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Abstract. Proofs are invaluable tools in assuring protocol implementers
about the security properties of protocols. However, several instances of
undetected flaws in the proofs of protocols (resulting in flawed protocols)
undermine the credibility of provably-secure protocols. In this work, we
examine several protocols with claimed proofs of security by Boyd &
González Nieto (2003), Jakobsson & Pointcheval (2001), and Wong &
Chan (2001), and an authenticator by Bellare, Canetti, & Krawczyk
(1998). Using these protocols as case studies, we reveal previously un-
published flaws in these protocols and their proofs. We hope our analysis
will enable similar mistakes to be avoided in the future.

1 Introduction

Despite cryptographic protocols being fundamental to many diverse secure elec-
tronic commerce applications, and the enormous amount of research effort ex-
pended in design and analysis of such protocols, the design of secure crypto-
graphic protocols is still notoriously hard. The difficulty of obtaining a high
level of assurance in the security of almost any new or even existing protocols is
well illustrated with examples of errors found in many such protocols years after
they were published. The many flaws discovered in published protocols for key
establishment and authentication over many years, have promoted the use of for-
mal models and rigorous security proofs, namely the computational complexity
approach and the computer security approach.

Computer Security Approach: Emphasis in the computer security approach is
placed on automated machine specification and analysis. The Dolev & Yao [13]
adversarial model is the de-facto model used in formal specifications, where
cryptographic operations are often used in a “black box” fashion ignoring some of
the cryptographic properties, resulting in possible loss of partial information. The
main obstacles in this automated approach are undecidability and intractability,
since the adversary can have a large set of possible actions which results in a
state explosion. Protocols proven secure in such a manner could possibly be
flawed – giving a false positive result.
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ComputationalComplexityApproach: Onthe other hand, the computational com-
plexity approach adopts a deductive reasoning process whereby the emphasis is
placed on a proven reduction from the problem of breaking the protocol to an-
other problem believed to be hard. The first treatment of computational complex-
ity analysis for cryptography began in the 1980s [14] but it was made popular for
key establishment protocols by Bellare & Rogaway. In fact, Bellare & Rogaway [4]
provided the first formal definition for a model of adversary capabilities with an
associated definition of security. These human-generated proofs provide a strong
assurance that the security properties of the protocols are satisfied. However, it
is often difficult to obtain correct proofs of security and the number of protocols
that possess a rigorous proof of security remains relatively small. Furthermore,
such proofs usually entail lengthy and complicated mathematical proofs, which
are daunting to most readers [20]. The breaking of provably-secure protocols after
they were published is evidence of the difficulty of obtaining correct computational
proofs of protocol security. Despite these setbacks, proofs are invaluable for argu-
ing about security and certainly are one very important tool in getting protocols
right.
Importance of Specifications and Details: Rogaway [24] pointed out the im-
portance of robust and detailed definitions in concrete security. In fact, specifi-
cations adopted in the computer security approach are expected to be precise
(without ambiguity) and detailed, as such specifications are subjected to auto-
mated checking using formal tools. Boyd & Mathuria [7] also pointed out that it
is the responsibility of the protocol designers and not the protocol implementers
to define the details of protocol specifications. Protocol implementers (usually
non-specialists and/or industrial practitioners) will usually plug-and-use existing
provably-secure protocols without reading the formal proofs of the protocols [20].
Bleichenbacher [6] also pointed out that important details are often overlooked
in implementations of cryptographic protocols until specific attacks have been
demonstrated. Flaws in security proofs or specifications themselves certainly will
have a damaging effect on the trustworthiness and the credibility of provably-
secure protocols in the real world.

In this work, we advocate the importance of proofs of protocol security, and
by identifying some situations where errors in proofs arise, we hope that similar
structural mistakes can be avoided in future proofs. We use several protocols
with claimed proofs in the Bellare–Rogaway model as case studies, namely the
conference key agreement protocol due to Boyd & González Nieto [8], the mutual
authentication and key establishment protocols (JP-MAKEP) due to Jakobsson
& Pointcheval [18] and WC-MAKEP due to Wong & Chan [26]. We also examine
an encryption-based MT authenticator due to Bellare, Canetti, & Krawczyk [2].

In the setting of the reductionist proof approach for protocols, the security
model comprises protocol participants and a powerful probabilistic, polynomial-
time (PPT) adversary A, where the latter is in control of all communication
between all parties in the model. The original BR93 proof model was defined only
for two-party protocols. In subsequent work, the model is extended to analyse
three-party server-based protocols [5] and multi-party protocols [9].
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Boyd–González Nieto Protocol: An inappropriate proof model environment is
one of the likely areas where protocol proofs might go wrong. In the existing
proof of the Boyd–González Nieto conference key agreement protocol [8], we
observe that the proof model environment has the same number of parties in
the model as in the protocol, which effectively rules out a multi-user setting
in which to analyse the signature and encryption schemes. Consequently, this
shortcoming fails to include the case where A is able to corrupt a player that
does not participate in the particular key agreement protocol session, and obtains
a fresh key of any initiator principal by causing disagreement amongst parties
about who is participating in the key exchange.

The attack we reveal on Boyd–González Nieto conference key agreement
protocol is also known as an unknown key share attack, first described by Diffie,
van Oorschot, & Wiener in 1992 [12]. As discussed by Boyd & Mathuria [7–
Chapter 5.1.2], A need not obtain the session key to profit from this attack.
Consider the scenario whereby A will deliver some information of value (such
as e-cash) to B. Since B believes the session key is shared with A, A can claim
this credit deposit as his. Also, a malicious adversary, A, can exploit such an
attack in a number of ways if the established session key is subsequently used to
provide encryption (e.g., in AES) or integrity [19].

In the attack on Boyd–Gonzalez-Nieto protocol, A is able to reveal the key
of a non-partner oracle whose key is the same as the initiator principal, thus
violating the key establishment goal. The existence of this attack means that
the proof of Boyd–González Nieto’s protocol is invalid, since the proof model
allows Corrupt queries. Protocols proven secure in a proof model that allows
the “Corrupt” query (in the proof simulation) ought to be secure against the
unknown key share attack, since if a key is to be shared between some parties,
U1, U2, and U3, the corruption of some other (non-related) player in the protocol,
say U4, should not expose the session key shared between U1, U2, and U3. In
the proof simulations of the protocols on which we perform an unknown key
share attack, A does not corrupt the owner or the perceived partners of the
target Test session, but instead corrupts some other (non-related) player in the
protocol that is not associated with the target Test session or a member of the
“attacked” protocol session.

JP-MAKEP: We also describe an unknown key share attack on the JP-MAKEP
which breaks the reduction of the proof from JP-MAKEP to the discrete loga-
rithm problem. Similarly to the Boyd–González Nieto protocol, the proof model
allows Corrupt queries for clients, and hence secure protocols ought to be immune
to unknown key share attacks.

WC-MAKEP: An attack against WC-MAKEP is described where an adversary
A is able to obtain a fresh key of an initiator oracle by revealing a non-partner
server oracle sharing the same session key. The proof was sketchy and failed to
provide any simulation.

Encryption-Based Authenticator: In the Bellare–Canetti–Krawczyk encryption-
based authenticator, we demonstrate that an adversaryA is able to use a Session-
State Reveal query to find the one-time MAC key and use it to authenticate a
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fraudulent message. We identify the problem (in its proof) to be due to an incom-
plete proof specification (Session-State Reveal queries not adequately considered),
which results in the failure of the proof simulation where the adversary has a
non-negligible advantage, but the MAC forger, F , does not have a non-negligible
probability of forging a MAC digest (since it fails). This violates the underlying
assumption in the proof. We also demonstrate how the flaw in this MT authen-
ticator invalidates the proof of protocols that use the MT-authenticator using
protocol 2DHPE [16] as a case study.

Organization of Paper: Section 2 briefly explains the Bellare-Rogaway and the
Canetti–Krawczyk models. Section 3 revisits the Boyd–González Nieto confer-
ence key agreement protocol, the JP-MAKEP, and the WC-MAKEP. Previously
unpublished attacks on these protocols are demonstrated and flaws in the ex-
isting proofs are revealed. We conclude this section by proposing fixes to the
protocols. Fixed protocols are not proven secure, and are presented mainly to
provide a better insight into the proof failures. Section 4 revisits the encryption-
based MT-authenticator proposed by Bellare, Canetti, & Krawczyk [2]. Finally,
Section 5 presents the conclusions.

2 Informal Overview of the Bellare-Rogaway and
Canetti–Krawczyk Models

Throughout this paper, the Bellare & Rogaway 1993 model, 1995 model [4,5],
the Bellare, Pointcheval, & Rogaway 2000 model [3], and the Canetti & Kraw-
czyk 2001 model [2,10] model will be referred to as the BR93, BR95 BPR2000,
and CK2001 models respectively. Collectively, the BR93, BR95, and BPR2000
models are known as the Bellare-Rogaway model.

2.1 Bellare-Rogaway Models

In the Bellare-Rogaway model, the adversary, A, is defined to be a probabilistic
machine that is in control of all communications between parties and is allowed
to intercept, delete, delay, and/or fabricate any messages at will. A interacts
with a set of Πi

Uu,Uv
oracles (i.e., Πi

Uu,Uv
is defined to be the ith instantiation of

a principal Uu in a specific protocol run and Uv is the principal with whom Uu

wishes to establish a secret key). Let n denote the number of players allowed in
the model, where n is polynomial in the security parameter k. The predefined
oracle queries are shown in Table 1.

The definition of security depends on the notions of partnership of oracles
and indistinguishability. The definition of partnership is used in the definition of
security to restrict the adversary’s Reveal and Corrupt queries to oracles that are
not partners of the oracle whose key the adversary is trying to guess. An impor-
tant difference between the three Bellare–Rogaway models is in the way partner
oracles are defined (i.e. the definition of partnership). The BR93 model defines
partnership using the notion of matching conversations, where a conversation
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Table 1. Informal description of the oracle queries

A Send(Uu, Uv, i, m) query to oracle Πi
Uu,Uv

computes a response according to the
protocol specification and decision on whether to accept or reject yet, and returns
them to the adversary A. If the client oracle, Πi

Uu,Uv
, has either accepted with some

session key or terminated, this will be made known to A.

The Reveal(Uu, Uv, i) query captures the notion of known key security. Any client
oracle, Πi

Uu,Uv
, upon receiving such a query and if it has accepted and holds some

session key, will send this session key back to A.

The Corrupt(Uu, KE) query captures unknown key share attacks and insider
attacks. This query allows A to corrupt the principal Uu at will, and thereby learn
the complete internal state of the corrupted principal. Notice that a Corrupt query
does not result in the release of the session keys since A already has the ability to
obtain session keys through Reveal queries. In the BR95 model, this query also gives
A the ability to overwrite the long-lived key of the corrupted principal with any value
of her choice (i.e. KE).

The Test(Uu, Uv , i) query is the only oracle query that does not correspond to any
of A’s abilities. If Πi

Uu,Uv
has accepted with some session key and is being asked a

Test(Uu, Uv , i) query, then depending on a randomly chosen bit b,A is given either the
actual session key or a session key drawn randomly from the session key distribution.

is defined to be the sequence of messages sent and received by an oracle. The
sequence of messages exchanged (i.e., only the Send oracle queries) are recorded
in the transcript, T . At the end of a protocol run, T will contain the record of
the Send queries and the responses. Definition 1 gives a simplified definition of
matching conversations.

Definition 1 (BR93 Matching Conversations). Let nS be the maximum
number of sessions between any two parties in the protocol run. Πi

A,B and Πj
B,A

are said to be partners if they both have matching conversations, where

CA = (τ0,
′ start′, α1), (τ2, β1, α2)

CB = (τ1, α1, β1), (τ3, α2, ∗), for τ0 < τ1 < . . .

Partnership in the BR95 model is defined using the notion of a partner function,
which uses the transcript (the record of all SendClient and SendServer oracle
queries) to determine the partner of an oracle. However, no explicit definition of
partnership was provided in the original paper since there is no single partner
function fixed for any protocol. Instead, security is defined predicated on the
existence of a suitable partner function. Two oracles are BR95 partners if, and
only if, the specific partner function in use says they are.

BPR2000 partnership is defined based on the notion of session identifiers
(SIDs) where SIDs are suggested to be the concatenation of messages exchanged
during the protocol run. In this model, an oracle who has accepted will hold
the associated session key, a SID and a partner identifier (PID). Note that any
oracle that has accepted will have at most one partner, if any at all. Definition 2
describes the definition of partnership in the BPR2000 model.
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Definition 2 (BPR2000 Partnership). Two oracles, Πi
A,B and Πj

B,A, are
partners if, and only if, both oracles have accepted the same session key with the
same SID, have agreed on the same set of principals (i.e. the initiator and the
responder of the protocol), and no other oracles besides Πi

A,B and Πj
B,A have

accepted with the same SID.

2.2 Canetti-Krawczyk Model

In the CK2001 model, there are two adversarial models, namely the
unathenticated-links adversarial model (UM) and the authenticated-links ad-
versarial model (AM). Let AUM denote the adversary in the UM, and AAM

denote the adversary in the AM . The difference between AAM and AUM lies
in their powers. Table 2 provides an informal description of the oracle queries
allowed for both AAM and AUM. Let n denote the number of players allowed in
the model, where n is polynomial in the security parameter k.

Table 2. Informal description of the oracle queries allowed for AAM and AUM

Oracle Πi
Uu,Uv

, upon receiving a Session-State Reveal(Uu, Uv , i) query and if it has
neither accepted nor held some session key, will return all its internal state (including
any ephemeral parameters but not long-term secret parameters) to the adversary.

Session− Key Reveal, Corrupt, and Test are equivalent to the Reveal, Corrupt, and Test
queries in Table 1 respectively.

Send(Uu, Uv , i, m) is equivalent to the Send query in Table 1. However, AAM is re-
stricted to only delay, delete, and relay messages but not to fabricate any messages
or send a message more than once.

A protocol that is proven to be secure in the AM can be translated to a
provably secure protocol in the UM with the use of an authenticator. Definition 3
provides the definition of an autheticator.

Definition 3 (Definition of an Authenticator). An authenticator is defined
to be a mapping transforming a protocol πAM in the AM to a protocol πUM in
the UM such that πUM emulates πAM.

In other words, the security proof of a UM protocol depends on the security
proofs of the MT-authenticators used and that of the associated AM protocol.
If any of these proofs break down, then the proof of the UM protocol is invalid.
CK2001 partnership can be defined using the notion of matching sessions, as
described in Definition 4.

Definition 4 (Matching Sessions). Two sessions are said to be matching if
they have the same session identifier (SIDs) and corresponding partner identifier
(PIDs).
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2.3 Definition of Freshness

Freshness is used to identify the session keys about which A ought not to know
anything because A has not revealed any oracles that have accepted the key
and has not corrupted any principals knowing the key. Definition 5 describes
freshness, which depends on the respective notion of partnership. The following
definition of freshness does not incorporate the notion of forward secrecy, or the
notions of session expiry and exposure in the Canetti–Krawczyk model since
these notions are not necessary to explain our attacks.

Definition 5 (Definition of Freshness). Oracle Πi
A,B is fresh (or holds a

fresh session key) at the end of execution, if, and only if, (1) Πi
A,B has accepted

with or without a partner oracle Πj
B,A, (2) both Πi

A,B and Πj
B,A oracles have

not been sent a Reveal query (or Session-State Reveal in the CK2001 model), and
(3) A and B have not been sent a Corrupt query.

2.4 Definition of Security

Security in the models is defined using the game G, played between a malicious
adversaryA and a collection of Πi

Ux,Uy
oracles for players Ux, Uy ∈ {U1, . . . , UNp}

and instances i ∈ {1, . . . , Ns}. The adversary A runs the game G, whose setting
is explained below:

Stage 1: A is able to send any oracle queries at will.
Stage 2: At some point during G, A will choose a fresh session on which to

be tested and send a Test query to the fresh oracle associated with the
test session. Depending on the randomly chosen bit b, A is given either the
actual session key or a session key drawn randomly from the session key
distribution.

Stage 3: A continues making any oracle queries at will but cannot make Corrupt
or Session-State/Key Reveal queries that trivially expose the test session key.

Stage 4: Eventually, A terminates the game simulation and outputs a bit b′,
which is its guess of the value of b.

Success of A in G is measured in terms of A’s advantage in distinguishing
whether A receives the real key or a random value. A wins if, after asking a
Test(U1, U2, i) query, where Πi

U1,U2
is fresh and has accepted, A’s guess bit b′

equals the bit b selected during the Test(U1, U2, i) query. Let the advantage
function of A be denoted by AdvA(k), where AdvA(k) = 2 × Pr[b = b′] − 1.

The notions of security for entity authentication are client-to-server authenti-
cation, server-to-client authentication, and mutual authentication. An adversary
is said to violate client-to-server authentication if some fresh server oracle termi-
nates with no partner. Similarly, an adversary is said to violate server-to-client
authentication if some fresh client oracle terminates with no partner. An adver-
sary is said to violate mutual authentication if some fresh oracle terminates with
no partner.

Definitions 6, 7, and 8 describes the definition of security for the BR95 model,
the BPR2000 model, and both the BR93 and CK2001 models respectively.
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Definition 6 (BR95 Definition of Security). A protocol is secure in the
BR95 model if both the following requirements are satisfied: (1) When the pro-
tocol is run between two oracles Πi

A,B and Πj
B,A in the absence of a malicious

adversary, both Πi
A,B and Πj

B,A accept and hold the same session key. (2) For
all probabilistic, polynomial-time (PPT) adversaries A, AdvA(k) is negligible.

Definition 7 (BPR2000 Definition of Security). A protocol is secure in the
BPR2000 model if both the following requirements are satisfied: (1) When the
protocol is run between two oracles Πi

A,B and Πj
B,A in the absence of a malicious

adversary, both Πi
A,B and Πj

B,A accept and hold the same session key. (2) For
all probabilistic, polynomial-time (PPT) adversaries A, the advantage that A has
in violating entity authentication is negligible, and AdvA(k) is negligible.

Definition 8 (BR93 and CK2001 Definitions of Security). A protocol is
secure in the BR93 and CK2001 models if both the following requirements are
satisfied: (1) When the protocol is run between two oracles Πi

A,B and Πj
B,A in

the absence of a malicious adversary, both Πi
A,B and Πj

B,A accept and hold the
same session key, and (2) For all PPT adversaries A, (a) If uncorrupted oracles
Πi

A,B and Πj
B,A complete matching sessions, then both Πi

A,B and Πj
B,A must

hold the same session key, and (b) AdvA(k) is negligible.

3 Flawed Proofs in the Bellare–Rogaway Model

3.1 Boyd–González Nieto Conference Key Agreement Protocol

The conference key agreement protocol [8] shown in Figure 1 carries a claimed
proof of security in the BR93 model, but uses a different definition of partnership
than that given in the original model description. Although this protocol was
proposed fairly recently, it has been widely cited and used as a benchmark. In
the protocol, the notation (eU , dU ) denotes the encryption and signature keys of
principal U respectively, {·}eU denotes the encryption of some message under key
eU , σdU (·) denotes the signature of some message under the signature key dU , NU

denotes the random nonce chosen by principal U , H denotes some secure one-
way collision-resistant hash function, and SKU denotes the session key accepted
by U . The protocol involves a set of p users, U = {U1, U2, . . . , Up}.

The initiator, U1, randomly selects a k-bit challenge N1, encrypts N1 under
the public keys of the other participants in the protocol, signs the encrypted
nonces {N1}eU2

, . . . , {N1}eUp
and broadcasts these messages in protocol flows 1

and 2 as shown in Figure 1. The other principals, upon receiving the broadcasted
messages, will respond with their identity and a random nonce. All principals
are then able to compute the shared session key SKUi = H(N1||N2|| . . . ||Np).
The session identifier (SID) in the protocol is defined to be the concatenation
of messages received and sent. Note that the adversary, A, is allowed to capture
and suppress any broadcasted messages in the network.
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1. U1 → ∗ : U = {U1, U2, . . . , Up}, σdU1
(U , {N1}eU2

, . . . , {N1}eUp
)

2. U1 → ∗ : {N1}eUi
for 1 < i ≤ p

3. Ui → ∗ : Ui, Ni

The session key is SKUi = H(N1||N2|| . . . ||Np).

Fig. 1. Boyd–González Nieto conference key agreement protocol

U1 U2 A U3

U , σdU1
(U , {N1}eU2

, {N1}eU3
)

{N1}eU2
, {N1}eU3

UA, σdA(UA, {N1}eU2
, {N1}eU3

) UA, σdA(UA, {N1}eU2
, {N1}eU3

)

{N1}eU2
, {N1}eU3

{N1}eU2
, {N1}eU3

U2, N2 U3, N3

U2, N2, U3, N3 U2, N2

Fig. 2. Unknown key share attack

3.1.1 Unknown Key Share Attack
Figure 2 shows the execution of the Boyd–González Nieto conference key agree-
ment protocol in the presence of a malicious adversary, A. For simplicity, let
U = {U1, U2, U3} and UA = {A, U2, U3}, which denote two different sessions.
In Figure 2, the actions of the entities are as follows:
1. The initiator, U1, encrypts N1 under the public keys of the other participants

in the protocol (i.e., U \ U1), signs the encrypted nonces {N1}eU2
, {N1}eU3

together with U , and broadcasts these messages in protocol flows 1 and 2.
2. A malicious adversary, A, intercepts the broadcasted messages sent by U1. In

other words, the broadcasted messages sent by U1 never reach the intended
recipients, U2 & U3.

– A then signs the intercepted encrypted nonces {N1}eU2
, {N1}eU3

to-
gether with UA (instead of U) under A’s signing key

– A now acts as the initiator in a different session and broadcasts these
messages in protocol flows 1 and 2.

3. U2 & U3 upon receiving the broadcasted messages, will reply to A with their
identity and a random nonce.

4. A impersonates U2 & U3 and forwards the messages from U2 & U3 to U1.
5. U1, U2 & U3 are then able to compute the shared session key SKUi =

H(N1||N2|, | . . . ||Nn).

Table 3 describes the internal states of players U1, U2 & U3 at the end of the
protocol execution shown in Figure 2. We observe that U1 is not partnered with
either U2 or U3 according to Definition 2, since U1 does not have matching SIDs
or agreeing PIDs (Krawczyk termed such an attack a key-replication attack [22]
whereby A succeeds in forcing the establishment of a session, S1, other than the
Test session or its matching session that has the same key as the Test session. In
this case, A can distinguish whether the Test-session key is real or random by
asking a Reveal query to the oracle associated with S1.).
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Table 3. Internal states of players U1, U2, and U3

U sidU pidU

U1 U , σdU1
(U , {N1}eU2

, {N1}KU3
), {N1}eU2

, {N1}eU3
, U2, N2, U3, N3 {U2, U3}

U2 UA, σdA(UA, {N1}eU2
, {N1}eU3

), {N1}eU2
, {N1}eU3

, U2, N2, U3, N3 {A, U3}
U3 UA, σdA(UA, {N1}eU2

, {N1}eU3
), {N1}eU2

, {N1}eU3
, U2, N2, U3, N3 {A, U2}

U1 believes that the session key SKU1 is being shared with U2 and U3, but
U2 (and U3 respectively) believes the key SKU2 = H(N1||N2||N3) = SKU3 =
SKU1 is being shared with A and U3 (and U2 respectively), when in fact,
the key is being shared among U1, U2, and U3. However, SKU1 = SKU2 =
SKU3 = H(N1||N2||N3). Although the adversary A does not know the value
of the session key (since A does not know the value of N1), A is able to
send a Reveal query to the session associated with either U2 or U3 and ob-
tain SKU2 = H(N1||N2||N3) = SKU3 , which has the same value as SKU1 .
Hence, the Boyd–González Nieto conference key agreement protocol shown in
Figure 1 is not secure in the BR93 model since the adversary A is able to
obtain the fresh session key of the initiator U1 by revealing non-partner or-
acles of U1 (i.e., U2 or U3), in violation of the security definition given in
Definition 8.

3.1.2 An Improved Conference Key Agreement Protocol
It would appear that by changing the order of the application of the signature
and encryption schemes, the attack shown in Figure 2 can be avoided. How-
ever, at a first glance, this may appear to contradict the result of An, Dodis,
& Rabin [1] that no matter what order signature and encryption schemes are
applied, the result can still be secure. A closer inspection reveals that our ob-
servation actually supports the findings of An et al., since the protocol operates
in a multi-user setting. Although An et al. found that signature and encryp-
tion schemes can be applied in either order in the two user setting, they found
some further restrictions in the multi-user setting. These restrictions are that
the sender’s identity must be included in every encryption and the recipient’s
identity must be included in every signature. In this case, swapping the order
of the encryption and signature schemes happens to cause the protocol to fulfil
these requirements.

An alternative way to prevent the attack is to include the sender’s iden-
tity in each encryption and also the session identifier, sid, in the key deriva-
tion function. We use the same construct for sid (i.e., the concatentation of
all messages received) as used by Boyd & González Nieto. In the improved
protocol, the adversary A will not be able to “claim” ownership of the en-
crypted message {N1, U1}eUi

since the identity of the initiator is included in
the encryption. Since the construct of the session key in the improved protocol
comprises the associated sid, a different sid will imply a different session key.
Hence, the attack shown in Figure 2 will no longer be valid against this improved
protocol.
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U1 U2, U3 AU4

Insiders

Outsider
In the proof simulation of the protocol execution shown in Fig-
ure 2, A corrupts U4, an outsider in the target session, and
assumes U4’s identity.

Fig. 3. Insiders vs outsider

3.1.3 Limitations of Existing Proof
In the existing proof, the security of the protocol is proved by finding a reduction
to the security of the encryption and signature schemes used. The number of
protocol participants in the proof simulation, p, is assumed to be equal to the
number of players allowed in the model, n, where n is polynomial in the security
parameter k. In its reductionist approach, the proof assumes that there exists an
adversary A who can gain a non-negligible advantage, AdvA(k), in distinguishing
the test key from a random one. An attacker is then constructed that uses A to
break either the underlying encryption scheme or the signature scheme.

In the context of the attack shown in Figure 2, assume that the number of
protocol participants in the proof simulation is three. The proof then assumes
that the number of parties in the model is also three. However, in order to carry
out the attack, we have to corrupt a 4th player (i.e., U4, an outsider as shown in
Figure 3) to obtain the signature key of U4.

Since U4 does not exist in the model assumed by the proof, the attacker
against the encryption and signature schemes cannot simulate the Corrupt(U4)
query for A and the proof fails since although A succeeds, it cannot be used to
break either the encryption or signature schemes. Our observation is consistent
with the above results of An et al., which highlight the underlying cause of the
proof breakdown – the proof environment effectively did not allow a multi-user
setting in which to analyse the signature and encryption schemes.

3.2 Jakobsson–Pointcheval MAKEP

Figure 4 describes the published version of JP-MAKEP [18], which was designed
for low power computing devices1. JP-MAKEP carries a claimed proof of security
in the BR93 model but uses the notion of SIDs in the definition of partnership.
There are two communicating principals in MAKEP, namely the server B and
the client of limited computing resources, A. The security goals of the protocol
are mutual authentication and key establishment between the two communicat-
ing principals. A and B are each assumed to know the public key of the other
party (i.e., gxB and gxA respectively).
1 The original version appeared in the unpublished pre-proceedings of Financial Crypto

2001 with a claimed proof of security in the BR93 model. Nevertheless, a flaw in the
protocol was discovered by Wong & Chan [26]. In this published version, the flaw
found by Wong & Chan in the original version has been fixed.
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Client A (xA, gxA) Server B (xB, gxB)

a, t ∈R Zq, c = ga, T = gt, K = (gxB)a

r = H1(T, gxB , c, K), A′ = H2(g
xB , c, K)

IDB , c, r−−−−−−−→ K = cxB , A = H2(g
xB , c, K)

A′ ?
= A

A, e←−−−−−−− 0 ≤ e < 2k

d = t− exA mod q
IDA, d−−−−−−−→ r

?
= H1(g

d(gxA)e, gxB , c, K)

sid = (IDB, c, r,A, e, IDA, d) sid = (IDB , c, r, A, e, IDA, d)

sk = H0(g
xB , c, K) sk = H0(g

xB , c, K)

Fig. 4. Jakobsson–Pointcheval MAKEP

A (xA, gxA) A (xA, gxA) B (xB, gxB )
IDB, c, r−−−−−−−→ IDB, c, r−−−−−−−→
A, e′ = 0←−−−−−−− Fabricate

A, e←−−−−−−−
IDA, d = t−−−−−−−→ Fabricate

IDA, d− exA mod q−−−−−−−→
r

?
= H1(g

d−exA(gxA)e, gxB , c, K)

sidBA = (IDB, c, r,A, e, IDA, d− exA mod q)

sidAB = (IDB, c, r, A, e′, IDA, d) �= sidBA
skAB = H0(g

xB , c, K) skBA = H0(g
xB , c, K)

Fig. 5. Unknown key attack on Jakobsson–Pointcheval MAKEP

3.2.1 Unknown Key Share Attack
Figure 5 depicts an example execution of JP-MAKEP in the presence of a ma-
licious adversary A. At the end of the attack, B believes he shares a session
key, skBA = H0(gxB , c, K), with the adversary A, when in fact the key is being
shared with A (i.e., unknown key share attack). A and B are not partners since
they have different SIDs, sidBA = (IDB, c, r, A, e, IDA, d−exA mod q) �= sidAB,
and different perceived partners (i.e., PIDA = A and PIDB = A).

From Figure 5, we observe that A has terminated the protocol without any
partners, in violation of the server-to-client authentication goal. On the other
hand, the server, B, has terminated the protocol with the adversary, A, as its
partner. Hence, the client-to-server authentication is not violated. Consequently,
JP-MAKEP is not secure since the adversary is able to obtain a fresh session
key of A by revealing a non-partner oracle of A (i.e., an oracle of B), in violation
of the security definition given in Definition 8. A fix for JP-MAKEP is to change
0 ≤ e < 2k in the protocol specification to 0 < e < 2k.

3.2.2 Flaws in Existing Proof
In the proof simulation of the protocol, let P be another client where P �= A, B.
P is clearly the “outsider” in the target session of Figure 5 that A is attacking.
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A then corrupts P , the outsider, and assumes P ’s identity. This is allowed in
the existing proof [18–Lemma 3] for the server-to-client authentication, since it
is claimed that the JP-MAKEP provides partial forward-secrecy whereby cor-
ruption of the client may not help to recover the session keys.

The proof assumes that the probability of A violating the server-to-client
authentication is negligible. In the context of the attack shown in Figure 5,
A managed to violate the server-to-client authentication by corrupting a non-
partner player, P . By violating the server-to-client authentication, A is then able
to distinguish a real key or a random key by asking a Reveal query to a non-
partner server oracle of A, and hence violate the server-to-client authentication
with non-negligible probability. The discrete logarithm breaker ADL (which is
constructed using A) is unable to obtain a non-negligible probability of breaking
the discrete logarithm problem, contradicting the underlying assumption in the
proof. Consequently, the proof simulation fails (the result of Reveal and Corrupt
queries were not adequately considered in the simulation).

3.3 Wong–Chan MAKEP

Figure 6 describes WC-MAKEP [26], which was proposed as an improvement
to the original unpublished version of JP-MAKEP. Note that Figure 6 describes
the corrected version of WC-MAKEP, where the computation of σ = (rA ⊕ rB)
by A is replaced by σ = (rA ⊕ rB)||IDB.

3.3.1 A New Attack
Figure 7 depicts an example execution of WC-MAKEP, where at the end of the
protocol execution, A and B accept with the same session key, SKAB = H(σ) =
SKBA.

However, according to Definition 1, both A and B are not partners as B’s
replies are not in response to genuine messages sent by A (i.e., both A and B will
not have matching conversations given in Definition 1). Since two non-partner
oracles, ΠA,B and ΠB,A, accept session keys with the same value, the adversary
A can reveal a fresh non-partner oracle, ΠB,A, and find the session key accepted
by ΠA,B, in violation of the security definition given in Definition 8. In addition,
both oracles of A and B have terminated the protocol without any partners, in

A (a, ga) B (SKB, PKB)

rA ∈R {0, 1}k, x = {rA}PKB

b ∈R Zq \ {0}, β = gb CertA, β, x−−−−−−−→ Decrypt x

σ = (rA ⊕ rB)||IDB

y = aH(σ) + b mod q
{rB , IDB}rA←−−−−−−− rB ∈ {0, 1}k

SKAB = H(σ)
y−−−−−−−→ gy ?

= (ga)H(σ)β, SKBA = H(σ)

Fig. 6. Wong–Chan MAKEP
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A A B

CertA, β, x−−−−−−−→ Fabricate message
CertA, β · ge, x−−−−−−−→

{rB, IDB}rA←−−−−−−− {rB, IDB}rA←−−−−−−−
y−−−−−−−→ y′ = y + e mod q gy′ ?

= (ga)H(σ)(β · ge)

SKAB = H(σ)
y′

−−−−−−−→ SKBA = H(σ)

Fig. 7. Attack on Wong–Chan MAKEP

violation of the mutual authentication goal. Hence, WC-MAKEP is insecure in
the BR93 model since the attack outlined in Figure 7 shows that both the key
establishment and mutual authentication goals are violated.

3.3.2 Preventing the Attack
A possible fix to WC-MAKEP is to change the construction of the session key to
SK = H(A, B, β, x, y, σ). The inclusion of the sender’s and responder’s identities
and messages (β, x, y) in the key derivation function effectively binds the session
key to all messages sent and received by both A and B [11]. If the adversary
changes any of the messages in the transmission, the session key will also be
different. Intuitively, the attack shown in Figure 7 will no longer be valid against
WC-MAKEP.

3.3.3 Flaws in Existing Proof
The existing (sketchy) proof fails to provide a proof simulation. In the absence
of a game simulation in the existing proof, we may only speculate that the proof
fails to adequately consider the simulation of Send and Reveal queries (in the
same sense as outlined in Section 3.2.2).

In the flaws in the AMP protocol [23] and EPA protocol [17] revealed by Wan
& Wang [25], both proofs fail to provide any proof simulations. These examples
highlight the importance of detailed proof simulations, as the omission of such
simulations could potentially result in protocols claimed to be secure being, in
fact, insecure.

4 Flaw in the Proof of an Encryption-Based
MT-Authenticator

In this section, we reveal an inadequacy in the specification of the encryption
based MT-authenticator proposed by Bellare, Canetti, & Krawczyk [2] and iden-
tify a flaw in its proof simulation. We then demonstrate with example protocol
(the protocol 2DHPE [16]) how the flaw in the proof of the encryption-based
MT-authenticator results in the violation of the key establishment goal in the
protocol 2DHPE where a malicious adversary is able to learn a fresh session key.
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In fact, the attack we reveal on the protocol 2DHPE also applies to protocol
14 that appears in the full version of [15]. Surprisingly, the inadequancy in the
specification was not spotted in the proof simulation of the MT-authenticator,
and has not previously been spotted in other protocols [15,16] using this MT-
authenticator.

We may speculate that if protocol designers fail to spot this inadequancy in
the specification of their protocols, the protocol implementers are also highly
unlikely to spot this inadequancy until specific attacks have been demonstrated,
as suggested by Bleichenbacher [6].

Having identified the flaw in the proof of the MT-authenticator, we provide a
fix to the MT-authenticator specification. As a result of this fix, protocols using
the revised encryption based MT-authenticator will no longer be flawed due to
their use of this MT-authenticator. The notation used throughout this section is
as follows: the notation {·}KU denotes an encryption of some message m under
U ’s public key, KU , and MAC K(m) denotes the computation of MAC digest of
some message m under key K.

4.1 Bellare–Canetti–Krawczyk Encryption-Based MT-
Authenticator

Figure 8 describes the encryption based MT-authenticator, which is based on a
public-key encryption scheme indistinguishable under chosen-ciphertext attack
and the authentication technique used by Krawczyk [21]. Note that the specifi-
cation of the encryption-based MT-authenticator does not specify the deletion
of the received nonce vA (incidentally, vA is also the one-time MAC key) from
B’s internal state before sending out the last message.

4.2 Flaw in Existing Proof of MT-Authenticator

In the usual tradition of reductionist proofs, the existing MT-authenticator
proof [2] assumes that there exists an adversary A who can break the MT-
authenticator, and an encryption-aided MAC forger, F is constructed using such
an adversary A against the unforgability of the underlying MAC scheme. Subse-
quently, the encryption-aided MAC forger, F , can be used to break the encryp-
tion scheme. F who has access to a MAC oracle, is easily constructed as follows:

– guess at random an index i,

A B

Choose nonce vA
sid, m←−−−−−−− Choose message m

sid, m, {vA}KB−−−−−−−→ Decrypt {vA}KB

Verify MAC vA (m,A)
sid, m,MAC vA (m, A)←−−−−−−− Compute MAC vA(m, A)

Fig. 8. Bellare–Canetti–Krawczyk encryption-based MT-authenticator
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A A B

Intercept
sidj , m←−−−−−−−

sidi, m
′

←−−−−−−− Fabricate

sidi, m
′, {vA}KB−−−−−−−→ Intercept

Fabricate
sidj , m, {vA}KB−−−−−−−→

sidj , m,MAC vA (m,A)←−−−−−−−
Session−State Reveal(sidj)−−−−−−−→

sidi, m
′,MAC vA (m′, A)←−−−−−−− Fabricate

vA←−−−−−−−

Fig. 9. Execution of encryption-based MT-authenticator in the presence of a malicious

adversary, A

– for all but the i-th session, generate a key vk and answer queries as expected,
– if A calls a Session-State Reveal2 on any session other than the i-th session,

the response can easily be simulated,
– if A calls a Session-State Reveal on the i-th session, F aborts.

The assumption is that if A has a non-negligible advantage against the underly-
ing protocol, then F has a non-negligible probability of forging a MAC digest.

Consider the scenario shown in Figure 9. When A asks for the one-time MAC
key (i.e., vk) with a Session-State Reveal query, it is perfectly legitimate since
this session with SID of sidj is not the i-th session with SID of sidi. Recall that
sessions with non-matching SIDs (i.e., sidi �= sidj) are non-partners.

Clearly, F is unable to answer such a query since vA is a secret key (note
that the MAC oracle to which F has access is associated with vA, but F does
not know vA). Hence, the proof simulation is aborted and F fails. Consequently,
F does not have a non-negligible probability of forging a MAC digest (since
it fails) although A has a non-negligible advantage against the security of the
underlying protocol, in violation of the underlying assumption in the proof.

4.3 Proposed Fix to the Encryption-Based MT-Authenticator

In this section, we provide a fix to the encryption-based MT-authenticator by
requiring that the party concerned delete the received nonce from its internal
state before sending out the MAC digest computed using the received nonce.
With the fix, the adversary will not be able to obtain the value of vA using
a Session-State Reveal query. Hence, in the proof of the security of the MT-
authenticator, F will be able to answer such a query because F is no longer
required to return the value of vA. Therefore, the attack shown in Figure 9 will
2 Note that in the original paper of Bellare, Canetti, & Krawczyk [2], a Session-State

Reveal is known as a Session-Corruption query.
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A (πA,B) B (πA,B)

x ∈R Zq, vA ∈R {0, 1}k A, sid, gx, {vA}KB−−−−−−−→ y ∈R Zq

v′
A = DdB ({vA}KB ), NB ∈R {0, 1}k

SKA,B = (gy)x
B, sid, gy, NB ,MAC v′

A
(B, sid, gy, A)

←−−−−−−−
sid, {A, sid, gx, NB , πA,B}KB−−−−−−−−−−−−−−−−→ SKB,A = (gx)y

Fig. 10. Hitchcock, Tin, Boyd, González Nieto, & Montague (2003) protocol 2DHPE

no longer be valid, since A will no longer be able to obtain the value of vA and
fabricate a MAC digest.

4.4 An Example Protocol as a Case Study

Figure 10 describes a password-based protocol 2DHPE due to Hitchcock, Tin,
Boyd, Gonzalez-Nieto, & Montague [16]. Using the protocol 2DHPE as an exam-
ple, we demonstrate that as a result of the flaw in the proof of the encryption-
based MT-authenticator, the proof of protocol 2DHPE is also invalid. In the
example protocol, both A and B are assumed to share a secret password, πA,B,
and the public keys of both A and B (i.e., KA and KB respectively) are known
to all participants in the protocol. The protocol uses the encryption-based MT-
authenticator to authenticate the message B, sid, gy from B. Figure 11 describes
an example execution of protocol 2DHPE in the presence of a malicious adver-
sary A (in the UM). We assume that A has a shared password with B, πA,B. At
the end of the protocol execution shown in Figure 11, oracle Πsid

A,B has accepted a
shared session key SKA,B = gxz with Πsid

B,A. However, such an oracle (i.e., Πsid
B,A)

does not exist. By sending a Session-State Reveal query to oracle ΠsidA
B,A , A learns

the internal state of ΠsidA
B,A , which includes v′A. With v′A, A can fabricate and

send a MAC digest to A. Hence, the adversary is able to obtain a fresh session
key of Πsid

A,B (i.e., SKA,B = gxz) since A knows z (in fact, z is chosen by A).
However, if the encryption-based MT-authenticator requires B to delete the

received nonce v′A from B’s internal sate before sending out message 3, then A
will not be able to obtain the value of v′A with a Session-State Reveal query and
fabricate MAC v′

A
(B, sid, gy, A). Consequently, protocol 2DHPE will be secure.

5 Conclusion

Through a detailed study of several protocols and an authenticator with claimed
proofs of security, we have concluded that specifying correct computational com-
plexity proofs for protocols remains a hard problem. However, we have identified
three areas where protocol proofs are likely to fail, namely: an inappropriate
proof model environment, Send, Reveal and Corrupt queries not adequately con-
sidered in the proof simulations, and omission of proof simulations.
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A A B

A, sid, gx, {vA}KB−−−−−−−→ A, sidA, gx, {vA}KB−−−−−−−→ v′
A = DdB ({vA}KB )

B, sidA, gy, NB ,MAC v′
A

(B, sid, gy, A)
←−−−−−−−

Session − State Reveal(B, sidA)−−−−−−−→
B, sid, gz, NB ,MAC v′

A
(B, sid, gz, A)

←−−−−−−− v′
A←−−−−−−−

sid, {A, sid, gx, NB , πA,B}KB−−−−−−−→
SKA,B = gxz

Fig. 11. Execution of protocol 2DHPE in the presence of a malicious adversary

We also observe that certain constructions of session keys may contribute to
the security of the key establishment protocol. This observation supports the
findings of recent work of Choo, Boyd, & Hitchcock [11], who describe a way of
constructing session keys, as described below:

– the identities and roles of the participants to provide resilience against un-
known key share attacks and reflection attacks since the inclusion of the iden-
tities of both the participants and role asymmetry effectively ensures some
sense of direction. If the role of the participants or the identities of the (per-
ceived) partner participants change, the session keys will also be different.

– the unique SIDs to ensure that session keys will be fresh, and if SIDs are de-
fined as the concatenation of messages exchanged during the protocol execu-
tion, messages altered during the transmission will result in different session
keys (and prevents the key replicating attack [22] in the Bellare–Rogaway
and Canetti–Krawczyk models).
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8. C. Boyd and J. M. González Nieto. Round-optimal Contributory Conference Key
Agreement. In PKC 2003, pages 161–174. Springer-Verlag, 2003. Vol. 2567/2003
of LNCS.

9. E. Bresson, O. Chevassut, and D. Pointcheval. Provably Authenticated Group
Diffie–Hellman Key Exchange — The Dynamic Case. In Asiacrypt 2001, pages
209–223. Springer-Verlag, 2001. Vol. 2248/2001 of LNCS.

10. R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and
Their Use for Building Secure Channels (Extended version available from
http://eprint.iacr.org/2001/040/). In Eurocrypt 2001, pages 453–474.
Springer-Verlag, 2001. Vol. 2045/2001 of LNCS.

11. K.-K. R. Choo, C. Boyd, and Y. Hitchcock. On Session Key Con-
struction in Provably Secure Protocols (Extended version available from
http://eprint.iacr.org/2005/206). In Mycrypt 2005, pages 116–131, 2005. Vol.
3715/2005 of LNCS.

12. W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and Authenticated
Key Exchange. Journal of Designs, Codes and Cryptography, pages 107–125, 1992.

13. D. Dolev and A. C. Yao. On the Security of Public Key Protocols. IEEE Trans-
action of Information Technology, pages 198–208, 1983.

14. S. Goldwasser and S. Micali. Probabilisitic Encryption. Journal of Computer and
System Sciences, pages 270–299, 1984.

15. Y. Hitchcock, Y.-S. T. Tin, C. Boyd, and J. M. González Nieto. Tripartite
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