
Universal Designated Verifier Signature Proof

(or How to Efficiently Prove Knowledge
of a Signature)

Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

Centre for Information Security,
School of Information Technology and Computer Science,

University of Wollongong,
Wollongong, NSW 2519, Australia
{baek, rei, wsusilo}@uow.edu.au

Abstract. Proving knowledge of a signature has many interesting ap-
plications. As one of them, the Universal Designated Verifier Signature
(UDVS), introduced by Steinfeld et al. in Asiacrypt 2003 aims to protect
a signature holder’s privacy by allowing him to convince a verifier that
he holds a valid signature from the signer without revealing the signa-
ture itself. The essence of the UDVS is a transformation from a publicly
verifiable signature to a designated verifier signature, which is performed
by the signature holder who does not have access to the signer’s secret
key. However, one significant inconvenience of all the previous UDVS
schemes considered in the literature is that they require the designated
verifier to create a public key using the signer’s public key parameter and
have it certified to ensure the resulting public key is compatible with the
setting that the signer provided. This restriction is unrealistic in sev-
eral situations where the verifier is not willing to go through such setup
process. In this paper, we resolve this problem by introducing a new type
of UDVS. Different from previous approach to UDVS, our new UDVS
solution, which we call “Universal Designated Verifier Signature Proof
(UDVSP)”, employs an interactive protocol between the signature holder
and the verifier while maintaining high level of efficiency. We provide a
formal model and security notions for UDVSP and give two construc-
tions based on the bilinear pairings. We prove that the first construction
is secure in the random oracle model and so is the second one in the
standard model.

1 Introduction

1.1 Motivation

Consider a situation where Alice, who has graduated from the University ABC,
would like to apply for a job online. In this situation, Alice has to convince the
employer that she indeed holds the diploma that has been signed by the registrar
of the University ABC. However, she does not want to send her diploma away,
since she feels that anyone else might be able to use it for a different purpose.

B. Roy (Ed.): ASIACRYPT 2005, LNCS 3788, pp. 644–661, 2005.
c© International Association for Cryptologic Research 2005

Universal Designated Verifier Signature Proof 645

A normal digital signature cannot satisfy her requirement as anyone who has
obtained a message (in the above example, Alice’s diploma) and a signature on
it (the registrar’s signature on Alice’s diploma) can easily copy them. For this
reason, Alice seeks a new type of digital signature that can provide a property
that the signature on Alice’s diploma is non-transferable meaning that Alice
can convince Bob that she is in possession of a valid diploma awarded by the
University ABC but having talked to Alice, Bob cannot convince any other
parties about the truth of the statement.

At a glance, it seems that Alice’s need can be met by the Universal Des-
ignated Verifier Signature (UDVS), introduced By Steinfeld et al. in Asiacrypt
2003 [25]. In UDVS, a “designator (signature holder)” who has obtained a valid
signature from a “signer” can convince a “designated verifier” that he holds a
valid signature obtained from the signer but other parties including the desig-
nated verifier himself cannot convince other parties of the validity of the same
statement. In spite of their elegant structures, the difficulty of adopting the
UDVS schemes proposed so far including those from [25,26,28] to the Alice’s
diploma verification problem is that they require designated verifiers to create
private/public key pairs using the same public key parameter that has been set by
the signer and have them certified. (Indeed, the protocol for conducting such a
task, “Verifier Key-Registration”, is included as a sub-algorithm of UDVS [25]).
This is sometimes hard to be realized especially when proving knowledge of a sig-
nature obtained from the original signer is only a designator’s interest. – In the
above scenario, for example, the employer will be less likely to agree on creating
a private/public key pair according to the public parameter set by Alice’s uni-
versity just only to verify her diploma, as this key setup involving management
of Public Key Infrastructure (PKI) may incur significant cost. Hence, although
the UDVS seems to be a good candidate to solve Alice’s diploma verification
problem, the public key setup requirement for verifiers remains as a problem.

Motivated by the above problem of the UDVS schemes considered in the
previous literature, we would like to obtain a new type of UDVS that eliminates
the assumption of having the verifier generate a private/public key pair to verify
the signature holder’s claim. In order to achieve this, the natural methodology
one can envision is to adopt the interactive proof [15] style protocol. However,
interactive protocols sometimes significantly degrade the system efficiency. So
another important requirement of the new UDVS is high level of efficiency. Our
new UDVS proposed in this paper will satisfy both requirements.

1.2 Our Contributions

In this paper, we propose a new type of UDVS, which we call “Universal Desig-
nated Verifier Signature Proof (UDVSP)” and provide two highly efficient con-
structions based on the bilinear pairings [4,18]. Informally, our UDVSP system
has the following characteristics: 1) The signer signs a message and provides the
message/signature pair to the designator (signature holder); 2) the designator
transforms the signer’s signature and, using an interactive protocol that takes
this transformed signature as common input, convinces the designated verifier

646 J. Baek, R. Safavi-Naini, and W. Susilo

that he has indeed obtained the valid signature on the message from the signer;
and 3) the designated verifier does not have to setup a private/public key.

In terms of security, we formalize the security of UDVSP against imperson-
ation attack: The system should not allow the attackers including the designated
verifier to convince any other person that the designator indeed holds a valid
signature from the signer. Our two concrete constructions of UDVSP are proven
to be secure under the proposed security model relative to known computational
assumptions related to hardness of the discrete-logarithm problem. The security
proof for the first construction needs the random oracle model [2] while the
second one does not depend on this assumption.

Our two constructions of UDVSP are highly efficient. The signing algorithms
of them are the same as those of underlying signature schemes [5,7], which are
very efficient. The transformation algorithms just need one exponentiation and
the interactive verification protocols only require two bilinear pairing operations
on top of the Schnorr identification protocol [23]. (Note that the details of these
algorithms and protocol will be given in Section 3).

We remark that throughout this paper, the term “designated” has a literal
meaning that a specified verifier participates in the protocol run by the signature
holder. This does not mean that it provides explicit authentication of the veri-
fier’s identity, which is provided in the non-interactive designated signature [17]
where the verifiers are authenticated by checking the certificate of their public
keys. Note that as mentioned in [17], the advantage of the non-interactive des-
ignated verifier signature is that it can prevent somewhat strong attacks such
as mafia (a.k.a. man-in-the-middle) attacks [12] and blackmailing [16] as the
verifiers are explicitly authenticated by their public keys (which come with the
certificates issued by the trusted third party).

1.3 Related Work

The concept of UDVS was proposed by Steinfeld et al. [25], who constructed a
concrete scheme that realizes the concept using the bilinear pairings. They also
observed that Boneh et al.’s [6] ring signature [24] converted to two-signer ring
signature can be viewed as UDVS. The UDVS schemes based on the RSA and
Schnorr signatures were soon followed [26]. Very recently, the UDVS scheme
based on the bilinear pairings whose security can be analyzed without the
random oracle assumption was proposed by Zhang et al. [28]. Although these
schemes are elegant, as discussed earlier, the assumption of having designated
verifiers to generate their own private/public key pairs according to the signer’s
public key parameter setting is strong and even unrealistic in some situations.
We note that the reason why one needs such a key registration process for ver-
ifiers in the UDVS schemes is that non-transferability of a signature obtained
from the original signer is achieved via the technique of trapdoor commitment [8]
non-interactively as widely adopted in the various designated-verifier signature
schemes [17,19,27].

In contrast, undeniable signature proposed by Chaum and Antwerpen [9]
achieves non-transferability (of the original signer’s signature) via an interactive

Universal Designated Verifier Signature Proof 647

protocol although non-interactive version of the protocol is also be possible us-
ing the trapdoor commitment. (We note that the security analysis of Chaum’s
undeniable signature is given only recently by Ogata et al. [22]). However, as
discussed in [25], the crucial difference between the UDVS and the undeniable
signature (including other designated-verifier signatures) is that in the latter,
only the signer who possesses the secret signing key can designate a signature
while in the former, any legitimate user who possesses the signature from the
signer can perform designation.

Another related area of UDVS is anonymous credential system [20,9,10].
However, as mentioned in [25], this areas of research focuses more on user privacy
such as “selective disclosure” of attributes and “unlinkability” of user transac-
tion. Our work (and the work related to UDVS [25,26,28] in general) focuses more
on providing an efficient mechanism to convince designated verifiers about the
truth of the statement that a signature holder is in possession of a valid signature
from the original signer. Consequently, we can avoid heavy zero knowledge proof
protocols used in many credential systems such as [20,9,10]. Interestingly, our
first construction of UDVSP shows that if proving knowledge of a signature is
only concern, one can simply use Boneh, Lynn and Shacham (BLS)’s [5] pairing-
based signature scheme whose security against chosen message attack is relative
to the standard Computational Diffie-Hellman (CDH) problem, as opposed to
the one used in [20], whose security against chosen message attack is based on
the fairly complex and non-standard assumption called “LRSW assumption”.

Moreover, in order to precisely establish the end goal of security of our UD-
VSP systems, the security analysis given in this paper does not depend on the
auxiliary properties such as proof of knowledge [1], witness indistinguishability
[13] and honest verifier zero knowledge and so on.

Finally, we remark that Naor [21] also pointed out that it is not desirable
to assume that the verifier of the authentication is part of the system and has
established a public key. This is because it is often difficult to assure the inde-
pendence of keys in the PKI and there is no reason to assume that the verifier
has chosen his key properly.

2 Preliminaries

2.1 Symbols and Notations

We use the notation A(·, . . . , ·) to denote an algorithm, with input arguments
separated by commas. (Note that our underlying computational model is a prob-
abilistic Turing Machine). The notation AO(·)(·, . . . , ·) denotes that algorithm A
makes calls to an oracle O(·). We use a ← A(x1, . . . , xn) to denote the assign-
ment of a uniformly and independently distributed random element from the
output of A on input (x1, . . . , xn) to the variable a.

We use the notation Prot[P (·, . . . , ·
︸ ︷︷ ︸

private input

) ↔ V (·, . . . , ·
︸ ︷︷ ︸

private input

)](·, . . . , ·
︸ ︷︷ ︸

common input

) to

denote an interactive protocol Prot between a prover P and a verifier V , both

648 J. Baek, R. Safavi-Naini, and W. Susilo

of which are modeled as probabilistic Turing Machines. Private inputs for P
and V are presented inside the parentheses immediately followed by the letters
“P” and “V ”. Common inputs for P and V are presented inside the parentheses
followed by the square brackets“[]”.

Given a set S, we denote by b
R← S the assignment of a uniformly and

independently distributed random element from the set S to the variable b.
We say a probability function f : N→ R[0,1] is negligible in k if, for all c > 0,

there exists k0 ∈ N such that f(k) ≤ 1
kc whenever k ≥ k0. Here, R[0,1] = {x ∈

R|0 ≤ x ≤ 1}.

2.2 Computational Primitives

The bilinear pairing e that will be used throughout this paper is the admissible
bilinear pairing [4,18], which is defined over two groups of the same prime-
order q denoted by G1 and G2. (By G

∗
1 and ZZ∗

q , we denote G1 \ {1} where 1
is the identity element of G1, and ZZq \ {0} respectively.) Suppose that G1 is
generated by g. Then, e : G1×G1 → G2 has the following properties: 1) Bilinear:
e(ga, gb) = e(g, g)ab, for all a, b ∈ ZZq and 2) Non-degenerate: e(g, g) �= 1.

For convenience, we define an atomic bilinear pairing parameter generation
algorithm that will be used in many parts of the paper.

– PramGena(k): This algorithm generates two groups G1 and G2 of order q >
2k and creates bilinear map e : G1 ×G1 → G2. It also chooses a generator g
of the group G1. It outputs a parameter (q, g, e, G1, G2).

We now review the definition of “One More Discrete-Logarithm (OMDL)”
problem used to analyze the security of the Schnorr identification protocol [23]
against impersonation under active attack in which an attacker can participate
in the execution of the protocol as a cheating verifier [3].

Definition 1 (OMDL). The corresponding experiment for this problem, de-
noted Expomdl(k), is defined as follows. Firstly, the atomic parameter generation
algorithm is run and parameter (q, g, e, G1, G2) is generated. A polynomial-time
attacker A now makes n queries to the challenge oracle C(·) and m queries to
the Discrete-Logarithm (DL) oracle DLq,g(·). Upon receiving a query (null in-
put), the challenge oracle C(·) returns a random point h ∈ G1. Upon receiving a
query z, DLq,g(·) returns s such that gs = z. However, a restriction here is that
m < n. Namely, the number of queries to the DL oracle should be strictly less
than the number of queries to the challenge oracle. A’s final goal is to output
all the discrete logarithms of the n challenges returned from C(·). Formally, we
describe Expomdl(k) as follows.

– Experiment: (q, g, e, G1, G2)← PramGena(k); (s1, . . . , sn)← AC(·),DLq,g(·)(q,
g, e, G1, G2)

– Output: If (gs1 = h1)∧· · · ∧ (gsn = hn), where h1, . . . , hn are random points
in G1 output by the challenge oracle C(·), and m < n, where m denotes the
number of queries to the DL oracle, then return 1. Otherwise, return 0.

Universal Designated Verifier Signature Proof 649

We define A’s advantage as Advomdl
A (k) = Pr[Expomdl(k)] = 1. We say that

OMDL problem is hard if Advomdl
A (k) is negligible in k.

Other computational problems that we use in this paper are the Compu-
tational Diffie-Hellman (CDH) and the Strong Diffie-Hellman (SDH) problems,
which are reviwed in Appendix A.

3 Universal Designated Verifier Signature Proof System

3.1 Model

As informally outlined in Section 1, there are three parties involved in Universal
Designated Verifier Signature Proof (UDVSP) system: a signer, a designator
(signature holder) and a designated verifier. After creating a secret (signing) key
and public (verification) key pair, the signer signs a message and transmits the
resulting signature together with the message to the designator. It is important
that transmission of the signature should be done in a secure manner, e.g. via
secure channel. (This is similar to the private key generation process in identity-
based cryptography in which a trusted party generates a private key associated
with user’s identifier information and sends the resulting key via secure channel).
Having obtained the valid signature from the signer, the designator creates a
transformed signature by generating a random mask and hiding the original
signature using it. The designator then convinces the designated verifier via an
interactive protocol that the transformed signature has been generated from
the valid signature obtained from the signer. Below, we formally define UDVSP
system.

Definition 2 (Universal Designated Verifier Signature Proof). A Uni-
versal Designated Verifier Signature Proof system consists of the following five
polynomial-time algorithms and a protocol:

– SigKeyGen: Taking a security parameter k ∈ IN as input, this algorithm
generates a signer’s public/secret (verification/signing) key pair (pk, sk). We
write (pk, sk)← SigKeyGen(k).

– Sign: Taking signer’s secret key sk and a message m as input, this algorithm
generates a signature σ on m. We write σ ← Sign(sk, m).

– Verify: Taking a signer’s public key pk, a signature σ and a message m as
input, this algorithm outputs 1 if σ is a valid signature on m and outputs 0
otherwise. We write d← Verify(pk, σ, m), where d ∈ {0, 1}.

– Transform: Taking a signer’s public key pk and a signature σ as input, this
algorithm picks a secret mask s̃k and generates a transformed signature σ̃
using s̃k. It outputs σ̃ and s̃k. We write (σ̃, s̃k)← Transform(pk, σ).

– IVerify: This is an interactive verification protocol between a designator and
a designated verifier, denoted P and V respectively. Common inputs for P
and V are a signer’s public key pk, a transformed signature σ̃ and a message
m. P ’s private input is a secret mask s̃k used to create σ̃. V does not have
any private input. In this protocol, P tries to convince V that σ̃ has been

650 J. Baek, R. Safavi-Naini, and W. Susilo

generated from the valid signature σ obtained from the signer, with the
knowledge of s̃k. The output of this protocol is verification decision 1 or 0
depending on whether V accepts or rejects. We write d ← IVerify[P (s̃k) ↔
V](pk, σ̃, m).

Notice that in the above definition, SigKeyGen and Sign are run by the signer;
Verify and Transform are run by the designator. We emphasize that Verify is not
publicly available in UDVSP system.

We require two consistency properties from UDVSP system. One property
is that the signature σ on the message m, produced by the signer should be
accepted as valid by the Verify algorithm. The other property is that the trans-
formed signature σ̃ produced by the designator using the valid signature σ from
the signer and his secret mask s̃k should be accepted as valid in the IVerify
protocol.

3.2 Security Notions

The first essential security requirement for UDVSP system is that a signature
created by the signer should be existentially unforgeable under (adaptive) chosen
message attack, which is a standard requirement for digital signature schemes.
Below, we review the formal definition of unforgeability of chosen message attack
[14].

Definition 3 (Unforgeability against Chosen Message Attack). Suppose
that SigKeyGen, Sign and Verify are as defined in Definition 2. Consider the
following experiment Expf−cma(k) in which a polynomial-time attacker A after
making queries to the signing oracle Sign(sk, ·), outputs a new message and valid
signature pair:

– Experiment: (pk, sk)← SigKeyGen(k) : (m, σ)← ASign(sk,·)(pk)
– Output: If 1 ← Verify(pk, m, σ) and m has not been queried to Sign(sk, ·)

then return 1. Otherwise return 1.

We define A’s advantage in the above experiment as Advf−cma
A (k) =

Pr[Expf−cma(k) = 1]. We say that the underlying signature scheme of UDVSP
system is existentially unforgeable under chosen message attack if Advf−cma

A (k)
is negligible in k.

The second essential security requirement for UDVSP system is resistance
against impersonation attack. That is, UDVSP system should prevent an at-
tacker who does not hold a valid signature created by the signer from imperson-
ating the honest designator who holds a valid signature created by the signer.

We divide this impersonation attack further into two categories, “Type-1”
and “Type-2” attacks. In Type-1 attack, an attacker who has obtained a trans-
formed signature participates in the IVerify protocol as a cheating designated
verifier and interacts with an honest designator a number of times. The attacker
then tries to impersonate the honest designator to other honest designated ver-
ifier. Below, we give a formal definition for security against the Type-1 attack.

Universal Designated Verifier Signature Proof 651

Definition 4 (Security against Impersonation under Type-1 Attack).
Assume that SigKeyGen, Sign, Verify, Transform and IVerify are as defined in
Definition 2. Suppose that a polynomial-time attacker A consists of two sub-
algorithms V̂ and P̂ , which represent a cheating designated verifier and a cheat-
ing designator respectively. Let P denote an honest designator. Let ConvIVerify

be a function that outputs a conversation transcript T of the IVerify protocol
between P and V̂ . Note here that T is a random variable afreshed by P and V̂ ’s
random coins. We write T ← ConvIVerify[P (s̃k)↔ V̂](pk, σ̃, m).

Now consider an experiment Expim−type1(k). Firstly, in this experiment, a
signer’s public/secret key pair (pk, sk) is generated using a security parameter
k ∈ IN. pk is then given to the honest designator P and the attacker A = (V̂ , P̂).
Next, an arbitrary message m is chosen and a signature σ on m is generated.
Also, a designator’s secret mask s̃k is chosen based on pk and a transformed
signature σ̃ is created using s̃k. σ̃ is then given to A = (V̂ , P̂) while s̃k is given
only to P . V̂ now interacts with P in the IVerify protocol p(k) times, where p(·)
denotes a polynomial-time computable function. Having accessed to transcripts
of these interactions and V̂ ’s random coins used in them, which are denoted
Ti and rV̂

i respectively for i = 1, . . . , p(k), P̂ tries to impersonate the honest
designator P to an honest designated verifier V in the IVerify protocol. Formally,
Expim−type1(k) can be described as follows.

– Experiment: (pk, sk)← SigKeyGen(k); m← {0, 1}∗;
σ ← Sign(sk, m); (σ̃, s̃k)← Transform(pk, σ);
Ti ← ConvIVerify[P (s̃k)↔ V̂](pk, σ̃, m) for i = 1, . . . , p(k):
d← IVerify[P̂ ((T1, r

V̂
1), . . . , (Tp(k), r

V̂
p(k)))↔ V](pk, σ̃, m)

– Output: d

We define A’s advantage in the above experiment as Advim−type1
A (k) =

Pr[Expim−type1(k) = 1]. We say that UDVSP system is secure against imper-
sonation under Type-1 attack if Advim−type1

A (k) is negligible in k.

In Type-2 attack, the attacker simply ignores the transformed signature that
he has obtained before but tries to create a new transformed signature on his
own and use this to impersonate the honest designator to an honest designated
verifier in the IVerify protocol. In what follows, we formally define the security
against Type-2 attack.

Definition 5 (Security against Impersonation under Type-2 Attack).
Assume that SigKeyGen, Sign, Verify, Transform and IVerify are as defined in
Definition 2. Let A be a polynomial-time attacker. Consider an experiment
Expim−type2(k). Firstly, in this experiment, a signer’s public/secret key pair
(pk, sk) is generated using a security parameter k and pk is given to A. Then, an
arbitrary message m is chosen and is given to A. A then generates a designator’s
secret mask s̃k

′
and a transformed signature σ̃′ on its own and participates in the

IVerify protocol with an honest designated verifier V . Formally, Expim−type2(k)
can be described as follows.

652 J. Baek, R. Safavi-Naini, and W. Susilo

– Experiment: (pk, sk)← SigKeyGen(k); m← {0, 1}∗; (σ̃′, s̃k
′
)← A(pk, m):

d← IVerify[A(s̃k
′
)↔ V](pk, σ̃′, m)

– Output: d

We define A’s advantage in the above experiment as Advim−type2
A (k) =

Pr[Expim−type2(k) = 1]. We say that UDVSP system is secure against imper-
sonation under Type-2 attack if Advim−type2

A (k) is negligible in k.

4 Our Universal Designated Verifier Signature Proof
Systems

4.1 UDVSP System Based on BLS Signature

Our first UDVSP system is based on Boneh, Lynn and Shacham (BLS)’s [5] sig-
nature scheme. Each sub-algorithm and protocol of this system can be described
as follows.

– SigKeyGen(k): Compute (q, g, e, G1, G2) ← PramGena(k). Choose x
R← ZZ∗

q

and compute y = gx. Specify a hash function H : {0, 1}∗ → G1. Output
pk = (k, q, g, e, G1, G2, H, y) and sk = (k, q, g, e, G1, G2, H, x).

– Sign(sk, m), where m ∈ {0, 1}∗: Compute σ = H(m)x. Output σ.
– Verify(pk, m, σ): Check e(σ, g) ?= e(H(m), y). If the equality holds, output 1.

Otherwise, output 0.
– Transform(pk, σ): Choose z

R← ZZ∗
q and compute σz(= H(m)xz). Output

σ̃ = σz and s̃k = z.
– IVerify[P (s̃k)↔ V](pk, σ̃, m):

Both P and V compute v1 = e(σ̃, g), and v2 = e(H(m), y).

1. P chooses t
R← ZZ∗

q , computes w = vs
2 and sends w to V .

2. V chooses c
R← ZZ∗

q and sends it to P .
3. P computes t = s + cz mod q and sends t to V .
4. V checks vt

2
?= wvc

1. If the equality holds then output 1. Otherwise,
output 0 otherwise.

If the hash function H is assumed to be the random oracle [2], one can
prove that the Sign algorithm above is unforgeable under chosen message attack
assuming that the CDH problem (Definition 6) is hard [5] (in G1).

Notice that the above IVerify protocol is a protocol for proving knowledge
of z satisfying the relation e(σ̃, g) = e(H(m), y)z . From this, P can convince
the designated verifier that he possesses a valid BLS-signature H(m)x. More
precisely, if there exists a knowledge extractor [1] that extracts z, one can use this
extractor to construct another knowledge extractor that outputs σ̃1/z as a valid
signature. Indeed, this value is a valid BLS-signature as e(σ̃, g) = e(H(m), y)z

implies e(σ̃, g)1/z = e(H(m), y) and hence e(σ̃1/z , g) = e(H(m)x, g). However, as
mentioned earlier, we do not use this auxiliary property to analyze the security

Universal Designated Verifier Signature Proof 653

of the proposed system as the zero-knowledge or witness-indistinguishability
required to provide the security against impersonation under active attacks (i.e.
attacks other than eavesdropping attack) often compromises the efficiency of
protocol [4].

It is important to notice that in the IVerify protocol, the designated verifier
does not need to setup his private/public key pair, which is a crucial difference
compared to previous UDVS schemes.

4.2 UDVSP System Based on BB Signature

Our second UDVSP protocol is based on Boneh and Boyen (BB)’s [7] signature
scheme. Each sub-algorithm and protocol of this system can be described as
follows.

– SigKeyGen(k): Compute (q, g, e, G1, G2) ← PramGena(k). Choose x
R← ZZ∗

q

and y
R← ZZ∗

q . Compute u1 = gx and u2 = gy. Output pk = (k, q, g, e, G1,
G2, u1, u2) and sk = (k, q, g, e, G1, G2, u1, u2, x, y).

– Sign(sk, m) where m ∈ ZZq: Choose l
R← ZZ∗

q and compute δ = g1/(x+m+yl).
(If x + m + yl = 0, try different l). Output σ = (δ, l).

– Verify(pk, m, σ): Check e(σ, u1g
mul

2)
?= e(g, g). If the equality holds, output

1. Otherwise, output 0.
– Transform(pk, σ): Choose z

R← ZZ∗
q and compute δ̃ = δz(= gz/(x+m+yl)).

Output σ̃ = (σz , l) and s̃k = z.
– IVerify[P (s̃k)↔ V](pk, σ̃, m):
• Both P and V compute v1 = e(δ̃, u1g

mul
2), and v2 = e(g, g).

1. P chooses s
R← ZZ∗

q , computes w = vs
2 and sends w to V .

2. V chooses c
R← ZZ∗

q and sends it to P .
3. P computes t = s + cz mod q and sends t to V .
4. V checks vt

2
?= wvc

1. If the equality holds then output 1. Otherwise,
output 0.

The above UDVSP system is structurally similar to the previous one pre-
sented in Section 4.1. However, a nice feature of this second construction is that
it does not depend on random oracle due to the underlying signature scheme
can be proven unforgeable against chosen message attack without employing the
random oracle assumption [7].

Similarly to the previous construction, the IVerify protocol in the above UD-
VSP system can be viewed as a protocol for proving the knowledge of z satisfying
the relation e(σ̃, u1g

mul
2) = e(g, g)z.

5 Security Analysis

As mentioned in the previous section, the unforgeability of the underlying sig-
nature schemes of our two UDVSP systems were proven under the assumption

654 J. Baek, R. Safavi-Naini, and W. Susilo

that the CDH and SDH problems are hard respectively [5,7]. Therefore, we only
analyze the security of the two UDVSP systems under impersonation attack.

The first theorem is concerned with the security of our UDVS system based
on the BLS signature against impersonation under Type-1 attack.

Theorem 1. The UDVSP system based on the BLS signature is secure against
impersonation under Type-1 attack in the random oracle model assuming that
the OMDL problem is hard in G1.

Proof. Let A = (V̂ , P̂) be an impersonator that tries to break the UDVSP system
based on the BLS signature under Type-1 attack. Let B be an OMDL attacker.
Suppose that B is given (q, g, e, G1, G2). First, B queries its challenge oracle
C(·) to obtain a challenge point h0. Suppose that h0 = gs0 for some random
s0 ∈ ZZ∗

q . Now, B chooses an arbitrary string m ∈ {0, 1}∗. B also chooses

x
R← ZZ∗

q and computes y = gx. B then outputs pk = (k, q, g, e, G1, G2, H, y)
as the signer’s public key, where a random oracle H : {0, 1}∗ → G1 can be
constructed as follows. B sets H(m) = gl ∈ G1. For m′ �= m, B chooses l′ R← ZZ∗

q

and returns H(m′) = gl′ ∈ G1. Finally, B computes σ̃ = hlx
0 and gives this to A

as a transformed signature. B proceeds to simulate the n times of execution of
the IVerify protocol between V̂ and an honest designator P as follows. (Below,
i ∈ {1, . . . , n}).
– Make a query to C(·) and get the response hi. Compute wi = e(hlx

i , g)
and send this to Ṽ . When V̂ sends ci, make query hih

ci
0 to DLq,g(·) to

get the response ti and send this back to V̂ . V̂ then checks e(H(m), g)ti
?=

wie(σ̃, g)ci .

Notice that the distribution of the transformed signature σ̃ constructed in
the simulation above is the same as that in the real attack: Since h0 = gs0 for
random s0 ∈ ZZ∗

q , σ̃ = hlx
0 = glxs0 = H(m)xs0 for random l, x ∈ ZZ∗

q .
We now show that the simulation of IVerify is correct. Firstly, wi in the above

simulation and the one sent by P in Step 1 of the real protocol are identically
distributed: Since hi = gsi for some random si ∈ ZZ∗

q , we have

wi = e(hlx
i , g) = e(gsil, gx) = e(gl, gx)si = e(H(m), y)si .

Secondly, since ti is the discrete-logarithm of hih
ci
0 , we have ti = si + cis0 mod q

and hence

e(H(m), y)ti = e(H(m), y)si+cis0 = e(H(m), y)sie(H(m), y)cis0

= e(gl, gx)sie(gl, gx)cis0 = e(gsilx, g)e(gs0lx, g)ci

= e(hlx
i , g)sie(hlx

0 , g)ci = wie(σ̃, g)ci .

After performing the above simulation n times, B now attempts to ex-
tract s0, the discrete-logarithm of h0. Using this value, B can compute the
discrete-logarithms of other points h1, . . . , hn. To do so, B runs P̂ to get w in

Universal Designated Verifier Signature Proof 655

Step 1 of IVerify, selects c
R← ZZ∗

q and runs P̂ to obtain its response t and checks

e(H(m), y)t ?= we(σ̃, g)c. If the equality holds, B runs P̂ again with the same
state as before but with different challenge c′ ∈ ZZ∗

q , obtains its response t′ and

checks e(H(m), y)t′ ?= we(σ̃, g)c′ . If the equality holds, B computes t−t′
c′−c mod q.

(Note that this part is due to the “reset lemma” formulated in [3]). We show
that t−t′

c′−c mod q is the discrete-logarithm of h0. Observe that

e(glx(t−t′)/(c−c′), g) = e(glx(t−t′), g)1/(c−c′) = (e(gl, gx)te(gl, gx)−t′)1/(c−c′)

= (e(H(m), y)te(H(m), y)−t′)1/(c−c′)

= (we(σ̃, g)c(we(σ̃, g)c′)−1)1/(c−c′)

= e(σ̃, g)(c−c′))1/(c−c′) = e(hlx
0 , g) = e(glxs0 , g).

From the above equation, we obtain t−t′
c′−c = s0 mod q. Since we have s0, we

can compute si = ti − ci(s0fi) for i = 1, . . . , n. Finally B outputs s0, s1, . . . , sn.

Now we prove the security of our first UDVS system against impersonation under
Type-2 attack.

Theorem 2. The UDVSP system based on the BLS signature is secure against
impersonation under Type-2 attack in the random oracle model assuming that
the CDH problem is hard in G1.

Proof. We present a reduction from the unforgeability of the original BLS sig-
nature scheme to the security of our UDVSP system under Type-2 attack. The
above theorem then follows since the BLS scheme is shown to be (existentially)
unforgeable under chosen message attack in the random oracle model assuming
that the CDH problem in G1 is hard [5].

Let A be an impersonator that tries to break the UDVSP system based on the
BLS signature under Type-2 attack. Let B be a forger that tries to break the BLS
signature scheme under chosen message attack. Suppose that B is given a public
key (q, g, e, G1, G2, y, H), where y = gx and H : {0, 1}∗ → G1 is a hash function
modeled as a random oracle [2]. Firstly, B outputs pk = (k, q, g, e, G1, G2, H, y)
as the signer’s public key. B then chooses an arbitrary string m ∈ {0, 1}∗.

B now runs A to get σ̃′. B continues to run A to get w in Step 1 of IVerify.
Upon receiving w, B picks c

R← ZZ∗
q , runs A to obtain its response t and checks

e(H(m), y)t ?= we(σ̃′, g)c. If the equality holds, B runs A again with the same
state as before but with difference challenge c′ ∈ ZZ∗

q , obtains its response t′ and

checks e(H(m), y)t′ ?= we(σ̃′, g)c′ . If the equality holds, B outputs σ̃′ c−c′
t−t′ as a

forgery. (Similarly to the proof of the previous theorem , this part is due to the
“reset lemma” formulated in [3]).

In remains to show that σ̃′ c−c′
t−t′ is a valid signature on m. From the above two

equations, we get

656 J. Baek, R. Safavi-Naini, and W. Susilo

e(H(m), y)t/e(H(m), y)t′ = we(σ̃′, g)c/we(σ̃′, g)c′

e(H(m), y)t−t′ = e(σ̃′, g)c−c′

e(H(m), gx)t−t′ = e(σ̃′, g)c−c′

e(H(m)x, g) = e(σ̃′, g)
c−c′
t−t′

e(H(m)x, g) = e(σ̃′ c−c′
t−t′ , g).

Thus we have σ̃′ c−c′
t−t′ = H(m)x, which is a valid signature on m.

The following two theorems are concerned with the security of our second
UDVSP system against impersonation attack.

Theorem 3. The UDVSP system based on the BB signature is secure against
impersonation under Type-1 attack assuming that the OMDL problem in hard in
G1.

Proof. Let A = (P̂ , V̂) be an impersonator that tries to break the UDVSP
protocol based on the BB signature scheme under Type-1 attack. Let B be an
OMDL attacker. Suppose that B is given (q, g, e, G1, G2). First, B queries its
challenge oracle C(·) to obtain a challenge point h0. Suppose that h0 = gs0 for
some random s0 ∈ ZZ∗

q . B then chooses an arbitrary string m ∈ {0, 1}∗. B also

chooses x
R← ZZ∗

q and y
R← ZZ∗

q and computes u1 = gx and u2 = gy. B then
outputs pk = (k, q, e, g, G1, G1, G2, u1, u2) as the signer’s public key. Finally, B

computes σ̃ = h
1

x+m+yl

0 and publishes this as a transformed signature. B proceeds
to simulate the steps of IVerify as follows. (Below, i ∈ {1, . . . , n}).
– Make a query to C(·) and get the response hi. Compute wi = e(hi, g) and send

this to Ṽ . When V̂ sends ci, make query hih
ci
0 to DLq,g(·) to get the response

ti and send this back to V̂ . V̂ then checks e(g, g)ti
?= wie(δ̃, u1g

mul
2)

ci .

Notice that the distribution of the transformed signature σ̃ constructed in the
simulation above is the same as that in the real attack as h0 = gs0 for random

s0 ∈ ZZ∗
q and hence σ̃ = h

1
x+m+ly

0 = g
s0

x+m+ly for random x, y, l ∈ ZZ∗
q .

We now show that the simulation of IVerify is correct. Firstly, wi in the above
simulation and the one sent by P in Step 1 of the real protocol are identically
distributed: Since hi = gsi for some random si ∈ ZZ∗

q , we have wi = e(gsi , g) =
e(g, g)si . Secondly, since ti is the discrete-logarithm of hih

ci
0 , we have ti = si +

cis0 mod q. Hence,

e(g, g)ti = e(g, g)si+cis0 = e(g, g)sie(g, g)cis0 = wie(g
s0

x+m+yl , gx+m+yl)ci

= wie(h
1

x+m+yl

0 , u1g
mul

2)
ci = wie(σ̃i, u1g

mul
2)

ci .

After performing the above simulation n times, B now attempts to ex-
tract s0, the discrete-logarithm of h0. Using this value, B can compute the
discrete-logarithms of other points h1, . . . , hn. To do so, B runs P̂ to get w

Universal Designated Verifier Signature Proof 657

in Step 1 of IVerify, selects c
R← ZZ∗

q and runs P̂ to obtain its response t

and checks e(g, g)t ?= we(σ̃, g)c. If the equality holds, B runs P̂ again with
the same state as before but with different challenge c′ ∈ ZZ∗

q , obtains its re-

sponse t′ and checks e(g, g)t′ ?= we(σ̃, g)c′ . If the equality holds, B computes
t−t′
c′−c mod q. (Note that this part is due to the “reset lemma” formulated in
[3]). We now show that t−t′

c′−c mod q is the discrete-logarithm of h0. Observe
that

e(g
t−t′
c−c′ , g) = e(gt−t′ , g)

1
(c−c′) = (e(g, g)te(g, g)−t′)

1
(c−c′)

=
(

we(σ̃, u1g
mul

2)
c(we(σ̃, u1g

mul
2)

c′)−1
) 1

(c−c′)

= e(σ̃, u1g
mul

2)
c−c′
c−c′ = e(h

1
x+m+yl

0 , gx+m+yl) = e(gs0 , g).

From the above equation, we obtain t−t′
c′−c = s0 mod q. Since we have s0, we

can compute si = ti − cis0 for i = 1, . . . , n. Finally B outputs s0, s1, . . . , sn.

Theorem 4. The UDVSP system based on the BB signature is secure against
impersonation under Type-2 attack in the random oracle model assuming that
the SDH problem is hard in G1.

Proof. Similarly to the proof of Theorem 2, we present a reduction from the
security of the original BB signature scheme to the security of our UDVSP system
under Type-2 attack. The above theorem then follows since the BB scheme is
shown to be unforgeable under chosen message attack (in the standard model)
assuming that the SDH problem in group G1 is hard [7].

Let A be an impersonator that tries to break the UDVSP system based on
BB under Type-2 attack. Let B be a forger that tries to break the BB signature
scheme under chosen message attack. Suppose that B is given a public key
(q, g, e, G1, G2, u1, u2), where u1 = gx and u2 = gy for random x, y, ZZ∗

q . Firstly,
B outputs pk = (q, g, e, G1, G2, u1, u2) as the signer’s public key. B chooses an
arbitrary string m ∈ {0, 1}∗.

B now runs A to get σ̃′ = (δ̃′, l). B continues to run A to get w in Step 1
of IVerify. Upon receiving w, B picks c

R← ZZ∗
q , runs A to obtain its response

t and checks e(g, g)t ?= we(δ̃′, u1g
′mul

2)
c. If the equality holds, B runs A again

with the same state as before but with difference challenge c′ ∈ ZZ∗
q , obtains

its response t′ and checks e(g, g)t′ ?= we(δ̃′, u1g
mul

2)
c′ . If the equality holds, B

outputs σ̃
t−t′
c−c′ as a forgery. (Note that this part is due to the “reset lemma”

formulated in [3]).

We now show that σ̃′ t−t′
c−c′ is a valid signature on the message m. From the

above two equations, we get

658 J. Baek, R. Safavi-Naini, and W. Susilo

e(g, g)t/e(g, g)t′ = we(σ̃′, g)c/we(σ̃′, g)c′

e(g, g)t−t′ = e(δ̃′, u1g
mul

2)
c−c′

e(g, g)t−t′ = e(δ̃′, u1g
mul

2)
c−c′

e(g, g) = e(σ̃′, gx+m+yl)
c−c′
t−t′

e(g, g) = e(σ̃′ c−c′
t−t′ (x+m+yl), g).

Thus we have σ̃′ t−t′
c−c′ = g

1
x+m+yl , which is a valid signature on m.

6 Concluding Remarks

In this paper, we proposed an alternate method to realize Universal Designated
Verifier Signature (UDVS) [25], called Universal Designated Verifier Signature
Proof (UDVSP). We constructed two efficient and provably-secure UDVSP sys-
tems based on the pairing-based signature schemes proposed in [5] and [7]. The
important feature of our two constructions compared to previous UDVS schemes
[25,26,28] is that the verifier is no longer required to generate his private/public
key pair for verifying that the signature holder is in possession of a right signature
from the original signer.

Additionally, we observe that when a designator and a signer are the same
entity, the UDVSP system becomes an undeniable signature scheme with a con-
firmation protocol only. As an example, using the UDVSP system based on BLS
signature, one can construct an undeniable signature scheme as follows.

– SigKeyGen(k): Compute (q, g, e, G1, G2) ← PramGena(k). Choose x
R← ZZ∗

q

and compute y = gx. Specify a hash function H : {0, 1}∗ → G1. Output
pk = (k, q, g, e, G1, G2, H, y) and sk = (k, q, g, e, G1, G2, H, x).

– Sign(sk, m), where m ∈ {0, 1}∗: Choose z
R← ZZ∗

q and compute σ̃ = H(m)xz.
Output σ̃.

– Confirmation[P (sk, z)↔ V](pk, σ̃, m):
• Both P and V compute v1 = e(σ̃, g), and v2 = e(H(m), y).

1. P chooses t
R← ZZ∗

q , computes w = vs
2 and sends w to V .

2. V chooses c
R← ZZ∗

q and sends it to P .
3. P computes t = s + cz mod q and sends t to V .
4. V checks vt

2
?= wvc

1. If the equality holds then output 1. Otherwise,
output 0.

Notice that in the above scheme, anyone cannot verify the validity of a sig-
nature without the help of the signer, which is essentially a main requirement of
undeniable signature.

Designing a disavowal protocol for the above scheme and its formal analysis
under the new security model for undeniable signature proposed in [22] are our
future work.

Universal Designated Verifier Signature Proof 659

Acknowledgement

The authors are grateful to the anonymous referees of Asiacrypt 2005 for their
helpful comments.

References

1. M. Bellare and O. Goldreich, On Defining Proof of Knowledge, In Crypto ’92,
LNCS 740, pp. 390–420, Springer-Verlag, 1993.

2. M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols, In ACM-CCS, pp. 62–73, 1993.

3. M. Bellare and A. Palacio, GQ and Schnorr Identification Schemes: Proofs of Se-
curity against Impersonation under Active and Concurrent Attacks, In Crypto ’02,
LNCS 2442, pp. 162–177, Springer-Verlag, 2002.

4. D. Boneh and M. Franklin, Identity-Based Encryption from the Weil Pairing, In
Crypto ’01, LNCS 2139, pp. 213–229, Springer-Verlag, 2001.

5. D. Boneh, B. Lynn and H. Shacham, Short Signatures from the Weil Pairing, In
Asiacrypt ’01, LNCS 2248, pp. 566–582, Springer-Verlag, 2001.

6. D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregate and Verifiably En-
crypted Signatures from Bilinear Maps, In Eurocrypt ’03, LNCS 2656, pp. 416–432,
Springer-Verlag, 2003.

7. D. Boneh and X. Boyen, Short Signatures Without Random Oracles, In Eurocrypt
’04, LNCS 3027, pp. 56–73, Springer-Verlag, 2004.

8. G. Brassard, D. Chaum and C. Crpeau, Minimum Disclosure Proof of Knowledge,
In Journal of Computer and System Sciences, 37 (2), pp. 156–189, 1988.

9. D. Chaum and H. Antwerpen, Undeniable Signatures, In Crypto ’89, LNCS 435,
pp. 212–216, Springer-Verlag, 1990.

10. J. Camenisch and A. Lysyanskaya, An Efficient System for Non-Transferable
Anonymous Credentials with Anonymity Revocation, In Eurocrypt ’01, LNCS 2045,
pp. 93–118, Springer-Verlag, 2001.

11. J. Camenisch and A. Lysyanskaya, Signature Schemes and Anonymous Credentials
from Bilinear Maps, In Crypto ’04, LNCS 3152, pp. 56–72, Springer-Verlag, 2004.

12. Y. Desmedt, C. Gourtier and S. Bengio, Special Uses and Abuses of the Fiat-Shamir
Passport Protocol, In Crypto ’87, LNCS 293, pp. 21–39, Springer-Verlag, 1988.

13. U. Feige and A. Shamir, Witness Indistinguishability and Witness Hiding Protocols,
In 22nd Symposium on the Theory of Computing (STOC), pp. 416–426, ACM,
1990.

14. S. Goldwasser, S. Micali and R. Rivest, A Digital Signature Scheme Secure Against
Adaptive Chosen- Message Attack, In SIAM Journal on Computing, 17 (2), pp.
281–308, 1988.

15. S. Goldwasser, S. Micali and C. Rackoff, The Knowledge Complexity of Interactive
Proof System, In SIAM Journal on Computing, 18 (1), pp. 186–208, 1989.

16. M. Jakobsson, Blackmailing Using Undeniable Signatures, In Eurocrypt ’94, LNCS
950, pp. 425–427, Springer-Verlag, 1994.

17. M. Jakobsson, K. Sako and R. Impagliazzo, Designated Verifier Proofs and Their
Applications, In Eurocrypt ’96, LNCS 1070, pp. 143–154, Springer-Verlag, 1996.

18. A. Joux: The Weil and Tate Pairings as Building Blocks for Public Key Cryp-
tosystems, Algorithmic Number Theory Symposium (ANTS-V) ’02, LNCS 2369,
pp. 20–32, Springer-Verlag, 2002.

660 J. Baek, R. Safavi-Naini, and W. Susilo

19. H. Krawczyk and T. Rabin, Chameleon Hashing and Signatures, Network and
Distributed System Security Symposium (NDSS) ’00, pp. 143 – 154, The Internet
Society, 2000.

20. A. Lysyanskaya, R. Rivest, A. Sahai and S. Wolf Pseudonym Systems, In Selected
Areas in Cryptography (SAC) ’99, LNCS 1758, pp. 184–199, Springer-Verlag, 1999.

21. M. Naor, Deniable Ring Authentication, In Crypto ’02, LNCS 2442, pp. 481–198,
Springer-Verlag, 2002.

22. W. Ogata, K. Kurosawa and S. Heng, The Security of the FDH Variant of Chaum’s
Undeniable Signature Scheme, In Public Key Cryptography (PKC) ’05, LNCS 3386,
pp. 328–345, Springer-Verlag, 2005.

23. C. P. Schnorr, Efficient Identifications and Signatures for Smart Cards, In Crypto
’89, LNCS 435, pp. 239–251, Springer-Verlag, 1990.

24. R. Rivest, A. Shamir and Y. Tauman, How to Leak a Secret, In Asiacrypt ’01,
LNCS 2248, pp. 552 – 565, Springer-Verlag, 2001.

25. R. Steinfeld, L. Bull, H. Wang and J. Pieprzyk, Universal Designated-Verifier Sig-
natures, In Asiacrypt ’03, LNCS 2894, pp. 523–542, Springer-Verlag, 2003.

26. R. Steinfeld, H. Wang and J. Pieprzyk, Efficient Extension of Standard
Schnorr/RSA Signatures into Universal Designated-Verifier Signatures, In Pub-
lic Key Cryptography (PKC) ’04, LNCS 2947, pp. 86–100, Springer-Verlag, 2004.

27. W. Susilo and Y. Mu, Deniable Ring Authentication Revisited, In Applied Cryp-
tography and Network Security (ACNS) ’04, LNCS 3089, pp. 149–163, Springer-
Verlag, 2004.

28. R. Zhang, J. Furukawa and H. Imai, Short signature and Universal Designated
Verifier Signature without Random Oracles, In Applied Cryptography and Network
Security (ACNS) ’05, LNCS 3531, pp. 483–498, Springer-Verlag, 2005.

A Definitions of CDH and SDH

Definition 6 (CDH). Let A be a polynomial-time attacker. Consider the
following experiment Expcdh(k):

– Experiment: (q, g, e, G1, G2)← ParamGena(k); (a, b) R← ZZ∗
q : κ← A(ga, gb)

– Output: If κ = gab then return 1. Otherwise, return 0.

We define A’s advantage as Advcdh
A (k) = Pr[Expcdh(k)] = 1. We say that CDH

problem is hard if Advcdh
A (k) is negligible in k.

It is believed that the above CDH problem in group G1 is hard (compu-
tationally intractable). On the contrary, the Decisional Diffe-Hellman (DDH)
problem in this group can be solved in polynomial time with the help of the
bilinear pairing. We note that the security of Boneh, Lynn and Shacham’s [5]
short signature scheme is relative to CDH.

We now review the definition of the Strong Diffie-Hellman (SDH) problem
in group G1 as follows.

Definition 7 (SDH). Let A be a polynomial-time attacker. Consider the fol-
lowing experiment Expsdh(k) (Below, n is polynomial in k).:

Universal Designated Verifier Signature Proof 661

– Experiment: (q, g, e, G1, G2)← PramGena(k); x
R← ZZ∗

q :
κ← A(g, gx, gx2

, . . . , gxn

)
– Output: If κ = (c, g1/(x+c)) where c ∈ ZZq then return 1. Otherwise, return

0.

We define A’s advantage as Advsdh
A (k) = Pr[Expsdh(k)] = 1. We say that SDH

problem is hard if Advsdh
A (k) is negligible in k.

We note that the security of Boneh and Boyen’s [7] signature scheme is
relative to SDH.

	Introduction
	Motivation
	Our Contributions
	Related Work

	Preliminaries
	Symbols and Notations
	Computational Primitives

	Universal Designated Verifier Signature Proof System
	Model
	Security Notions

	Our Universal Designated Verifier Signature Proof Systems
	UDVSP System Based on BLS Signature
	UDVSP System Based on BB Signature

	Security Analysis
	Concluding Remarks
	Definitions of CDH and SDH

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

