Steps of the Proposed Algorithm

	A Novel Genetic Annealing Based Clustering Algorithm (GACA)
	Performance Evaluation
	Analysis of Average Cluster Number
	Analysis of Topology Stability
	Analysis of Clusterhead Load-Balancing
	Analysis of Network Lifetime

	Conclusion
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

